复数高考真题复习百度文库
- 格式:doc
- 大小:1.26 MB
- 文档页数:19
考法一 高考数学复习专题:复数复数的实部与虚部【例1-1】(2023·山西临汾·统考一模)复数()+=+z i 2i 54i 2)(的虚部为( )A .−3iB .−6iC .−3D .−6【答案】D【解析】+−+−+−−=====−−+−−−−z i(2i)12i (12i)(12i)536i 5(4i )1515(12i)1530i2,虚部为−6.故选:D. 【例1-2】(2023·河南·长葛市第一高级中学统考模拟预测)已知复数=−z 1i ,则+z z212的实部为( ) A .101 B .−101 C .51D .−51【答案】A【解析】:因为=−z 1i ,所以+=−+−=−z z 2(1i)2(1i)24i 22, 所以+−−+====+++z z 224i (24i)(24i)20105i 1124i 24i 112,所以+z z 212的实部为101.故选:A.【例1-3】(2023·重庆·统考一模)设复数z 满足+⋅=z z i i 1,则z 的虚部为( )A .−21B .21C .−1D .1【答案】B【解析】设=+∈z a b a b i(,R),则=−z a b i ,所以+−+a b a b i(i)i=1i, −−+=a b a b (i )i+1,得=b 21,解得=b 21,所以复数z 的虚部为21.故选:B. 考法二 共轭复数【例2-1】(2023·黑龙江·黑龙江实验中学校考一模)复数z 满足+=−z (1i)24i 2,则复数z 的共轭复数=z ( ) A .−12i B .−−2i C .−+2i D .+2i【答案】C【解析】将式子+=−z (1i)24i 2化简可得,()+===−−−−z 1i 2i2i 24i24i2,根据共轭复数定义可知=−+z 2i ,故选:C【例2-2】(2023·陕西西安·统考一模)复数−=z 1i ()2i 2的共轭复数为( ) A .−2i B .−4iC .2iD .4i【答案】C 【解析】=−+−+==−+z ((1i)(1i))2i 1[]i 2i(1i)22,则=z 2i ,所以复数−=z 1i()2i 2的共轭复数为2i .故选:C【例2-3】(2023·全国·唐山市第十一中学校考模拟预测)已知复数z 满足−−+=z z 2i 3i 0,则z 的共轭复数=z ( ) A .+1i B .−1i C .+5i 1D .−5i 1【答案】B【解析】由−−+=z z 2i 3i 0,得−=−z 12i 3i −+=−+(12i)(12i)(3i)(12i)==++51i 55i ,所以=−z 1i .故选:B考法三 复数的模长【例3-1】(2022·北京·统考高考真题)若复数z 满足⋅=−z i 34i ,则=z ( ) A .1 B .5C .7D .25【答案】B【解析】由题意有()⋅−===−−−−−z i i i 43i 34i 34i i )()(,故==z ||5.故选:B .【例3-2】(2023秋·山西太原·高三太原五中校考期末)已知+=−zz 12i 3,则=z ( )AB .3C .2D 【答案】D 【解析】由+=−zz 12i 3,得−=+z z 3i 2i ,−=+z 12i 3i )(,所以()()−−+===++++z 12i 12i 12i 55i 3i 173i 12i )()(,所以=z D .【例3-3】(2023·全国·模拟预测)若复数z 满足⋅⋅+⋅−=z z z z 1112)()(,则+=z i ( )AB C .3D .5【答案】B【解析】设=+z x y i ,∈x y ,R .所以+⋅−⋅++⋅−+=x y x y x y x y (i)(i)1i 1i 12)()(, 所以+−−+x y x y xy ()(12i)=122222,所以−−−−++=x y x y xy x y 122()i 0442222,所以⎩+=⎨−−−−=⎧xy x y x y x y 2()0120224422,所以⎩+=⎨+−−−=⎧xy x y x y x y 2()0()(1)120222222, 当+=x y 022时,方程组无解;当=≠x y 0,0时,++=y y 12042没有实数解; 当x 0,y=0≠时,−−=∴=∴=±x x x x 120,4,2422,所以=z 2或−2.