+数学对抗赛
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
一、填空题。
(每题8分,共32分)1、在一个停车场,有24辆车,其中汽车是4个轮子,摩托车是3个轮子。
这些车共有86个轮子,那么三轮摩托车有( )辆。
2、将8个数从左到右排成一行,从第3个数开始,每个数恰好等于它前面两个数之和,如果第7个数和第8个数分别是81、131,那么第1个数是( )。
二、计算,写出简算过程。
(每题6分,共12分)3.75×4.23×36 - 125×0.423×2.8752×1.25+4.45×12.5+0.035×125三、应用题1、甲、乙二人储蓄32元,乙丙二人储蓄30元,甲、丙二人储蓄22元,三人各储蓄多少元?2、爸爸和爷爷今年年龄加起来是129岁,十年前爷爷比爸爸大37岁,今年爷爷多大年龄?3、水果店有5箱等重的苹果,如果从每箱里取出30千克,5箱里剩下的苹果正好等于原来的两箱苹果,原来每箱苹果重多少千克?4、两组同学跳绳,甲组有25人,平均每人跳80下;乙组有20人,平均每人比甲、乙组的平均数多5下,求两组同学平均每人跳多少下?5、一支队伍长3000米,以每分钟50米的速度前进,队伍的联络员,有事从排尾赶到排头,又立即返回排尾,如果联络员骑自行车每分钟行200米,他往返一趟用多少分钟?6、有一本故事书,每2页文字之间有3页插图,也就是3页插图前后各有1页文字,假定这本书有96页,而第1页是插图,这本书共有插图多少页?7、幼儿园将一筐苹果分给小朋友,如果分给大班小朋友,每人5个缺6个,如果分给小班小朋友,每人3个余4个,已知大班比小班少2个小朋友,问一筐苹果共几个?8、两个队参加数学对抗赛,甲队的平均分是75分,乙队的平均分是73分,两队同学的平均分是73.5分。
已知乙队比甲队多6人,那么乙队有多少人?1、计算。
0.25×19+0.75×27(96.5-96.5×0.24-0.24)÷73.12、哥哥和妹妹共有20张图画纸,哥哥给妹妹4张后,两人的张数相等,妹妹原来有()张。
内蒙古呼和浩特市七年级下学期数学尖子生对抗赛试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列不等式中,属于一元一次不等式的是()A . x(x﹣1)+2<0B . 2(1﹣y)+y>2C .D . x﹣2y≥02. (2分)下列方程中是一元一次方程的是()A . 5=abB . 2+5=7C . +1=x+3D . 3x+5y=83. (2分) (2017七下·无锡期中) 关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A . ﹣B .C . ﹣D .4. (2分)当0<x<1时,x2、x、的大小顺序是()A . x2B . <x<x2C . <xD . x<x2<5. (2分) (2019七下·邱县期末) 一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为()A .B .C .D .6. (2分)不等式2x<4的解集是()A . x<2B . x>2C .D .7. (2分)江津中学七年级准备开展“阳光体育”活动,为了丰富同学们的体锻内容,体育委员小灵到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A .B .C .D .8. (2分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A .B .C .D .9. (2分)二元一次方程组的解是()A .B .C .D .10. (2分) (2019八上·秀洲期中) 若成立,则下列不等式成立的是A .B .C .D .二、填空题 (共5题;共12分)11. (1分)已知x=1是方程的解,则a=________.12. (5分)有理数m,n在数轴上如图,用不等号填空.(1)m+n________ 0;(2)m﹣n________ 0;(3)m•n________0;(4)m2________ n;(5)|m|________ |n|.13. (1分)(2020·甘肃模拟) 单项式3xn+1y3与是同类项,则m﹣n=________.14. (4分)一元一次方程如有括号,解方程时一般要先________,再________、________、________.15. (1分) (2020七上·双台子期末) 用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x 张铝片制瓶身,则可列方程为________.三、解答题 (共8题;共91分)16. (5分) (2020七上·怀柔期末)17. (20分) (2020七下·明水月考) 计算与解方程组(1);(2).(3)(4)18. (10分) (2017七下·罗定期末) 解下列方程组,在数轴表示解(1)(2).19. (5分)(2019·白银) 小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?20. (11分) (2016七上·微山期末) “水是生命之源”,某城市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:用水量/月单价(元/m3)不超过20m3 2.8超过20m3的部分 3.8另:每立方米用水加收0.2元的城市污水处理费(1)如果1月份某用户用水量为19m3 ,那么该用户1月份应该缴纳水费________元.