4药学研究1
- 格式:ppt
- 大小:288.00 KB
- 文档页数:26
试题一一、名词解释:1、药学:是研究药物的一门科学,是揭示药物与人体或者药物与各种病原生物体相互作用与规律的科学。
2、生药:是指天然的、未经加工或只经简单加工的植物、动物和矿物类药材。
3、天然药物化学:是应用现代科学理论与方法研究天然药物化学成分的一门学科,在分子水平上研究天然药物的药效物质基础及其防治疾病规律的一门综合性学科。
4、药剂学:是研究药物制剂的处方设计、基本理论、制剂工艺和合理应用的综合性技术学科。
5、处方药:简称RX药,是为了保证用药安全,由国家卫生行政部门规定或审定的,需凭医师或其它有处方权的医疗专业人员开写处方出售,并在医师、药师或其它医疗专业人员监督或指导下方可使用的药品。
二、填空题:1、疾病发生的原因有外在原因、内在原因和自然环境与社会心理原因三大类。
2、目前我国生药质量控制主要依据三级标准是国家药典标准、局(部)颁标准和地方标准。
3、天然药物化学成分的提取方法最主要的两种是溶剂提取法和水蒸气蒸馏法。
4、药理学主要研究药物效应动力学、受体与药物的作用机制、药物代谢动力学三方面内容。
5、药物的治疗作用可分为对因治疗和对症治疗两种。
6、药物的跨膜转运包括被动转运、主动转运和膜动转运。
7、中药中的四气是指寒、热、温和凉。
三、单项选择题:1、( A )是影响结构特异性药物与受体相互作用形成复合物的重要因素。
A、药物药效结构B、药物的浓度C、药物的理化性质D、药物的解离度2、研究药物对机体的作用及其药物作用的原理,阐明药物防治疾病的机制的是( A )A、药效学B、药剂学C、药物分析学D、药物化学3、药物从用药部位进入血液循环的过程称为( B )A、转运B、吸收C、分布D、代谢4、药品生产企业必须有( B )许可证。
A、药品经营B、药品生产企业C、药品零售D、药品安全5、生药的名称不包括下面的( A )A、拼音名B、中文名C、拉丁文名D、英文名6、药物作用部位的( D )是决定药物活性的主要因素之一。
硕士研究生入学考试大纲615药学综合一I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (5)全国硕士研究生入学统一考试药剂学专业药学综合一考试大纲I 考查目标全国硕士研究生入学统一考试药剂学专业《药学综合一》考试是为我校招收药剂学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读药剂学专业所必须的差不多素养、一样能力和培养潜能,以利用选拔具有进展潜力的优秀人才入学,为国家医药事业培养具有良好职业道德、专业知识及技能、具有较强分析与解决实际问题能力的高层次、应用型、复合型的药学专业人才。
考试要求是测试考生把握差不多理论及其应用、处理和分析问题的方法。
具体来说。
要求考生:1.把握生物药剂学与药物动力学差不多理论知识及数据处理的差不多分方法。
2.把握临床药物监测及药物动力学在临床中的应用。
3.把握中西药物制剂分析的差不多方法4.把握常用仪器分析方法的差不多原理、仪器构造、特点及其在药物分析中的应用。
II 考试形式和试卷结构一、试卷满分及考试时刻试卷满分为300分,考试时刻180分钟。
二、答题方式答题方式为闭卷、笔试。
承诺使用运算器。
三、试卷内容与题型结构生物药剂学与药物动力学150分,有以下几种题型:名词说明6题,每小题3分,共18分填空题22空,每空1分,共22分单项选择题8题,每小题1分,共8分多项选择题6题,每小题1.5分,共9分简答题8题,前7小题7分,第8题10分,共59分运算题3题,共34分药物分析(含分析化学)150分,有以下几种题型:名词说明8题,每小题3分,共24分填空题6题,每空1.5分,共30分单项选择题8题,每小题2分,共16分多项选择题10题,每小题2分,共20分简答题6~8题,共50分运算题1~2题,共10分III 考查内容一、生物药剂学与药物动力学1.生物药剂学的定义与研究内容。
2.剂型因素与生物因素的含义。
主要研究结果的总结与评价注射用炎琥宁在我国已有生产,现其质量标准已上升为国家标准,我公司立项进行了该药的研制,先后进行了处方工艺研究、质量研究、临床前药理毒理研究等,现将主要研究结果总结如下:一、药学研究:1、处方工艺研究:本品为冻干针剂,参考注射用炎琥宁国家标准WS-10001-(HD-0043)-2002,确定本品处方为:40mg规格: 120mg规格炎琥宁 40g 炎琥宁 120g注射用水适量注射用水适量1000瓶 1000瓶经影响因素考察,表明本品pH值在6.0-8.0范围内,经冷冻干燥后所得产品在高温(40℃和60℃)和强光照射(照度4500Lx)的条件下放置10天,并于5天、10天取样测定,其各项指标与0天比较均无明显差异。
2、质量研究:参照国家药品标准第一册(化学药品地方标准上升为国家标准)炎琥宁的质量标准[WS- 10001-(HD-0043)-2002]及中国药典2000年版二部对本品进行了理化性质、鉴别、检查及含量测定等项试验。
结果表明,三批样品均能符合该质量标准要求,为更好地控制产品质量,将原标准中热源检查修订为细菌内毒素检查。
3、稳定性试验:对自制三批样品进行了稳定性研究,考察了本品在上市包装条件下加速、长期稳定性,主要考察项目为外观性状、溶液的澄清度与颜色、酸碱度、澄明度、有关物质和含量,结果表明本品加速试验6个月,长期试验6个月的各项指标与0时间比较均无明显变化,此项工作仍在继续中。
二、临床前药理毒理研究:1、药理学炎琥宁系穿心莲提取物经酯化、脱水、成盐精制而成。
能抑制早期毛细血管通透性增高与炎性渗出和水肿,能特异性地兴奋垂体-肾上腺皮质功能,促进ACTH释放,增加垂体前叶中ACTH的生物合成;体外具有灭活腺病毒、流感病毒、呼吸道病毒等多种病毒的作用。
动物实验有抗早、中孕作用。
2、毒理学(1)急、慢性毒性:静注和腹腔注射LD50分别为600±20mg/kg 和675±30mg/kg。
NMDA受体及其拮抗剂的研究进展叶玉莹ꎬ罗扬文ꎬ于沛(暨南大学药学院新药研究所ꎬ广东广州510632)摘要:N-甲基-D-天冬氨酸(NMDA)受体是一种离子型谷氨酸受体ꎬ在中枢神经系统兴奋性的突触传递㊁可塑性和兴奋毒性中起着关键作用ꎬ与机体的记忆㊁学习和情绪密切相关ꎮ本文从结构分布和生理活性这两方面详细总结了N-甲基-D-天冬氨酸受体各亚型的特点ꎬ介绍并汇总了目前研究较多的N-甲基-D-天冬氨酸受体拮抗剂ꎬ为N-甲基-D-天冬氨酸受体在神经性疾病中的相关研究提供信息依据ꎮ关键词:N-甲基-D-天冬氨酸受体ꎻ结构ꎻ分布ꎻ生理活性ꎻN-甲基-D-天冬氨酸受体拮抗剂中图分类号:R363㊀文献标识码:A㊀文章编号:2095-5375(2022)04-0251-008doi:10.13506/j.cnki.jpr.2022.04.010ResearchprogressofNMDAreceptorandNMDAreceptorinhibitorsYEYuyingꎬLUOYangwenꎬYUPei(InstituteofNewDrugResearchꎬJinanUniversityCollegeofPharmacyꎬGuangzhou510632ꎬChina)Abstract:NMDAreceptorisanionotropicglutamatereceptorꎬwhichplaysakeyroleintheexcitatorysynaptictrans ̄missionꎬplasticityandexcitotoxicityofthecentralnervoussystemꎬandItiscloselyrelatedtothebodyᶄsmemoryꎬlearningandemotions.ThisarticleprovidesadetailedoverviewofthestructureꎬdistributionandactivationofNMDAreceptorandtheirphysiologicalactivitiesꎬintroducesandsummarizestheNMDAreceptorantagoniststhathavebeenstudiedmoreatpres ̄entꎬandprovidesinformationbasisforNMDAreceptorrelatedresearch.Keywords:NMDAreceptorꎻStructureꎻDistributionꎻPhysiologicalactivitiesꎻNMDAreceptorinhibitors㊀㊀作为神经递质中的一种ꎬ谷氨酸受体在神经信号传递中扮演着重要的角色ꎬ其表达的数量㊁分布和种类等均影响着正常的神经生理功能ꎬ逆转这些受体的功能变化对于治疗或预防神经性疾病有重要意义ꎮ兴奋性的突触传导主要通过激活两类谷氨酸受体而实现ꎬ即离子型的谷氨酸受体(iono ̄tropicglutamatereceptors)和代谢型的谷氨酸受体(metabotropicglutamatereceptors)ꎬ根据对激动剂的亲和力不同ꎬ分为3个亚型N-甲基-D-天冬氨酸(NMDA)受体㊁α-氨基-3-羟基-5-甲基-4-异亚唑丙酸(AMPA)受体和Kainate受体ꎮ本文重点关注NMDA受体研究进展ꎬ随着研究的深入ꎬ以及研究仪器㊁方法和其他相关领域的发展ꎬNMDA受体的结构逐渐明确ꎬNMDA受体有多种亚型ꎬ由不同亚单位组成的受体亚型ꎬ具有不同的生物物理和生物化学特性ꎮ本文将从结构分布和生理活性这两方面详细总结NMDA受体各亚型的特点ꎬ介绍并汇总了目前研究较多的NMDA受体拮抗剂ꎬ综合文献的研究ꎬ提供该受体在神经性疾病中的重要作用ꎬ为相关研究提供信息依据ꎮ1㊀NMDA受体的结构和分布NMDA受体分布在全脑中ꎬ以海马㊁大脑皮质㊁纹状体㊁杏仁体为主ꎮ目前已鉴定出了多种NMDA受体亚基ꎬ包括广泛表达的NR1ꎬ4个不同的NR2亚基(A㊁B㊁C㊁D)ꎬ两个NR3子单元(A和B)ꎮ1.1㊀NR1㊀NR1是NMDA受体的基本亚基ꎬ是NMDA受体复合物的功能性亚单位ꎬ是实现该受体离子通道的功能所必需的ꎬ且NR1形成离子通道ꎬ是调节能力最强的神经递质受体ꎬ广泛地分布在中枢神经系统ꎮ1.2㊀NR2㊀NR2是多基因家族ꎬ分别编码为NR2A㊁NR2B㊁NR2C㊁NR2Dꎮ其中NR2A和NR2B对NMDA受体的结构和功能十分重要ꎮ含NR2A或NR2B的NMDA受体有突触后密集区蛋白(PSD-95)等[1]一些相同的结合配偶体ꎬNR2A可以与Homer蛋白㊁β-Catenin蛋白[2]和Rab亲和蛋白3A结合[3]ꎬ在成人脑部中主要表达在突触内[4]ꎻ而NR2B则与突触RasGTP酶激活蛋白(SynGAP)等结合ꎬ在成人脑部中表达在突触外[5]ꎬ两者较其他NMDA受体亚型都有较大的单通道电㊀作者简介:叶玉莹ꎬ女ꎬ研究方向:新药发现与研究ꎬE-mail:452972092@qq.com㊀通信作者:于沛ꎬ女ꎬ博士研究生ꎬ教授ꎬ研究方向:新药发现与研究ꎬTel:020-85224451ꎬE-mail:peiyu@jnu.edu.cn导系数ꎬ对胞外镁离子的阻断更敏感ꎬ钙离子渗透率更大[6]ꎮNR2亚单位分布不同ꎬ且在成长过程中也会变化ꎮ在胚胎时期ꎬNR2B和NR2D是主要的亚单位ꎬ前者表达于中枢神经系统中ꎬ后者只表达在间脑和脑干ꎻ出生两周后ꎬNR2A在中枢神经系统的表达逐渐增多ꎬNR2B的表达在出生后7~10天达到高峰并限制在前脑区域ꎬGluN2C出现较晚且限制在小脑和嗅球中ꎬGluN2D的表达则在出生后发育而下降ꎮNR2B与NR2A有着代偿的联系ꎬ减少突触NR2B的表达可使NR2A的表达增加[7]ꎬ且抑制因子-1沉默转录因子(REST)参与了NR2B向着NR2A随年龄增大而成熟的转变[8]ꎮ1.3㊀NR3㊀NR3主要在发育中的中枢神经系统中表达ꎬNR3经过不同的剪接得到两个成员:NR3A和NR3BꎮNR3A在胚胎时期含量较低ꎬ但出生后很快升高ꎬ在青春期减少ꎬ主要分布于海马㊁皮质和丘脑等ꎻNR3B主要分布于脑干和脊髓的躯体运动神经元ꎬNR3单独不能形成功能受体ꎬ但是NR3可以与NR1和NR2形成NMDA受体复合物ꎬ起到负性调节的作用ꎮ1.4㊀NMDA受体异四聚体的组成㊀功能性的NMDA受体是一个由两个必需的NR1亚基和两个NR2亚基或NR3亚基构成的异四聚体(见图1)ꎬ这些亚基结构高度相似ꎬ进而构成胞外的氨基末端域(amino-terminaldomainꎬATD)㊁胞外的配体结合域(ligandbindingdomainꎬLBD)㊁跨膜区(transmembranedomainꎬMD)和胞内羧基末端域(carboxy-ter ̄minaldomainꎬCTD)ꎬ与ATD相连的LBD进而与MD连接形成离子通道ꎬMD的螺旋结构与CTD相连[9]ꎮLBD由S1和S2两个子结构域ꎬ其中在上部的S1结构具有一定刚性并与ATD相连ꎬ而在下部的S2结构具有一定的可变范围并与MD相连ꎬLBD与MD相连的可变性对于形成NMDA受体离子通道结构有着重要的作用ꎮMD有3个跨膜的螺旋结构M1㊁M3和M4以及成孔凹环的M2ꎬM3在谷氨酸门控型离子通道中有着最保守的片段ꎬ有关于与NMDA受体相似的AMPA受体的研究推测MD的打开是通过M3的自转或远离M2中心的侧向位移而完成[10]ꎻM2尖端有一个关键的QRN位点决定了钙离子对通道的渗透性ꎮNR2A或NR2B的CTD有很多可以影响到NMDA受体活性的蛋白质相互作用和磷酸化位点ꎬ鼠海马神经元NR2A的CTD中的羟基端与PSD-95的相互作用介导着NMDA受体的聚集分布[11]ꎮ㊀㊀可以看出ꎬNMDA受体的结构和分布整体表现出的特点与其激活或抑制的状态以及生理活性有关ꎮNMDA受体结构上的不同结合位点㊁不同亚基组成的亚型不同在分布上有各自的特点ꎬ它们有各自的时空变化特点ꎬ存在独特和交叉的部分ꎬ提示与个体生长发育过程各种生理功能的成熟有关ꎮ2 NMDA受体的生理活性亚基不同的NMDA受体激活后产生的生理活性有差异ꎮ2.1㊀GluN1亚基的生理活性㊀GluN1亚基是所有NMDARs的重要组成部分ꎬ与NR2和/或NR3的两个亚基组成NMDA图1㊀GluN1A/GluN2BNMDA受体离子通道的晶体结构受体通道ꎮ此外ꎬGluN1亚基上存在甘氨酸(Gly)结合位点ꎬ调节NMDA受体的激活ꎮGluN1亚基也与神经元细胞死亡有关ꎬ有文献报道GluN1亚基氮-末端域(N-terminaldo ̄mainꎬNTD)的一种配体ꎬ即组织型纤溶酶原激活剂(tissue-typeplasminogenactivatorꎬtPA)调整着GluN1-NMDARs动力学从而控制着神经元的死亡[12]ꎬCastillo-Gómez等[13]研究发现针对GluN1-NMDARs的自身抗体存在致病潜力ꎮ2.2㊀GluN2亚基的生理活性㊀NR2亚基分为NR2A㊁NR2B㊁NR2C和NR2D4四种ꎮNR2A调节着神经元NMDA受体诱导的小神经胶质细胞与神经元细胞的物理相互作用[14]ꎬ减少齿状颗粒神经元中NR2A-NMDARs的表达ꎬ显著抑制树突生长[15]ꎬ甘氨酸通过触发NR2A-NMDARs非离子移变的活性而发挥了神经保护作用[16]ꎮNR2B-NMDARs在神经迁移和皮质分层中扮演着不可缺少的角色ꎬ表达在谷氨酸能突触的NR2B-NMDARs直接加速上升途径突触的细化[17]ꎬ其活性的正反馈对于青少年学习过程的视觉记忆有着启动的作用[18]ꎬ在agouti相关肽神经元中参与了对体重平衡和血糖平衡的中央控制[19]ꎮ至于NR2C-NMDARs则在局部缺血后介导着神经保护作用[20]ꎬNR2C敲除模型小鼠表现出精神分裂症样的异常ꎬ如认知障碍和前脉冲抑制缺陷ꎬ在氯胺酮诱导的行为敏感性的维持上有重要作用[21]ꎬ与NR2B-NMDARs一起促成丘脑底核中突触的活性ꎮ另外突触前包含NR2B㊁NR2C和NR2D的NMDA受体在孤束核可能控制着迷走神经的传入兴奋性ꎮ2.3㊀GluN3亚基的生理活性㊀GluN3亚基有GluN3A和GluN3B两种亚型ꎮ在亨廷顿氏舞蹈病动物模型中ꎬGluN3A通过增强突触传导而促进NMDA生成[22]ꎬ表达在嗅觉系统的GluN3A与嗅觉系统的发育有关[23]ꎮNR3A在早期发育期间在CNS中广泛表达[24]ꎬ而NR3B在成人的运动神经元群体中富集[25]ꎮ由此可见ꎬ亚型不同的NMDA受体的活性存在着交叉和差异ꎬ这是NMDA受体成为治疗神经性疾病靶点的一部分困难所在ꎮNMDA受体的过度激活会导致神经系统中突触功能发生改变ꎬ进而引起中风㊁外伤性脑损伤㊁亨廷顿氏舞蹈病㊁阿尔兹海默病㊁精神分裂症和抑郁症等的发生ꎬ抑制NMDA受体的活性可以减轻兴奋毒性ꎬ预防和减缓神经元的损伤ꎮ3 NMDA受体拮抗剂NMDA受体具有5个不同的结合位点ꎬ分别为①递质结合位点ꎻ②甘氨酸调节位点ꎻ③离子通道孔结合位点ꎻ④多胺调节位点ꎻ⑤Zn2+结合位点ꎮ根据结合位点的不同ꎬ分为不同的靶向NMDA受体的药物ꎬ下面主要介绍靶向NMDA受体甘氨酸位点㊁多胺调节位点及离子通道孔结合位点的药物ꎮ3.1㊀甘氨酸位点㊀甘氨酸在可以作为NMDA受体必不可少的共同配体ꎬ结合到NMDA受体甘氨酸结合位点上ꎬ促进NMDA受体的活性ꎬ甘氨酸也可以直接激活NR3-NMDA受体ꎬ具有兴奋性递质的功能ꎮ3.1.1㊀L-701ꎬ324㊀L-701ꎬ324(2-氯-1-羟基-7-苯氧基苯基喹啉酮)是一种有效的NMDA拮抗剂ꎬ通过阻断其甘氨酸B结合位点来拮抗NMDA受体的活性(结构式见图2)ꎮL-701ꎬ324可用于缓解焦虑㊁紧张和焦虑障碍㊁促进镇静ꎬ用于预防癫痫发作或降低其严重程度的药物ꎬL-701ꎬ324在小鼠中具有抗抑郁药样活性ꎬ部分是通过促进海马BDNF系统介导的[26]ꎮ图2㊀L-701ꎬ324结构式3.1.2㊀ACEA-1021㊀ACEA-1021(6ꎬ7-二氯-5-硝基-1ꎬ4-二氢喹喔啉-2ꎬ3-二酮)与具有纳米摩尔亲和力的NMDA受体的甘氨酸位点结合ꎬ并且对非NMDA(AMPA/kainate)受体表现出相对较少的亲和力[27](结构式见图3)ꎮ在癫痫发作之前或之后立即用ACEA-1021治疗后ꎬ可以防止高达86%接受致命剂量可卡因的小鼠死亡[28]ꎮ图3㊀ACEA-1021结构式3.1.3㊀GLYX-13(Rapastinel)㊀GLYX-13是一种N-甲基-D-天冬氨酸受体(NMDAR)甘氨酸位点功能部分激动剂和认知增强剂ꎬ也显示出快速的抗抑郁活性ꎬ无精神分裂副作用(结构式见图4)ꎮ用于治疗重度抑郁症(NCT03614156ꎬNCT03560518)ꎬGLYX-13通过增强导水管周围灰质中的AMPA受体功能来缓解慢性应激诱导的抑郁样行为[29]ꎮ图4㊀GLYX-13结构式3.1.4㊀AV-101㊀AV-101(2-氨基-4-(2-氨基-4-氯苯基)-4-氧代丁酸)是NMDA受体GlyB位点的选择性拮抗剂(结构式见图5)ꎬ在双盲随机并有安慰剂对照的Ⅰ期临床试验中显示出其安全性高和药物动力学特点良好ꎬ可以用于治疗神经性疼痛甚至是抑郁症[30]ꎮ图5㊀AV-101结构式3.1.5㊀D-环丝氨酸(D-Cycloserine)㊀D-环丝氨酸(4-氨基-1ꎬ2-恶唑烷-3-酮)是NMDA受体的共激动剂(结构式见图6)ꎬ在临床上对精神分裂症患者的神经可塑性没有影响ꎬ在LTP测试中表现出很大的前高频视觉刺激神经反应ꎬ说明D-环丝氨酸能结合NMDA受体[31]ꎬ且在仍未结束的一个临床试验中被用于治疗抑郁症(NCT03062150)ꎮ图6㊀D-环丝氨酸结构式3.2㊀多胺结合位点㊀广谱的NMDA受体拮抗剂能影响所有NMDA受体而产生严重的精神副作用ꎬ限制了其临床运用ꎬ因此ꎬ选择性作用NR2B的NMDA受体拮抗剂成为更安全㊁有效的药物ꎮ3.2.1㊀MK-0657(CERC-301)㊀MK-0657(4-甲基苄基(3Sꎬ4R)-3-氟-4‐[(嘧啶-2-ylamino)甲基]哌啶-1-羧酸酯)是一种口服生物可利用的选择性N-甲基-D-天冬氨酸(NMDA)受体亚基2B(GluN2B)拮抗剂(结构式见图7)ꎬ目前正处于Ⅱ期临床试验中(NCT01941043ꎬNCT02459236)ꎬ其抗抑郁作用的工作机制尚不清楚ꎬLei等[32]研究发现MK-0657缓解了慢性约束应激(CRS)诱导的小鼠外侧缰中的绝望样行为ꎬ这种缓解可能涉及LHb中BDNF表达的降低ꎬ从而降低神经元活性ꎮ图7㊀MK-0657结构式3.2.2㊀PEAQX㊀PEAQX([[[1S)-1-(4-溴苯基)乙基]氨基]-(2ꎬ3-二氧代-1ꎬ4-二氢奎噁啉-5-基)甲基]膦酸)是一种选择性GluN2A拮抗剂(结构式见图8)ꎬ可用于治疗皮质播散性抑郁症[33]及精神分裂症[34]ꎮMares等[35]的研究结果表明ꎬGluN1/GluN2A首选拮抗剂PEAQX的抗惊厥作用具有年龄依赖性差异ꎮ图8㊀PEAQX结构式3.2.3㊀艾芬地尔(ifenprodil)㊀艾芬地尔(4-[2-(4-苄基哌啶-1-基)-1-羟丙基]苯酚)是一种口服生物可利用的N-甲基-D-天冬氨酸(NMDA)受体拮抗剂(结构式见图9)ꎬ用作脑血管扩张剂[36]ꎬ并在临床试验中用于治疗药物成瘾[37]ꎬ特发性肺纤维化和COVID-19ꎮIfenprodil结合并抑制谷氨酸NMDA受体GluN2Bꎬ从而防止NMDAR信号传导ꎮ抑制了神经元的兴奋性毒性ꎬ从而潜在地增强了认知功能ꎮIfenprodil可快速改善抑郁样行为ꎬ激活mTOR信号传导并调节CUMS大鼠海马体中的促炎细胞因子[38]ꎮ一项关于ifenprodil治疗COVID-19确诊住院患者的安全性和有效性的研究正在进行2b/3期临床试验(NCT04382924)ꎮ3.3㊀离子通道孔位点㊀非竞争性NMDA受体拮抗剂能与NMDAR离子通道孔深部的PCP位点结合ꎬ阻断与NMDAR耦联的钙通道ꎬ减少Ca2+内流ꎬ抑制NMDAR的受体-通道的活动ꎮ目前发现的作用于NMDAR离子通道孔位点的药物图9㊀艾芬地尔结构式主要包括:苯环己哌啶(phencyclidineꎬPCP)㊁地卓西平(dizocipineꎬMK-801)㊁氯胺酮(ketamine)㊁美金刚(meman ̄tine)㊁拉尼西明(lanicemineꎬAZD6765)㊁氧化亚氮(nitrousoxideꎬN2O)ꎮ3.3.1㊀Dizocipine(MK-801)㊀MK-801是NMDA受体(受体ꎬN-甲基-D-天冬氨酸)的强效非竞争性拮抗剂(结构式见图10)ꎬ影响认知功能㊁学习和记忆ꎮ它具有NMDA受体拮抗剂ꎬ麻醉剂ꎬ抗惊厥药ꎬ烟碱拮抗剂和神经保护剂的作用ꎮ由于其严重的精神副作用ꎬ如幻觉㊁妄想㊁言语贫乏㊁意志减退等ꎬ禁用于临床ꎬ其使用主要限于动物和组织实验[39]ꎮ图10㊀MK-801结构式3.3.2㊀氯胺酮(ketamine)㊀在细胞实验中ꎬ氯胺酮(结构式见图11)通过抑制PKC/ERK通路而引起海马神经元的凋亡可以被兴奋性的NMDA受体激活所反转[40]ꎮ氯胺酮表现出快速的降低抑郁症患者情绪低沉程度的效果ꎬ这种效果可能是基于其改变额顶骨连接模式的能力[41]ꎬ并且其代谢产物2Rꎬ6R-hydroxynorketamine对AMPA受体有兴奋活性和抗抑郁的药理活性ꎬ值得注意的是ꎬ这个代谢产物可能表现出更少的氯胺酮相关副作用[42]ꎻ但是其对NMDA受体的抑制能力却弱于氯胺酮ꎬ似乎2Rꎬ6R-hydroxynorketamine的抗抑郁作用不是完全由于其抑制NMDA受体的活性[43]ꎮ最近的一项实验显示ꎬ氯胺酮诱导催眠效果和神经可塑性是通过破坏磷酸化MAPK激酶(p-MEK)与磷酸化p-ERK的偶联ꎬ下调p-ERK水平并上调磷酸化Fas相关死亡域蛋白(phosphorylatedFas-associatedwithdeathdomainproteinꎬp-FADD)水平[44]ꎮ氯胺酮作为经典的NMDA受体拮抗剂ꎬ曾经在临床试验中用于术后止痛(NCT02950233)[45]㊁重度抑郁症(NCT03609190)[46]ꎬ现在也有用于耳鸣(NCT03336398)㊁酒精复发(NCT02649231)和难治性抑郁症(NCT02782104)的临床试验正在进行ꎮ3.4㊀其他NMDA受体相关药物3.4.1㊀右美沙芬(dextromethorphan)㊀右美沙芬是非竞争性的NMDA受体拮抗剂(结构式见图12)ꎬ由Roche公司开发ꎬ曾在临床试验中用于抑郁症(NCT02860962ꎬNCT02153502)和精神分裂症(NCT02477670)ꎬ现有正在进行的临床试验用于治疗化疗所致外周神经病变(NCT02271893)㊁亨廷顿病图11㊀氯胺酮结构式(NCT03854019)和痴呆型激动症(NCT02446132)ꎬ临床上主要是用于镇咳ꎮ研究显示ꎬ右美沙芬对血管性痴呆(vasculardementia)大鼠的海马神经损伤和认知能力缺陷有预防作用[47]ꎬ但由于其与5-HT受体的作用可能导致5-羟色胺综合征ꎬ会出现呕吐㊁恶心㊁腹泻和嗜睡等副作用[48]ꎮ图12㊀右美沙芬结构式3.4.2㊀金刚烷胺(amantadine)㊀金刚烷胺(结构如图13所示)也是非竞争性的NMDA受体拮抗剂ꎬ曾被用于治疗PD㊁药物导致的锥体束外反应以及病毒感染病等ꎬ在人体中可能导致反副交感神经生理样副作用(如口干㊁尿潴留㊁便秘㊁恶心㊁头晕和失眠等)ꎮ最近的研究显示[49]ꎬ金刚烷胺增强大鼠运动和探寻活动相关的黑质纹状体和中脑缘的多巴胺功能ꎬ在一项随机双盲试验中[50]ꎬNourbakhsh等[51]发现金刚烷胺改善多发性硬化疲劳方面并不优于安慰剂ꎬ并导致更频繁的不良事件ꎮ图13㊀金刚烷胺结构式3.4.3㊀石杉碱A(huperzineA)㊀石杉碱A(结构如图14所示)为蛇足石杉(Huperziaserrata)中成分ꎬ已批准用于治疗ADꎬ是一个选择性的AChE拮抗剂和非选择性的NMDA受体拮抗剂ꎬ有抗炎㊁镇痛和抗痉挛作用[52]ꎬ陈庆状等[53]研究发现HupA可通过减少Aβ与淀粉样蛋白结合醇脱氢酶(ABAD)的结合而改善线粒体损伤ꎬ进而改善AD小鼠的认知和记忆功能障碍ꎮ曾在临床试验中用于精神分裂症(NCT00963846)和痴呆症(NCT01012830)ꎬ也有用于外伤性脑损伤(NCT01676311)和提高认知能力(NCT01676311)的临床试验正在进行ꎬ另外一项实验证明饮食诱导的肥胖小鼠中ꎬHupA治疗可以有效地改善认知功能[54]ꎮ图14㊀石杉碱A结构式㊀㊀现将与NMDA受体有关的药物总结如表1所示ꎮ表1㊀NMDA受体相关药物药物名称化学结构抗抑郁机制氯胺酮NMDA受体拮抗剂ꎮ2Rꎬ6R-hydro ̄xynorketamine氯胺酮代谢产物:激动AMPA受体ꎻ抑制NMDA受体D-cycloserineNMDA受体共激动剂rapastinel(Glyx-13)NMDA受体调节剂MK-0657(CERC-301)GluN2B-NMDARs选择性拮抗剂美金刚NMDA受体阻断剂lanicemine(AZD6765)非选择性㊁非竞争性NMDA受体拮抗剂MK-801地卓西平NMDA受体拮抗剂ꎬ用MK-801治疗可减少TBI后脑损伤动物的焦虑并增加海马依赖性记忆BMS-986163GluN2B负变构调节剂tiletamine替来他明NMDA受体拮抗剂CPPNMDA受体拮抗剂东莨菪碱ꎬsco ̄polamineNMDA受体拮抗剂表1(续)药物名称化学结构抗抑郁机制PEAQXꎬNVP-AAM077GluN2A-NMDARs选择性拮抗剂Ro25-6981GluN2B-NMDARs选择性拮抗剂艾芬地尔ꎬif ̄enprodilGluN2B-NMDARs选择性拮抗剂traxoprodil(CP-101ꎬ606)GluN2B-NMDARs拮抗剂MGS-0039mGluR2/3选择性拮抗剂4 总结与展望至此ꎬNMDA受体在神经性疾病中的重要位置已不言而喻ꎬ其作为治疗和预防神经性疾病的靶点的潜力大ꎬ但由于分型的高度同源和其广泛的生理活性ꎬ单一化合物针对性成药较难ꎬ温和的㊁亚型选择性强的NMDA受体调节剂又或联用共激动剂和变构调节剂有着更好的成药前景ꎬ由回顾前人的研究成果与已经上市的有关NMDA受体的药物可见ꎮ因此ꎬ接下来的研究方向便可能为:①已有NMDA受体拮抗剂的结构改造ꎬ以增加其对不同位置㊁不同亚型的NMDA受体的选择性ꎻ②寻找更具选择性的变构调节剂或共激动剂ꎻ③通过基础研究构建与谷氨酸能神经生理活动相关的生理信号系统ꎬ通过间接的靶向其他重要靶点以影响NMDA受体和有关的生理信号通路ꎬ以达到调节谷氨酸能神经功能的目的ꎻ④进一步研究药物相互作用ꎬ寻找在治疗作用和副作用上互补或协同的药物组合ꎬ以达到系统地调节NMDA受体活性的目的ꎮ我们有理由相信ꎬ随着更多的研究成果的浮出ꎬ关于NMDA受体的探索将会在神经领域中继续深入ꎬ治疗和预防神经性疾病的研究道路由此开辟ꎮ参考文献:[1]㊀SHENGMꎬKIME.Thepostsynapticorganizationofsynapses[J].ColdSpringHarbPerspectBiolꎬ2011ꎬ3(12):a005678. [2]AL-HALLAQRAꎬCONRADSTPꎬVEENSTRATDꎬetal.NMDAdi-heteromericreceptorpopulationsandassociatedproteinsinrathippocampus[J].JNeurosciꎬ2007ꎬ27(31):8334-8343. [3]STANICJꎬCARTAMꎬEBERINIIꎬetal.Rabphilin3AretainsNM ̄DAreceptorsatsynapticsitesthroughinteractionwithGluN2A/PSD-95complex[J].NatCommunꎬ2015(6):10181.