所以当=z 2时,+=+z i |2;当=−z 2时,+=−+z i |2所以+=z i 故选:B考法四 复数对应的象限【例4-1】(2021·全国·统考高考真题)复数−−13i2i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】−===−++−+13i 101022i 55i 1i2i 13i )()(,所以该复数对应的点为⎝⎭ ⎪⎛⎫22,11,该点在第一象限, 故选:A.【例4-2】(2023·全国·模拟预测)若复数=−+z a 2i 1i )()(在复平面内对应的点位于第四象限,则实数a 的取值范围为( ) A .+∞2,)( B .−∞−,2)( C .−2,2)( D .0,2)(【答案】A【解析】由于=−+=+−−=++−z a a a a a 2i 1i 22i i i 22i 2)()()(,所以复数z 在复平面内对应的点的坐标为+−a a 2,2)(,则⎩−<⎨⎧+>a a 2020,解得>a 2,所以实数a 的取值范围为+∞2,)(,故选:A .【例4-3】(2023·湖南·模拟预测)已知i 是虚数单位,复数R =−=+∈z z a a 12i,2i 12)(在复平面内对应的点为P ,Q ,若OP OQ ⊥(O 为坐标原点),则实数a =( ) A .−2 B .−1 C .0 D .1【答案】D【解析】复数=−=+z z a 12i,2i 12,则−P 1,2)(,Q a 2,1)(,则(1,2OP =−),(2,1OQ a =), OP OQ ⊥,∴−=a 220,解得=a 1,故选:D.考法五 复数的分类【例5-1】(2023·全国·高三专题练习)已知i 为虚数单位,复数++=z a 2i 1i 3)()(为纯虚数,则=z ( ) A .0 B .21C .2D .5【答案】D【解析】由题意,在++=z a 2i 1i 3)()(中,=−+=+−+=++−z a a a a a 2i 1i 22i i 221i)()()(∵z 为纯虚数,∴,+=−≠a a 20210,∴=−a 2,∴=−z 5i ∴=z 5,故选:D . 【例5-2】(湖北省武汉市2023届高三下学期二月调研数学试题)若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是−21B .实部是21C .虚部是0D .虚部是21【答案】A【解析】设=+z a b i (∈a b ,R 且≠b 0)+=+++=+−++=+−++z z a b a b a ab b a b a a b ab b (i)(i)2i i (2)i 222222, +z z 2是实数,因此+=ab b 20,=b 0(舍去),或=−a 21.故选:A . 【例5-3】(2022秋·江苏南京·高三校考期末)设a 为实数,若存在实数t ,使得+−−t a 2i(1)i 12为实数(i 为虚数单位),则a 的取值范围是( )A .≥−a 2B .0a<C .≥−a 1D .−≤≤−a 21【答案】C 【解析】由题知,⎝⎭⎪+−=+−=−−⎛⎫−−−t t t a a a 2i 2i 2(1)i (1)i 1i 111i 2222)(, 因为存在实数t ,使得+−−t a 2i (1)i 12为实数,所以关于t 的方程−−=−t a 21012有实数根, 所以,=+t a 212有实数根,所以=≥+t a 2012,即≥−a 1所以,a 的取值范围是≥−a 1故选:C考法六 相等复数【例6-1】(2022·全国·统考高考真题)设++=a b (12i)2i ,其中a b ,为实数,则( ) A .==−a b 1,1 B .==a b 1,1 C .=−=a b 1,1 D .=−=−a b 1,1【答案】A【解析】因为a b ,R ,++=a b a 2i 2i )(,所以+==a b a 0,22,解得:==−a b 1,1.故选:A.【例6-2】(2023·云南红河· )A .⎝⎭⎝⎭ ⎪ ⎪−+−⎛⎫⎛⎫33cos isin ππB 2i 1C .−1iD .3i π【答案】A⎝⎭⎝⎭==211,由⎝⎭ ⎪−==⎛⎫332cos cos 1ππ,⎝⎭⎪−=−=−⎛⎫332sin sin ππ,A 正确,B 、C 、D 错误.故选:A .考法七 在复数范围内解方程【例7-1】(2022·高一课时练习)复数2i 的平方根是( ) A .+1i 或−−1i B .2iC .+1iD .