(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,这样该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?21. (15分) (2020七上·舒城月考) 王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元.(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元.请你帮王叔叔算一下,用哪种方案最省钱?22. (10分) (2020七下·自贡期末) 某商店销售两种型号的皮箱,进价100元、80元,第一天卖出A型3个,B型2个,销售收入590元;第二天A型5个,B型4个,销售收入1050元.(1)若商店准备用不多于5000元的金额再采购这两种型号的皮箱共55个,求A种型号的皮箱最多能采购多少个?(2)在(1)的条件下,商店销售完这55个皮箱能否实现利润超过1380元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23. (15分) (2020七下·南通期中) 若点P(x,y)的坐标满足方程组(1)求点P的坐标(用含m,n的式子表示);(2)若点P在第四象限,且符合要求的整数m只有两个,求n的取值范围;(3)若点P到x轴的距离为5,到y轴的距离为4,求m,n的值(直接写出结果即可).参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共12分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共91分)答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
邢庄中学八年级数学下册知识对抗赛试题命题:邢庄中学数学组一、必答题1、叙述判定两个三角形全等的方法(三个以上)2、叙述全等三角形的性质3、叙述等腰三角形的性质(两条以上)4、叙述等边三角形的性质(两条以上)5、叙述等腰三角形的判定方法6、叙述等边三角形的判定方法(两条以上)7、叙述直角三角形的性质(两条以上)8、叙述直角三角形的判定方法(两条以上)9、叙述线段垂直平分线的性质10、叙述角平分线的性质11、叙述不等式基本性质112、叙述不等式基本性质213、叙述不等式基本性质314、什么叫不等式的解15、什么叫不等式组的解集16、什么叫平移17、平移一个图形需要哪些条件18、平移和旋转基本的性质是什么19、什么叫旋转20、旋转一个图形需要哪些条件21、叙述什么叫中心对称图形22、什么叫公因式23、叙述分式的基本性质24、叙述分式的乘除法法则25、叙述分式的加减法法则(同分母、异分母)26、什么叫分式方程27、解分式方程的一般步骤是什么28、说一说分式方程产生增根的原因29、什么叫平行四边形30、什么叫平行四边形的对角线31、叙述平行四边形的性质(4条以上)32、叙述判定一个四边形是平行四边形的方法(4条)33、什么叫三角形的中位线?34、三角形中位线的性质是什么?35、n边形的内角和怎么算?36、外角和与内角和相等的多边形是几边形37、正五边形的一个内角是多少度?38、从正六边形的一个顶点出发可以作n条对角线,则n=39、顺次连接任意四边形四边中点所得的四边形一定是40、一组对边平行,另一组对边不平行的四边形不一定是平行边形。
请举出一个反例。
41、判断:平行四边形的一组对角的平分线一定互相平行42、判断:两组对角别相等的四边形是平行四边形43、判断:过平行四边形对角线交点的任意一条直线可以将这个平行四边形分成面积相等的两部分。
44、判断:平行四边形一组邻角的平分线一定互相垂直。
45、判断:平行四边形四个内角平分线相交,四个交点所构成的四边形不一定是平行四边形。
【小学数学】六年级数学思维训练题(有答案及解析)1.甲、乙两队进行象棋对抗赛;甲队的三人是张、王、李;乙队的三人是赵、钱、孙;按照以往的比赛成绩看;张能胜钱;钱能胜李;李能胜孙;但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋;每两人都要比赛一盘.到现在为止;甲已经赛了4盘;乙赛了3盘;丙赛了2盘;丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛;起跑后甲处在第一的位置;在整个比赛过程中;甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛;每名选手都要和其它选手各赛一场;而且每场比赛都分出胜负;请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0分;平局各得1分;请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局;那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛;每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次;按照获胜场数进行排名;并按照排名获得一定的分数;第一名得9分;第二名得8分;…;第九名得1分;除产生个人名次外;每个队伍还会计算各自队员的得分总和;按团体总分的高低评出团体名次.最后;比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员;第二名是一位蓝队队员;相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队;总分16分;第二名是红队;第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛;每两队之间比赛一场;每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;第三名得了7分;并且和第一名打平.