[4]CULL-CANDYSꎬBRICKLEYSꎬFARRANTM.NMDAreceptorsubunits:diversityꎬdevelopmentanddisease[J].CurrOpinNeuro ̄biolꎬ2001ꎬ11(3):327-335.[5]KIMMJꎬDUNAHAWꎬWANGYTꎬetal.DifferentialrolesofNR2A-andNR2B-containingNMDAreceptorsinRas-ERKsig ̄nalingandAMPAreceptortrafficking[J].Neuronꎬ2005ꎬ46(5):745-760.[6]PAOLETTIP.MolecularbasisofNMDAreceptorfunctionaldiversity[J].ErJNeurosciꎬ2011ꎬ33(8):1351-1365.[7]TRAYNELISSFꎬWOLLMUTHLPꎬMCBAINCJꎬetal.Glutamatereceptorionchannels:structureꎬregulationꎬandfunction[J].Phar ̄macolRevꎬ2010ꎬ62(3):405-496.[8]BAR-SHIRAOꎬMAORRꎬCHECHIKG.GeneExpressionSwitchingofReceptorSubunitsinHumanBrainDevelopment[J].PLoSComputBiolꎬ2015ꎬ11(12):e1004559.[9]MIDGETTCRꎬGILLAꎬMADDENDR.Domainarchitectureofacalcium-permeableAMPAreceptorinaligand-freeconformation[J].FrontMolNeurosciꎬ2012(4):56.[10]SOBOLEVSKYAIꎬROSCONIMPꎬGOUAUXE.X-raystructureꎬsymmetryandmechanismofanAMPA-subtypeglutamatereceptor[J].Natureꎬ2009ꎬ462(7274):745-756.[11]YANYGꎬZHANGJꎬXUSJꎬetal.ClusteringofsurfaceNMDAre ̄ceptorsismainlymediatedbytheC-terminusofGluN2Aincul ̄turedrathippocampalneurons[J].NeurosciBullꎬ2014ꎬ30(4):655-666.[12]LESEPTFꎬCHEVILLEYAꎬJEZEQUELJꎬetal.Tissue-typeplas ̄minogenactivatorcontrolsneuronaldeathbyraisingsurfacedynam ̄icsofextrasynapticNMDAreceptors[J].CellDeathDisꎬ2016ꎬ7(11):e2466.[13]CASTILLO-GÓMEZEꎬOLIVEIRABꎬTAPKENDꎬetal.Allnatu ̄rallyoccurringautoantibodiesagainsttheNMDAreceptorsubunitNR1havepathogenicpotentialirrespectiveofepitopeandimmuno ̄globulinclass[J].MoleculPsychiatryꎬ2017ꎬ22(12):1776-1784. [14]EYOUBꎬBISPOAꎬLIUJꎬetal.TheGluN2ASubunitRegulatesNeuronalNMDAreceptor-InducedMicroglia-NeuronPhysicalIn ̄teractions[J].SciRepꎬ2018ꎬ8(1):828.[15]KANNANGARATSꎬBOSTROMCAꎬRATZLAFFAꎬetal.DeletionoftheNMDAreceptorGluN2Asubunitsignificantlyde ̄creasesdendriticgrowthinmaturingdentategranuleneurons[J].PLoSOneꎬ2014ꎬ9(8):e103155.[16]HURꎬCHENJꎬLUJANBꎬetal.Glycinetriggersanon-ionotropicactivityofGluN2A-containingNMDAreceptorstoconferneuropro ̄tection[J].SciRepꎬ2016(6):34459.[17]YAMASAKIMꎬOKADARꎬTAKASAKICꎬetal.OpposingroleofNMDAreceptorGluN2BandGluN2Dinsomatosensorydevelopmentandmaturation[J].JNeurosciꎬ2014ꎬ34(35):11534-11548.[18]NAKAMORITꎬSATOKꎬKINOSHITAMꎬetal.PositivefeedbackofNR2B-containingNMDAreceptoractivityistheinitialsteptowardvisualimprinting:amodelforjuvenilelearning[J].JNeurochemꎬ2015ꎬ132(1):110-123.[19]ÜNERAꎬGONçALVESGHꎬLIWꎬetal.TheroleofGluN2AandGluN2BNMDAreceptorsubunitsinAgRPandPOMCneuronsonbodyweightandglucosehomeostasis[J].MolMetabꎬ2015ꎬ4(10):678-691.[20]CHUNGCꎬMARSONJDꎬZHANGQGꎬetal.NeuroprotectionMe ̄diatedthroughGluN2C-ContainingN-methyl-D-aspartate(NMDA)ReceptorsFollowingIschemia[J].SciRepꎬ2016(6):37033.[21]YAMAMOTOTꎬNAKAYAMATꎬYAMAGUCHIJꎬetal.RoleoftheNMDAreceptorGluN2Dsubunitintheexpressionofketamine-in ̄ducedbehavioralsensitizationandregion-specificactivationofneuronalnitricoxidesynthase[J].NeurosciLettꎬ2016(610):48-53.[22]SWANGERSAꎬVANCEKMꎬPAREJFꎬetal.NMDAReceptorsContainingtheGluN2DSubunitControlNeuronalFunctionintheSubthalamicNucleus[J].JNeurosciꎬ2015ꎬ35(48):15971-15983.[23]MAHFOOZKꎬMARCOSꎬMARTíNEZ-TURRILLASRꎬetal.GluN3ApromotesNMDAspikingbyenhancingsynaptictransmissioninHuntingtonᶄsdiseasemodels[J].NeurobiolDisꎬ2016(93):47-56.