−−1i【答案】A【解析】设2i 的平方根为+∈x y x y i(,R),则+=x y (i)2i 2,即−+=x y xy 2i 2i 22,从而⎩=⎨−=⎧xy x y 22,0,22解得⎩=⎨⎧=y x 11,或⎩=−⎨⎧=−y x 1.1,所以复数2i 的平方根是+1i 或−−1i ,故选:A【例7-2】(2021·湖南衡阳·衡阳市八中校考模拟预测)已知复数−i 2是关于x 的方程++=∈x px q p q R 0,2)(的一个根,则+=pi q ( )A.25 B .5C D .41【答案】C【解析】因为复数−i 2是关于x 的方程++=x px q 02的一个根,所以−+−+=i p i q 2202)()(,所以+=+−pi q i p 423,所以==−p q p 4,23,所以==p q 4,5,则+=+=pi q i 45 C.【例7-3】(2021·江苏·一模)已知+i 2是关于x 的方程++=x ax 502的根,则实数a =( ) A .−i 2 B .−4 C .2 D .4【答案】B【解析】因为+i 2是关于x 的方程++=x ax 502的根,则另一根为−i 2 由韦达定理得++−=−i i a 22)()(,所以=−a 4 故选:B考法八 复数的综合运用【例8-1】(2023春·浙江·高三校联考开学考试)复数=−−z 2211,复数z 2满足⋅=z z 112,则下列关于z 2的说法错误的是( )A .=−z 212B .=z 12C .z 2D .z 2在复平面内对应的点在第二象限【答案】C【解析】对于A ,由已知可得,==z z 112==21=−421)(=−21,故A 正确.对于B ,因为=−z 212,所以==z 12,故B 正确;对于C ,根据复数的概念可知z 2,故C 错误;对于D ,根据复数的概念可知z 2在复平面内对应的点为⎝⎭⎪ ⎪−⎛⎫221,故D 正确.故选:C.【例8-2】(2023·高一课时练习)已知z 1、∈z C 2,且=z 11,若+=z z 2i 12,则−z z 12的最大值是( ). A .6 B .5 C .4 D .3【答案】C【解析】设=+∈z a b a b i,,R 1)(,=z 11,故+=a b 122,+=z z 2i 12,则=−+−z a b 2i 2)(,−=+−===z z a b 222i 12)(∈−b 1,1][,当1b时,−z z 12有最大值为4.故选:C【例8-3】(2023江苏镇江)(多选)已知复数=+z a b i 111,=+z a b i 222(a 1,b 1,a 2,b 2均为实数),下列说法正确的是( ) A .若=z z 212,则>z z 12B .z 1的虚部为b 1C .若z z =12,则=z z 1222D .=z z 1122【答案】BD【解析】对于A ,复数不等比较大小,A 项错误;对于B ,复数=+z a b i 111,a 1是实部,b 1是虚部,B 项正确;对于C ,z z =12==−+z a b a b 2i 11111222,=−+z a b a b 2i 22222222,不能得到=z z 1222,所以C 项错误;对于D ,=+z a b 111222,=−+z a b a b 2i 11111222,==+z a b 111222,所以=z z 1122,D 项正确;故选:BD.强化训练1.(2022·全国·统考高考真题)若=−z 1,则−=zz z1( )A .−1 B .−1C .−31D .−31【答案】C【解析】=−=−−=+=z zz 1(1113 4.−==−zz z 131故选 :C2.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若复数z 满足+⋅=+z (12i)34i (其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是115 B .z 的虚部是52C .复数z 在复平面内对应的点在第一象限D .=z 5 【答案】C【解析】由题设++−===−++−z 12i (12i)(12i)55i 34i (34i)(12i)112,==z ||=+z 55i 112, A 选项,z 的实部是511,故A 错误;B 选项,z 的虚部是−52,故B 错误; C 选项,复数z 对应的坐标为⎝⎭⎪⎛⎫55,112,在复平面内对应的点在第一象限,故C 正确;D 选项,z D 错误.故选:C3.(2023秋·江苏·高三统考期末)若复数z 满足≤−z 12,则复数z 在复平面内对应点组成图形的面积为( ) A .π B .π2 C .π3 D .π4【答案】D【解析】z 在复平面对应的点是半径为2的圆及圆内所有点,=S π4,故选:D.4.(2023·内蒙古赤峰·统考模拟预测)已知R ∈a ,+=+a (5i)i 15i (i 为虚数单位),则a =( ) A .−1 B .1 C .