请问:这5支球队的得分;从高到低依次是多少?8.有A、B、C三支足球队;每两队比赛一场;比赛结果为:A:两胜;共失2球;B:进4球;失5球;C:有一场踢平;进2球;失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题;正确的画“√”;错误的画“×”;每道题10分;满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得分.1 2 3 4 5 6 7 8 9 10 得分题号学生甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×10.赵、钱、孙、李、周5户人家;每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸;而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛;每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克;其中每一个元素都生一个;克一个;被一个生和被一个克;水克火是我们熟悉的;有一个俗语叫做“兵来将挡;水来土掩”;是说土能克水.另外;水能生木;火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛;已知第一天B对D;第二天C对E;第三天D对F;第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛;规定每天比赛一场;每场比赛结束后;第二天由胜队与另一队进行比赛;败队则休息一天;如此继续下去;最后结果是A队胜10场;B队胜12场;C队胜14场;则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛;每两人都比赛一场;规定胜者得2分;平局各得1分;输者得0分;请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一;乙、丙并列第二;丁是最后一名;那么乙得了多少分?16.五支足球队进行循环赛;即每两个队之间都要赛一场;每场比赛胜者得2分;输者得0分;平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过;问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0 分;平局各得1分.比赛结果;各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表;已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同;且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24乙丙丁 4戊 3 519.一次足球赛;有A、B、C、D四个队参加;每两队都赛一场;按规则;胜一场得2分;平一场得1分;负一场得0分.比赛结束后;B队得5分;A队得1分.所有场次共进了9个球;B队进球最多;共进了4个球;C队共失了3个球;D队1个球也未进;A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后;A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D21.九个外表完全相同的小球;重量分别是1;2;…;9.为了加以区分;它们都被贴上了数字标签;可是有一天;不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量;得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦;请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李;是女同学;13岁;东;B打听到的:姓张;是男同学;11岁;;C打听到的:姓陈;是女同学;13岁;东;D打听到的:姓黄;是男同学;11岁;西;E打听到的:姓张;是男同学;12岁;东.’实际上第一名同学的情况在上面都出现过;而且这五位同学的消息都仅有一项正确;那么第一名的同学应该是哪个区的;今年多少岁呢?三、超越篇23.在一次射击练习中;甲、乙、丙三位战士打了四发子弹;全部中靶;其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样;乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加;他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘;每盘胜者得1分;负者得0分;平局各得0.5分.结果乙队平均得分为3.6分;丙队平均得分为9分;那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛;每两队之间比赛一场.每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过;只有C没赢过;而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛;每两名选手间都要比赛一次;已知胜一场得2分;平一场得1分;负一场不得分.