[24]DASSꎬSASAKIYFꎬROTHETꎬetal.IncreasedNMDAcurrentandspinedensityinmicelackingtheNMDAreceptorsubunitNR3A[J].Natureꎬ1998ꎬ393(6683):377-381.[25]CHATTERTONJEꎬAWOBULUYIMꎬPREMKUMARLSꎬetal.ExcitatoryglycinereceptorscontainingtheNR3familyofNMDAreceptorsubunits[J].Natureꎬ2002ꎬ415(6873):793-798.[26]LIULꎬJICHꎬWANGYꎬetal.Antidepressant-likeactivityofL-701324inmice:Abehavioralandneurobiologicalcharacterization[J].BehavBrainResꎬ2021(399):113038.[27]WOODWARDRMꎬHUETTNERJEꎬGUASTELLAJꎬetal.InvitropharmacologyofACEA-1021andACEA-1031:systemicallyactivequinoxalinedioneswithhighaffinityandselectivityforN-methyl-D-aspartatereceptorglycinesites[J].MolPharmacolꎬ1995ꎬ47(3):568-581.[28]MATSUMOTORRꎬBRACKETTRLꎬKANTHASAMYAG.NovelNMDA/glycinesiteantagonistsattenuatecocaine-inducedbehavioraltoxicity[J].ErJpharmacolꎬ1997ꎬ338(3):233-242. [29]YANGPSꎬPENGHYꎬLINTBꎬetal.NMDAreceptorpartialago ̄nistGLYX-13alleviateschronicstress-induceddepression-likebehaviorthroughenhancementofAMPAreceptorfunctionintheperiaqueductalgray[J].Neuropharmacologyꎬ2020(178):108269. [30]WALLACEMꎬWHITEAꎬGRAKOKAꎬetal.Randomizedꎬdouble-blindꎬplacebo-controlledꎬdose-escalationstudy:Investigationofthesafetyꎬpharmacokineticsꎬandantihyperalgesicactivityofl-4-chlorokynurenineinhealthyvolunteers[J].ScandJPainꎬ2017(17):243-251.[31]FORSYTHJKꎬBACHMANPꎬMATHALONDHꎬetal.EffectsofAugmentingN-Methyl-D-AspartateReceptorSignalingonWorkingMemoryandExperience-DependentPlasticityinSchizo ̄phrenia:AnExploratoryStudyUsingAcuted-cycloserine[J].SchizophrBullꎬ2017ꎬ43(5):1123-1133.[32]LEITꎬDONGDꎬSONGMꎬetal.Rislenemdaztreatmentinthelateralhabenulaimprovesdespair-likebehaviorinmice[J].Neuro ̄psychopharmacologyꎬ2020ꎬ45(10):1717-1724.[33]BUFꎬNIELꎬQUINNJPꎬetal.SarcomaFamilyKinase-DependentPannexin-1ActivationafterCorticalSpreadingDepressionisMedi ̄atedbyNR2A-ContainingReceptors[J].IntJMolSciꎬ2020ꎬ21(4):1269.[34]PITTMAN-POLLETTABꎬHUKꎬKOCSISB.Subunit-specificNMDARantagonismdissociatesschizophreniasubtype-relevantos ̄cillopathiesassociatedwithfrontalhypofunctionandhippocampalhyperfunction[J].SciRepꎬ2018ꎬ8(1):11588.[35]MARESPꎬTSENOVGꎬKUBOVAH.AnticonvulsantActionofGluN2A-PreferringAntagonistPEAQXinDevelopingRats[J].Pharmaceuticsꎬ2021ꎬ13(3):415.[36]ISHIMATꎬHASHIMOTOK.Potentiationofnervegrowthfactor-in ̄ducedneuriteoutgrowthinPC12cellsbyifenprodil:theroleofsig ̄ma-1andIP3receptors[J].PLoSoneꎬ2012ꎬ7(5):e37989. [37]KOTAJIMA-MURAKAMIHꎬTAKANOAꎬOGAIYꎬetal.Studyofeffectsofifenprodilinpatientswithmethamphetaminedependence:Protocolforanexploratoryꎬrandomizedꎬdouble-blindꎬplacebo-controlledtrial[J].NeuropsychopharmacolRepꎬ2019ꎬ39(2):90-99.[38]YAOYꎬJUPꎬLIUHꎬetal.Ifenprodilrapidlyamelioratesdepressive-likebehaviorsꎬactivatesmTORsignalingandmodulatesproinflammatorycytokinesinthehippocampusofCUMSrats[J].Psychopharmacologyꎬ2020ꎬ237(5):1421-1433.[39]OLSZEWSKIRTꎬWEGORZEWSKAMMꎬMONTEIROACꎬetal.PhencyclidineanddizocilpineinducedbehaviorsreducedbyN-acetylaspartylglutamatepeptidaseinhibitionviametabotropicgluta ̄matereceptors[J].BiolPsychiatryꎬ2008ꎬ63(1):86-91.