−3 D .3【答案】A【解析】由题意知,+=−+=+a a (5i)i 5i 15i ,则=−a 1.故选:A.5.(2023春·湖南·高三校联考阶段练习)若复数z 满足−=z z 2i ,则++=z 32i ( )A B C .D 【答案】B【解析】+==−z 1i1i 2,则++=+=z 32i 4i B. 6.(2023·辽宁·校联考模拟预测)已知复数=−z 2i ,且−+=z az b i ,,其中a ,b 为实数,则−=a b ( ) A .-2 B .0C .2D .3【答案】C【解析】由题意得=+z 2i ,则代入原式得:+−−+=a b 2i 2i i )(,即−+++=a b a i 221i )()(,所以⎩+=⎨⎧−+=a a b 11220,解得⎩=−⎨⎧=b a 20,所以−=a b 2.故选:C .7.(2023·四川凉山·统考一模)已知复数z 满足=+−z1i 13i,z 是z 的共轭复数,则+z z 等于( ) A .−2i B .−2C .−4iD .−1【答案】B【解析】由题意在=+−z 1i 13i 中,()()++−−====−=−−−−++−−z 1i 1i 1i 1i 212i 13i 3i 4i 14i 213i 1i 22)()( ∴=−+z 12i ∴+=−−−+=−z z 12i 12i 2故选:B.8.(2023·浙江·永嘉中学校联考模拟预测)若+=z 12i i (i 为虚数单位),则=z ( )A.5 B CD 【答案】B【解析】由+=z 12i i 得==−+z i2i 12i,所以==z ,故选:B 9.(2023·江苏南通·统考一模)在复平面内,复数z z ,12对应的点关于直线−=x y 0对称,若=−z 1i 1,则−=z z 12( )A B .2C .D .4【答案】C【解析】=−z 1i 1对应的点为1,1,其中1,1关于−=x y 0的对称点为−1,1)(,故=−+z 1i 2,故−=−−=−==z z 1i+1i 22i 12故选:C10.(2023·陕西西安·校考模拟预测)已知复数z 满足=+z i21,其中i 为虚数单位,则z 的共轭复数在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】=+z i2=2-i 1,所以z 的共轭复数为=+z 2i ,对应在复平面内的点为(2,1),在第一象限, 故选:A11(2023·陕西榆林·统考一模)已知+−−=−z z z z 282i )()(,则+=z i ( )A.B .CD 【答案】A【解析】设R =+∈z a b a b i ,)(,则+−−=+=−=−z z z z z z a b 2342i 82i )()(,则==a b 2,1,故+=+=z i 22i 故选:A12.(2023·贵州毕节·统考一模)已知复数=+++z a a a 1i 2)(为纯虚数,则实数a 的值为( ) A .0 B .0或−1C .1D .−1【答案】A【解析】因为复数=+++z a a a 1i 2)(为纯虚数,则⎩+≠⎨+=⎧a a a 1002,解得=a 0.故选:A.13.(2023·全国·模拟预测)已知复数z 满足−=+z z 2537i )(,则z 的虚部为( ) A .−1311B .511 C .1329 D .−529 【答案】C【解析】对−=+z z 2537i )(移项并整理,得−=+z 23i 57i )(, ∴()()−−+===−++++z 23i 23i 23i 1313i 57i 112957i 23i )()(,∴z 的虚部为1329.故选:C. 14.(2022·全国·统考高考真题)若=+z 1i .则+=z z |i 3|( )A .B .C .D .【答案】D【解析】因为=+z 1i ,所以+=++−=−z z i 3i 1i 31i 22i )()(,所以+==z z i 3 故选:D.15.(2023春·江苏常州·高三校联考开学考试)若复数R +=∈+z a a 3i3i)(是纯虚数,则=z ( ) A .−1 B .−iC .−a iD .3i【答案】B 【解析】==+−++−z a a a 10103i 3i 339i )()()(为纯虚数,=−=a z 1,i ,=−z i ,故选:B .16.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)i 是虚数单位,设复数z 满足−=+z i 113i )(,则z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为+==13i 2,所以−−+−====−+++−+z i 1(i 1)(i 1)222i 23i (23i)(i 1)15i 15, 所以=+z 22i 15,所以z 的共轭复数对应的点位于第一象限,故选:A 17.