比赛结果:选手们所得分数各不相同;前两名选手都没输过;前两名的总分比第三名多20分;第四名得分与后四名所得总分相等;问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛;即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分;平一场积1分;负一场积0分;表1是一张记有比赛详细情况表格;但是;经过核对;发现表中恰好有4个数字是错误的;请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 2 2 0 1 0 2 3B 2 1 1 0 3 6 2C 1 2 1 2 0 1 1 表2场数胜负平进球失球积分ABC28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下;发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数;也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子;第六个小朋友戴着黄帽子;请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛;每一轮比赛三个队之间各赛一场.每队胜一场得2分;平一场得1分;负一场不得分.如果三支球队共比赛了7轮;最后A胜的场数最多;B输的场数最少;C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩;李老师给每人发了一顶帽子;并在每个人的帽子上写了一个两位数;这9个两位数互不相同;且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A;问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手;”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了;并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛;甲队的三人是张、王、李;乙队的三人是赵、钱、孙;按照以往的比赛成绩看;张能胜钱;钱能胜李;李能胜孙;但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰张;或者是王;而李能胜孙;说明第一轮只会碰赵或者钱;由于都没有碰到对手;说明钱只能对上王;遇张不行;故王与钱;而李由于只能碰赵或者钱;在钱有对手的情况下只能选赵;故李与赵;最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰张;或者是王;李能胜孙;说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙;王与钱;李与赵答:第一轮比赛是张与孙;王与钱;李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋;每两人都要比赛一盘.到现在为止;甲已经赛了4盘;乙赛了3盘;丙赛了2盘;丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决;我们画个图试试;用五个点分别表示参加比赛的五个人;如果某两人已经赛过;就用线段把代表这两个人的点连接起来;因为甲已经赛了4盘;除了甲以外还有4个点;所以甲与其他4个点都有线段相连(见下图);根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人;如果某两人已经赛过;就用线段把代表这两个人的点连接起来;因为甲已经赛了4盘;除了甲以外还有4个点;所以甲与其他4个点都有线段相连(见左下图);因为丁只赛了1盘;所以丁只与甲有线段相连;因为乙赛了3盘;除了丁以外;乙与其他三个点都有线段相连(见右上图);因为丙赛了2盘;右上图中丙已有两条线段相连;所以丙只与甲、乙赛过;由上页右图清楚地看出;小强赛过2盘;分别与甲、乙比赛;答:小强赛过2盘;分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛;起跑后甲处在第一的位置;在整个比赛过程中;甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知;甲原为第一名(奇数);第一次位置交换后;甲成了第二名(偶数);第二次位置交换后;甲不是第二名;成了第一名或第三名(奇数);第三次位置变化后;不管之前甲处于第一名还是第三名;这次甲肯定又成了第二名(偶数);…;所以可以知道;当甲交换了奇数次位置时;甲一定是第二名;偶数次时;甲一定不在第二名.【解答】解:据题意可知;当甲与共交换了奇数次位置时;甲一定是第二名;偶数次时;甲一定不在第二名.