[40]JIANGSꎬLIXꎬJINWꎬetal.Ketamine-inducedneurotoxicityblockedbyN-Methyl-d-aspartateismediatedthroughactivationofPKC/ERKpathwayindevelopinghippocampalneurons[J].NeurosciLettꎬ2018(673):122-131.[41]MUTHUKUMARASWAMYSDꎬSHAWADꎬJACKSONLEꎬetal.EvidencethatSubanestheticDosesofKetamineCauseSustainedDisruptionsofNMDAandAMPA-MediatedFrontoparietalConnec ̄tivityinHumans[J].JNeurosciꎬ2015ꎬ35(33):11694-11706. [42]LUMSDENEWꎬTROPPOLITAꎬMYERSSJꎬetal.Antidepressant-relevantconcentrationsoftheketaminemetabolite(2Rꎬ6R)-hydroxynorketaminedonotblockNMDAreceptorfunction[J].ProcNatlAcadSciUSAꎬ2019ꎬ116(11):5160-5169.[43]ZANOSPꎬMOADDELRꎬMORRISPJꎬetal.NMDARinhibition-independentantidepressantactionsofketaminemetabolites[J].Na ̄tureꎬ2016ꎬ533(7604):481-486.[44]SALORTGꎬÁLVARO-BARTOLOMÉMꎬGARCíA-SEVILLAJA.Ketamine-inducedhypnosisandneuroplasticityinmiceisassociatedwithdisruptedp-MEK/p-ERKsequentialactivationandsustainedupregulationofsurvivalp-FADDinbraincortex:In ̄volvementofGABA(A)receptor[J].ProgNeuropsychopharmacolBiolPsychiatryꎬ2019(88):121-31.[45]SHANTHANNAHꎬTURANAꎬVINCENTJꎬetal.N-Methyl-D-AspartateAntagonistsandSteroidsforthePreventionofPersistingPost-SurgicalPainAfterThoracoscopicSurgeries:ARandomizedControlledꎬFactorialDesignꎬInternationalꎬMulticenterPilotTrial[J].JPainResꎬ2020(13):377-387.[46]HERRERA-MELENDEZAꎬSTIPPLAꎬAUSTSꎬetal.Graymattervolumeofrostralanteriorcingulatecortexpredictsrapidantidepres ̄santresponsetoketamine[J].EurNeuropsychopharmacolꎬ2021(43):63-70.[47]XUXꎬZHANGBꎬLUKꎬetal.PreventionofHippocampalNeuronalDamageandCognitiveFunctionDeficitsinVascularDementiabyDextromethorphan[J].MolNeurobiolꎬ2016ꎬ53(5):3494-3502. [48]DODMANNHꎬSHUSTERLꎬNESBITTGꎬetal.Theuseofdextro ̄methorphantotreatrepetitiveself-directedscratchingꎬbitingꎬorchewingindogswithallergicdermatitis[J].JVetPharmacolTherꎬ2004ꎬ27(2):99-104.[49]COLLINSSꎬSIGTERMANSMJꎬDAHANAꎬetal.NMDAreceptorantagonistsforthetreatmentofneuropathicpain[J].Painmedicine(MaldenꎬMass)ꎬ2010ꎬ11(11):1726-1742.[50]NIKOLAUSSꎬWITTSACKHJꎬBEUMꎬetal.Amantadineenhancesnigrostriatalandmesolimbicdopaminefunctionintheratbraininrela ̄tiontomotorandexploratoryactivity[J].PharmacolBiochemBehavꎬ2019(179):156-170.[51]NOURBAKHSHBꎬREVIRAJANNꎬMORRISBꎬetal.Safetyandefficacyofamantadineꎬmodafinilꎬandmethylphenidateforfatigueinmultiplesclerosis:arandomisedꎬplacebo-controlledꎬcrossoverꎬdouble-blindtrial[J].LancetNeurolꎬ2021ꎬ20(1):38-48. [52]MAXꎬTANCꎬZHUDꎬetal.HuperzineAfromHuperziaspecies--anethnopharmacolgicalreview[J].JEthnopharmacolꎬ2007ꎬ113(1):15-34.[53]陈庆状ꎬ马艳娇ꎬ范仪圻ꎬ等.石杉碱甲通过阻断Aβ-ABAD复合物诱导的线粒体损伤改善APP/PS1小鼠认知和记忆功能障碍的研究[J].中国现代药物应用ꎬ2021ꎬ15(10):248-250. [54]WANGHYꎬWUMꎬDIAOJLꎬetal.HuperzineAamelioratesobe ̄sity-relatedcognitiveperformanceimpairmentsinvolvingneuronalinsulinsignalingpathwayinmice[J].ActaPharmacolSinicaꎬ2020ꎬ41(2):145-153.(上接第219页)[3]㊀蒋保民.蕲艾系列产品开发[J].广州食品工业科技ꎬ1991(3):18-21.[4]梅全喜ꎬ徐景远.艾叶烟熏的化学成分及药理作用研究进展[N].中国中医药报ꎬ2003-08-06.[5]王美全ꎬ李凤珍ꎬ陆靖ꎬ等.中草药烟熏防疫空气消毒历史与现状[J].中医外治杂志ꎬ2020ꎬ29(6):68-70. [6]杨洋ꎬ梅全喜ꎬ杨光义ꎬ等.艾叶在古今瘟疫防治中的研究与应用[J].时珍国医国药ꎬ2020ꎬ31(2):438-441. [7]管丹丹ꎬ陈理ꎬ刘开萍ꎬ等.艾灸防治新型冠状病毒肺炎研究进展[J].辽宁中医药大学学报ꎬ2021ꎬ23(3):168-171.[8]张佳乐ꎬ张卓雅ꎬ杨莉ꎬ等.艾叶熏蒸在新型冠状病毒肺炎空气消毒中的应用思路[J].赣南医学院学报ꎬ2020ꎬ40(3):254-258.[9]惠鑫ꎬ黄畅ꎬ王昊ꎬ等.艾烟在艾灸中的作用机制及安全性[J].世界中医药ꎬ2017ꎬ12(9):2246-2251.[10]吴子建ꎬ王斌ꎬ段文秀ꎬ等.