(2023秋·浙江·高三期末)已知复数=+∈=z b b z i2i(R),212(其中i 为虚数单位),若−z z 12=b ( ) A .1 B .−5 C .1或−5 D .−1或5【答案】C【解析】由题意得==−z i2i 22,则−=++z z b 2(2)i 12,所以−==z z 12−b =5或=b 1,故选:C18.(2023广东深圳)设复数z 满足⋅+=−+z 12i 34i )(,则z 的虚部为( ) A .−2i B .2iC .−2D .2【答案】D【解析】由⋅+=−+z 12i 34i )(可得++====−−−+z 12i 12i 512i 55(12i)34i ,故=+z 12i ,则z 的虚部为2,故选:D19.(2022·山东济南·山东省实验中学校考模拟预测)虚数单位i 的平方根是( ) A .−1B.−−i 22C+22D.+22或 【答案】D【解析】设i 的平方根为+∈a bi a b R (,),则+=−+=a bi a b abi i ()2222,所以⎩=⎨−=⎧ab a b 21022,解得⎩⎪=⎪⎨⎪⎪=⎧b a 22或⎩⎪=⎪⎨⎪⎪=−⎧b a 2. 所以i的平方根为+i 22或−22. 故选:D .20.(2023·山西大同·大同市实验中学校考模拟预测)若复数z 满足+−=+z z z z 2+323i )()(,则z =( ) A .+22i 11B .−22i 11C .+22iD .−22i【答案】A【解析】设=+∈z a b a b i ,R )(,则=−z a b i ,所以+=++−=z z a b a b a i i 2)()(,−=+−−=z z a b a b b i i 2i )()(,所以+−=++z z z z a b 2+346i=23i )()(,所以===+a b z 2222,,i 1111.故选:A 21.(2023·广东佛山·统考一模)设复数z 满足+=−z 1i 52i 2)(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵+=−z 1i 52i 2)(,则()+===−−−−z 1i 2i 21i 52i52i 52,∴z 在复平面内对应的点为⎝⎭ ⎪−−⎛⎫21,5,位于第三象限.故选:C.22.(2023·辽宁·辽宁实验中学校考模拟预测)已知复数+z1i 为纯虚数,且+=z 1i1 ,则z =( ) A .−1i B .+1i C .−+1i 或−1i D .−−1i 或+1i【答案】C【解析】设=+z a b i (a ,b ∈R ),则++===+++−+−z a b a b b aa b 1i 1i 222i i i 1i )()( , 因为复数+z 1i 为纯虚数,所以⎩⎪≠⎪−⎨⎪⎪=⎧+b a a b 20,20,解得⎩≠⎨⎧=−a b a b ,, 又+=z 1i 1,所以=−b a 21或=−−b a21,解得=b 1或1b ,所以=−+z 1i 或=−z 1i .故选:C23.(2023·安徽马鞍山·统考一模)若复数z 满足−=−zz z i 3i ,则z 的虚部为( ) A .−1 B .2C .1或2D .−1或2【答案】D【解析】设复数=+∈z a b a b i(,R),因为−=−zz z i 3i ,即+−−=−a b a b i 3i 22,所以⎩=⎨+−=⎧a a b b 1322,解得:1b或=b 2,所以z 的虚部为−1或2,故选:D .24.(2023·云南昆明·昆明一中校考模拟预测)已知复数z 满足−=z (12i)i 2023,则=z ( ) A .−55i 21 B .+55i 21C .−55i 12D .+55i 12【答案】A【解析】因为=⨯=−ii ii 202321011)(,所以()()−−−+====−−−+z 12i 12i 12i 12i 55i i i 21i 12i 2023)(,故选:A. 25.(2023·河南郑州·统考一模)已知i 是虚数单位,若复数z 的实部为1,⋅=z z 4,则复数z 的虚部为( )A.B .C .−1或1D .【答案】A【解析】由题意,设=+z b 1i ,则=−z b 1i ,所以⋅=+−=z z b b 1i 1i 4)()(,即+=b 142,所以=b =−z 1或z =+1,所以复数z 的虚部为故选:A.26.