所以甲共交换了7次位置时;7是奇数;则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛;每名选手都要和其它选手各赛一场;而且每场比赛都分出胜负;请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛;属于单循环赛制中;参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1);由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场);答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同;有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1;2;3;4;5;6;7;8;9;0的数列(有五列;是整数;可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0分;平局各得1分;请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局;那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛;即每两队之间都比赛一场;所以一个球队赛5场;加入五场全胜;则得分最多是:3×5=15分;有一个球队5场全负;得分最少是0分.(2)出现了6场平局;得12分;一共1赛15场;剩下9场就是输或者赢了;9×3=27分;那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场;全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分;最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛;每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次;按照获胜场数进行排名;并按照排名获得一定的分数;第一名得9分;第二名得8分;…;第九名得1分;除产生个人名次外;每个队伍还会计算各自队员的得分总和;按团体总分的高低评出团体名次.最后;比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员;第二名是一位蓝队队员;相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队;总分16分;第二名是红队;第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分;黄队16分;红蓝共29分;又团队第一的是黄队且比赛结果没有并列名次;故只能是红队15分;蓝队14分.第一名是一位黄队队员有9分;第二名是一位蓝队队员有8分;即黄队另两名队员共有7分;蓝队另两名队员共有6分;又每名队员至少1分故第三名是一位红队队员有7分;即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队;此时黄队最后一名队员1分.故得5分的不是蓝队队员;不然蓝队又有一名队员1分矛盾.故得5分为红队队员;此时红队有一名是3分.故剩下的蓝队为4分和2分;刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3;据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分;那么总共9人总分就是45分2.由于团队第一名16分;第二名只能是小于等于15;第三名小于等于14.而总分是45.所以第二;第三只能分别是15分;14分.(因为16+15+14=45;没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员;所以红对的三人得分可能是7;5;3或者7;4;2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7;5;3分.答:红队队员分别得了7;5;3分.7.5支球队进行单循环赛;每两队之间比赛一场;每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;第三名得了7分;并且和第一名打平.请问:这5支球队的得分;从高到低依次是多少?【分析】由于5支足球队进行单循环赛;每两队之间进行一场比赛;则每一队都要和其它四队赛一场;即每支球队进行了4场比赛;全胜得12分;第三名得了7分;并且和第一名打平得一分;那么另三场只能是两胜一负;因各队得分都不相同;第一名平一场;如平再负一场就和第三名得分一样;如果再平一场就得8分;这都不符合题意;所以剩下三场只能胜;积3×3+1=10分;也就是胜2、4、5名;第二名只能是三胜一负;积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5;负2;平1;第四名为负1、2、3;第五名也负1、2、3又因各队比分不同则4胜5积3分;第五名全负;积0分.【解答】解:由题意可知;每支球队进行了4场比赛;第三名得了7分;并且和第一名打平;那么另三场只能是两胜一负;因各队得分都不相同;第一名平一场;另三场只能胜;积3×3+1=10分;也就是胜2、4、5名;第二名只能是三胜一负;积3×3+0=9分.也就是胜3、4、5;第三名胜4、5;负2;平1;第四名为负1、2、3;第五名也负1、2、3名;又因各队比分不同则4胜5积3分;则第五名全负;积0分;即:第一名:10分;第二名:9分;第三名:7分;第四名:3分;第五名:0分.答:第一名:10分;第二名:9分;第三名:7分;第四名:3分;第五名:0分.8.有A、B、C三支足球队;每两队比赛一场;比赛结果为:A:两胜;共失2球;B:进4球;失5球;C:有一场踢平;进2球;失8球.则A与B两队间的比分是多少?