顶空进样-气相色谱-质谱联用法检测3年陈艾条燃烧产物中挥发性成分[J].安徽中医药大学学报ꎬ2017ꎬ36(2):64-67.[11]张潇予ꎬ李瑞ꎬ薛澄ꎬ等.基于HS-GC-MS分析不同艾绒比艾条及其艾烟中挥发性成分[J].中药材ꎬ2020ꎬ43(5):1164-1169.[12]刘梦菲ꎬ江汉美ꎬ肖宇硕ꎬ等.HS-SPME-GC-MS联用技术分析不同产地艾叶挥发性成分[J].中国实验方剂学杂志ꎬ2018ꎬ24(10):79-89.[13]周次利ꎬ吴焕淦ꎬ窦传字ꎬ等.三年陈蕲艾艾烟化学成分的GC-MS分析[A].2011中国针灸学会年会论文集(摘要)[C].中国针灸学会ꎬ2011:10.[14]许小宇ꎬ单思ꎬ王雯蕾ꎬ等.不同加工工艺艾条艾烟化学成分的HS-GC-MS分析[J].中华中医药杂志ꎬ2021ꎬ36(1):506-509.[15]罗小超ꎬ陈洋ꎬ钟玉梅ꎬ等.艾烟组分及其环境影响的研究进展[J].成都中医药大学学报ꎬ2021ꎬ44(1):8-13. [16]洪宗国ꎬ吕丰ꎬ魏海胜ꎬ等.艾条燃烧温度 时间 空间曲线研究[J].中国针灸ꎬ2012ꎬ32(11):1024-1028. [17]王频ꎬ杨骏ꎬ杨帆ꎬ等.微烟艾灸燃烧试验与应用技术研究[J].中国中医药科技ꎬ2010ꎬ17(1):8-9.[18]张心悦.基于热行为分析的艾绒质量评价及其与木质素相关性研究[D].北京:北京中医药大学ꎬ2020.。
药学研究资料总结Research in pharmacology plays a crucial role in understanding the effects of different drugs on the human body. 药物学研究在了解不同药物对人体的影响方面发挥着至关重要的作用。
It involves the study of how drugs interact with biological systems and how they can be used to treat various medical conditions. 这涉及药物如何与生物系统相互作用以及如何用于治疗各种医疗状况的研究。
Pharmacology research also helps to identify potential side effects and interactions between different drugs. 药物学研究还有助于识别潜在的副作用以及不同药物之间的相互作用。
One important aspect of pharmacology research is drug development. 药物学研究的一个重要方面是药物研发。
This involves the process of discovering and designing new drugs to treat specific diseases or conditions. 这涉及发现和设计新的药物以治疗特定疾病或状况的过程。
Researchers in pharmacology work to understand the underlying mechanisms of diseases and to develop drugs that can target those mechanisms. 药学研究人员致力于了解疾病的基本机制,并开发可以针对这些机制的药物。
注射用哌拉西林钠他唑巴坦钠(4:1)的配比研究摘要哌拉西林和他唑巴坦组成的复方制剂中,哌拉西林和他唑巴坦的配比有8:1和4:1两种。
相对于8:1的制剂,4:1制剂的抑菌能力更强,临床疗效更好关键词哌拉西林他唑巴坦配比哌拉西林属酰脲类青霉素,抗菌谱广,抗菌作用强,尤其对铜绿假单胞菌有强大抗菌作用,是目前国内外广泛应用并认为最有价值的一类青霉素。
但其对β-内酰胺酶不稳定。
他唑巴坦是新的β-内酰胺酶抑制剂,属于青霉烷,在舒巴坦结构的基础上增加了一个三氮唑环,是舒巴坦的衍生物,具有广泛的抑菌活性。
目前临床应用的β-内酰胺酶抑制剂主要有克拉维酸钾、舒巴坦钠、他唑巴坦钠,这些酶抑制剂本身也能诱导β-内酰胺酶,而他唑巴坦是最弱的诱导剂,因此,哌拉西林和他唑巴坦组成的复方制剂,从组方而言优于β-内酰胺类抗生素与其它酶抑制剂的复合制剂。
哌拉西林和他唑巴坦组成的复方制剂中,哌拉西林和他唑巴坦的配比有8:1和4:1两种。
相对于8:1的制剂,4:1制剂的抑菌能力更强,临床疗效更好。
现将哌拉西林他唑巴坦(4:1)配比研究综述如下。
1.体内、外药效学研究:以哌拉西林与他唑巴坦不同配比的制剂对哌拉西林耐药菌感染的小鼠进行治疗,实验结果显示:对金葡菌,哌拉西林/他唑巴坦以8:1~2:1配比比单独用哌拉西林时的MIC80低16倍以上,不同比例间无显著差异;对大肠杆菌,哌拉西林/他唑巴坦以2:1~1:1配比时MIC80比单独应用哌拉西林时MIC80低64倍;对莫氏肺炎球菌,两者比例为4:1和2:1时的MIC80最低;对变形杆菌,两者比例为4:1时MIC80最低。
对感染小白鼠的最佳治疗比例:由金葡菌感染的小鼠:哌拉西林/他唑巴坦的最佳治疗比例为4:1,由大肠杆菌感染的小鼠:哌拉西林/他唑巴坦比例为8:1~2:1之间无明显区别,由莫氏肺炎球菌感染的小鼠,4:1~2:1为最佳比例。
以上研究表明,本品在体内和体外的药效学成平行性,随着β-内酰胺酶抑制剂在配方中所占比例的增加,抑酶作用增强。
4种基原四块瓦的生药学研究江西特色药材四块瓦疗效确切,在民间使用较广泛,为了发掘这一民间药资源,该实验对不同基原的四块瓦药材进行了系统的生药学研究,提供了4种金粟兰属植物的药材性状、根及根茎的组织和粉末显微特征结果。
通过实验研究,明确了四块瓦药用部位性状特征和显微特征,为四块瓦的种质鉴别、进一步开发利用和质量标准的制定提供了理论依据。
标签:金粟兰属;生药学研究;性状鉴别;显微鉴别[Abstract] In order to develop characteristic folk medicine resources in Jiangxi,a pharmacognostical study was systematically performed for four different origin plants of Sikuaiwa,the result of study provides the microscopic features of powder and tissue of the crude drug.The research provided reference for the identification of Sikuaiwa,as well as a theoretical basis for the further development and the formulation of quality standards.[Key words] Chloranthus;pharmacognostical study;morphological identification;microscopic identificationdoi:10.4268/cjcmm20152111我国金粟兰属Chloranthus植物主要分布于长江以南各省区,约有13种和5变种[1]。
它们大多以根、根状茎或全株入药,具有散寒止咳,活血止痛,散瘀解毒功效。