【分析】A两战两胜;C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件 B另外两个球攻入A的球门3:3 不存在 C共进球两个所以得出B:C 为2:2则C另外6个失球失给A;B剩下两个进球;3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比 C对A进的球多2个又因为A只失2球那么B对A进2球 C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题;正确的画“√”;错误的画“×”;每道题10分;满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得90分.1 2 3 4 5 6 7 8 9 10 得分题号学生甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×【分析】观察甲与乙的答案可知;A、B有1、4、6、9这四道题答案相同;6道题答案不同.因为每人都是70分;所以4道答案相同的题都答对了;6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错;又丙得60分;所以丙的其他题目全部答对;即2;3;5;7;8;10的答案分别是×;×、√、√、×、×.由此可知;这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同;6道题答案不同.且每人都是70分;所以4道答案相同的题都答对了;6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错;又丙得60分;所以丙的其他题目全部答对;即2;3;5;7;8;10的答案分别是×;×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题;扣10分;得90分.故答案为:90.10.赵、钱、孙、李、周5户人家;每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸;而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A;B;C;D一共订了:1+2+2+2=7份根据题意;周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份;假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户;这与一共有5户矛盾所以周只能订1种;订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A;B;C;D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份;假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户;这与一共有5户矛盾所以周只能订1种;订E的有5户答:周姓订户订有这5种报纸中的1种;报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛;每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论;他和另外5个队员各赛了1场;由此得出1号只跟5号赛了1场;由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘;所以可以这样推理:①5号赛了5场;说明他与1;2;3;4;6;各赛了1场;②1号赛1场;那么1号只跟5号赛了1场;③4号赛了4场;除了跟5号赛1场;另外3场是跟2;3;6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场;除了和4号;5号之外;又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克;其中每一个元素都生一个;克一个;被一个生和被一个克;水克火是我们熟悉的;有一个俗语叫做“兵来将挡;水来土掩”;是说土能克水.另外;水能生木;火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’;‘五行相生’是互相生旺的意思;表示生成化育;‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛;已知第一天B对D;第二天C对E;第三天D对F;第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛”;根据已经进行的比赛场次进行推理;据此解答即可.【解答】解:第二天A不能对B;否则A对B、D对F与第三天D对F矛盾;所以应当B对F、A对D.第三天A也不能对B;否则C对E与第二天C对E矛盾;应当B对E(不能B对C;与第四天矛盾);A对C.第四天B对C;D对E;A对F;所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛;规定每天比赛一场;每场比赛结束后;第二天由胜队与另一队进行比赛;败队则休息一天;如此继续下去;最后结果是A队胜10场;B队胜12场;C队胜14场;则A队共打了几场比赛?。
一、选择题(每题5分,共50分)1、把26个英文字母依照轴对称性和中心对称性分成5组,现在还有5个字母D 、M 、Q 、X 、Z ( )①FRPJLG ②HIO ③NS ④BCKE ⑤VATYWU (A C D )QXZDM2、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于--( )(A )-4x +3 (B )5 (C )2x +3 (D )4x +33、若不论k 取什么实数,关于x 的方程1632=--+bkx a kx (a 、b 是常数)的根总是x=1,则a+b =---------------------------( )(A )21 (B )23(C )21- (D )23-4、若m m m =-+-20082007,则=-22007m -------( )(A )2007 (B )2008 (C )20082 (D )-20082 5、方程07946=--+y x xy 的整数解的个数为 ---------( )(A )1 (B )2 (C )3 (D )46、在平面直角坐标系中有两点A (–2,2),B (3,2),C 是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点C 有---------------------------( )(A )1个 (B )2个 (C )4个 (D )6个7、一个各面分别标有数字1、2、3、4、5、6的骰子,连续投掷二次,分别出现数字m 、n ,得到一个点P (m ,n ),则点P 既在直线6+-=x y 上,又在双曲线x y 8=上的概率为------ ( )(A )61 (B )91(C )181 (D )3618、二次函数y=ax 2+bx+c 的图像如图所示,下列结论:①0>b ,②0<c ,③042>-ac b ,④0>++c b a ,⑤024>++c b a .其中正确的有-----------------------------------------( ) 第8题图(A )2个 (B )3个 (C )4个 (D )5个9、如图,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则这个正方形的面积为----------- ( )(A ) 2)21(+ (B)251+ (C )253+ (D ) 2537+10.二次函数267y x x =-+-,当x 取值为2t x t ≤≤+时有最大值2(3)2y t =--+,则t 的取值范围为( )第9题图y o 1=x(A)t≤0 (B)0≤t≤3 (C)t≥3(D)以上都不对.二.填空题(每小题5分共50分)11.若化简-的结果为2x-5,则的取值范围是。
五年级数学竞赛题(一)一、填空:24%(每小题2分)1、一个三位小数,四舍五入后是5.70,那么原来这个三位小数最大是( ),最小是( )。
2、3÷7的商的小数点后的第1995个数字是( )。
小数部分的前1995位数字的和是( )。
3、一个小数去掉小数点后比原数大229.68,这个小数是( )。
4、甲数减去乙数等于36.63,甲数的小数点向左移动两位就等于乙数,甲乙两数各是( ),( )。
5、一道减法算式,被减数加减数再加差的和是647,又知减数比差的3倍多17,减数是( )。
6、小红做一道乘法题时,错把乘数112看成121,这样算的和比正确积多450,正确的积是( )。
7、乘数是10,积比被乘数多630,被乘数是( )。
8、一个数先减去4,再将差扩大4倍,再加4,将结果缩小4倍,得8.8,这个数是( )。
9、两个数的最大公约数是7,最小公倍数是245,其中一个数是49,另一个数是( )。
10、王老师买来3支钢笔和15本笔记本共付出60元,已知5本笔记本的价钱和一支钢笔相等,每支钢笔()元。
11、一个数,如果把它的小数部分扩大4倍后是3.4,扩大7倍后是5.2,这个小数是( )。
12、长方形的长与宽都扩大5倍,它的周长扩大( )倍,而面积增加( )倍。
二、选择正确的序号填入横线上。
8%(每小题2分)1、有大、中、小三筐梨,中筐的梨是小筐的2倍,而比大筐少装8千克,大筐装的是小筐的4倍,中筐装梨__千克?A、6B、8C、122、一辆汽车,第一天行6小时,每小时行42千米,第二天行8小时,共行304千米,第三天行7小时,行的路程比第二天少20千米。
这辆汽车。
三天中平均每天行__千米,这三天中平均每小时行__千米。
A、(42×6+304+304-20)÷(6+7+8)B、(42+304+304-20)÷(6+7+8)C、(42+304+304-20)÷3D、(42×6+304+304-20)÷33、91÷31=7,当被除数增加101个除数是商是__。
○……○……绝密★启用前 河南省郸城县育才中学2017-2018学年度七年级第二学期数学尖子生对抗赛试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.在下列不等式中,是一元一次不等式的为( ) A.8>6 B.x²>9 C.2x+y≤5 D.12(x-3)<0 2.若(a-1)a x +5=0是关于x 的一元一次方程,则这个方程是( ) A.x+5=0 B.2x+5=0 C.-2x+5=0 D.无法确定 3.21x y =⎧⎨=-⎩适合下列二元一次方程组中的( ) A.3525x y x y -=⎧⎨+=⎩ B.325y x y x =-⎧⎨-=⎩ C.251x y x y -=⎧⎨+=⎩ D.221x y x y =⎧⎨=+⎩ 4.若m>n ,下列不等式不成立的是( ) A.m+2>n+2 B.2m>2n C.22m n > D.-3m>-3n 5.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54 B .45 C .27 D .72 6.把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是( ) A.…线…………○………线…………○……B. C. D. 7.小精灵幼儿园的阿姨给小朋友分巧克力,如果每人3块还差3块,如果每人2块又多2块,设小朋友有x 人,巧克力共有y 块,则下面所列方程组正确的是( ) A.3322x yx y +=⎧⎨-=⎩ B.3322x yx y -=⎧⎨+=⎩ C.3322x yx y -=⎧⎨-=⎩ D.3322x yx y +=⎧⎨+=⎩8.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有( )A .3种B .4种C .5种D .6种9.已知a ,b 满足方程组 则a+b 的值为( )A .﹣4B .4C .﹣2D .210.如果(a +1)x <a +1的解集是x >1,那么a 的取值范围是( )A .a <0B .a <﹣1C .a >﹣1D .a 是任意有理数第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.若关于x的方程mx+2=2(m-x)的解是12x=,则m= .12.已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.13.若23m mx y与41n nx y--是同类项,则m+n=______________.14.若A=+175x,B=2-274x-,则当x=_______时,A与B的值相等.15.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。
打一数学名词谜语大全一、数学名词谜停战(和)夏周之间(商)储蓄(积)我先走(不等)孕妇临产(分子)汾水长流,好女长游(分子)再见了,妈妈(分母)两边清点(分数)点硬币(分数)北(反比)对抗赛(反比)附则(加法)从重惩处(加法)从严判刑(加法)途中(半径)五十分(半圆)五角钱(半圆)苹果两切半(半圆)一列横队齐步走(平行)步入坦途(平行)走坦途(平行)并肩走路(平行)并肩前进(平行)并驾齐驱(平行)齐头并进(平行)十分安定(平角)其貌不扬(平面)貌不惊人(平面)铁骑绕龙城(周角)历朝传世谁最长(周长)十里羊肠不打弯(直径)不转弯的路(直径)没弯的路(直径)马路没弯(直径)马路没弯儿(直径)康庄大道(直径)捷径(直线)大同小异(近似)你盼我来我盼你(相等)两边重量一样(相等)势均力敌(相等)不见不散(约等)别走!我马上来(约等)呆会儿(约等)麦粉堆(面积)脸皮太厚(面积)脸谱汇编(面积)先上后下(乘法)坐船规则(乘法)车上须知(乘法)客运原则(乘法)客运章程(乘法)旅客须知(乘法)马术(乘法)驭手传经(乘法)驾驶原理(乘法)骑兵操典(乘法)骑车术(乘法)骑马术(乘法)骑术(乘法)九至一(倒数)五四三二一(倒数)四三二一(倒数)从后面算起(倒数)减四害方案(除法)减害要领(除法)不足为奇(偶数)讨价还价(商数)庞士元巧设连环计(统计)下汽车,上火车,下火车(连乘)下马入车中(连乘)弹指一挥间(速算)周而复始(循环)从轻判刑(减法)垂钓(等于)待令冲锋(等号)待命出发(等号)候令(等号)时刻准备打冲锋(等号)十分不快(钝角)考核营业员(试商)学做生意(试商)行车计数(运算)一一过秤(对称)两人看斤两(对称)查查是否偷斤两(对称)相互打招呼(对称)。
数学知识对抗赛
一、活动宗旨:营造校园数学学习氛围,弘扬数学文化,提高数学学习兴趣
二、主题:数学红蓝对抗,展现你我风采”
三、承办单位: 前炉小学数学教研组
四、活动时间:2013.10.28—11.01
五、活动地点:前炉小学各年级教室
六、活动流程
(1)、前期准备
1.依据本班学生人数划分小组,由学生推举代表参赛(投票方式)
2.主持人宣读比赛规则和程序——
①数学红蓝对抗赛有红蓝双方选派代表参赛,代表人数(3-4人),代表中一人为记录负责记录对方分数,保证比赛公平公正。
代表中其他同学负责答题。
而班里其他同学则为观众,观众在选手答题时不得出声要保持安静。
参与人员按照比赛教室布局入座(见注意事项)
②比赛共150分,分三个环节。
环节一之牛刀小试(选择题+判断题)每题10分;环节二之舍我其谁(抢答题)每题10分;环节三之我主胜负(积分多者有优先选择权)20分
③宣布比赛结果并颁奖
3.准备比赛道具(小黑板2个、选项卡片ABC及√×共5个)
(2)开始比赛
环节一之牛刀小试(选择题+判断题)每题10分
1.一个数(0除外)与真分数相乘,所得的积()这个数
A大于B小于C等于
公布答案记录分并讲解该题
2.两个真分数的积是()
A真分数B假分数C带分数
公布答案记录分并讲解该题
3.3的倒数比5的倒数大()
公布答案记录分并讲解该题
4.一个数乘以分数,积一定小于这个数()
公布答案记录分并讲解该题
5.全班人数的一半的一半是全班人数的四分之一()
公布答案记录分并讲解该题
6.把2米长的铁丝截成3段,每段占全长的三分之二()
公布答案记录分并讲解该题
环节二之舍我其谁(抢答题)每题10分
1.请说出三种长度单位()毫米、厘米、分米、米、千米
2.请说出乘法运算中的三大定律()乘法分配律、结合律、交换律
3.大于90度小于180度的角是()角钝角
4.乘积是1的两个数互为()倒数
5.比值可以用哪三种数表示()分数、小数、整数
6.比的前项和后项同时乘或除以相同的数(0除外)比值不变,这叫做()比的基本性质
7.请说出三位数学家()祖冲之、华罗庚、阿基米德、毕达哥拉斯、牛顿、高斯
环节三之我主胜负(积分多者有优先选择权)20分
一、分数乘法1
二、分数除法2
三、比 3
1一块黑板长是5/2米,宽是长的1/2,这块黑板的面积是多少
2一个长方体鱼缸长9/10米,宽4/5米,里面盛有9/25立方米的水,水深多少米?
3.用一段铁丝围成一个三角形,三条边的比是4:5:7,已知最长的边是28厘米,这段铁丝长多少厘米?
注意事项
1比赛题全部依据为学生所学内容(即全部源于教材)
2依据所学内容教师出题,每题分值由老师定制
3.教室布局。