(2023·陕西宝鸡·校联考模拟预测)已知复数=++z 1i i 3)(,则复数z 的模为( )AB .CD 【答案】C【解析】因为=++=−+z 2i(1i)i 23i ,所以=z C.27.(2023·陕西咸阳·武功县普集高级中学统考一模)已知复数=−z i 12的共轭复数为z ,则−=z i2( ) A .−1i B .+2iC .+1iD .−+1i【答案】A【解析】由题知=+z 12i ,所以−+==−z i1i 1i 22故选:A 28.(2023·浙江·校联考模拟预测)已知复数=−z 12i 1,=+z 1i 2,则复数z z 12的模z z 12等于( )A B C .D .【答案】B【解析】复数=−z 12i 1,=+z 1i 2,则=−+=−z z (12i)(1i)3i 12,所以==z z 12故选:B29.(2023·广东梅州·统考一模)已知复数z 满足z +=−1i 2i )(,i 是虚数单位,则z 在复平面内的对应点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】由z +=−1i 2i )(可得+===−−−−−z 1i 21i 2i (2i)(1i), 则z 在复平面内的对应点为−−(1,1),落在第三象限,故选:C 30.(2023秋·辽宁·高三校联考期末)已知z 是纯虚数,−+z 1i2是实数,那么=z ( ) A .2i B .iC .−iD .−2i【答案】A【解析】因为z 是纯虚数,故可设)=≠z b b i(0,所以()()−−−+=+−−+z b b 1i 1i 1i 1i =22i 2i 1i )()(=++−b b 222i)(,因为−+z 1i 2是实数,所以−=b 20,即=b 2,所以=z 2i .故选:A31.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)设a 为实数,若存在实数t ,使+−−t a 2i(1)i i2为实数(i 为虚数单位),则a 的取值范围是( ) A .≥−a 2 B .0a< C .≤−a 1 D .≤−a 2【答案】A 【解析】⎝⎭⎪+−+−−−+−−+−−⎛⎫−−−t t t t a a a a 2i 222221i=1i=i 1i=1i i11i i 2222)()()()()(, 因为存在实数t ,使+−−t a 2i (1)i i 2为实数,a 为实数,所以存在实数t ,−−=t a2102,故存在实数t ,−=t a 222, 所以≥−a 2,故选:A.32.(2023·吉林·长春十一高校联考模拟预测)设复数z 满足+=z i 2,z 在复平面内对应的点为x y ,)(,则( ) A .−+=x y 1422)( B .++=x y 1422)( C .+−=x y 1422)( D .++=x y 1422)(【答案】D【解析】z 在复平面内对应的点为,x y (),则复数=∈z x y x y +i,,R ,则+=++=z x y i (1)i 2,由复数的模长公式可得++=x y (1)422,故选:D .33.(2023秋·广东广州·高二广东实验中学校考期末)设复数z 满足−=−z z z 1,则z 在复平面上对应的图形是( ) A .两条直线 B .椭圆 C .圆 D .双曲线【答案】A【解析】设=+z x y i ,则=−z x y i ,−=−z z z 1可得:−+=x y y 12222)()(,化简得:−=x y 1322)(,即−=x y 13或−=−x y 13,则z 在复平面上对应的图形是两条直线.故选:A34.(2022春·上海黄浦·高三上海市敬业中学校考开学考试)满足条件−=+z i 34i (i 是虚数单位)的复数z 在复平面上对应的点的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】因为+==34i 5,设=+z x y i ∈x y ,R )(,所以−=+−z x y i 1i )(,所以i −==z 5,两边平方得+−=x y 12522)(,满足条件的复数在复平面上对应的点的轨迹是圆, 故选:B35(2023春·湖南株洲·高二株洲二中校考开学考试)已知复数z 满足+=+ααz 1i sin i cos )((i 是虚数单位),则=z ( )A .21B C .2D .1【答案】B【解析】因为+=+ααz 1i sin i cos )(, 所以()()++−===+++−++−ααααααααz 1i 1i 1i 22i sin i cos sin cos sin cos sin i cos 1i )()(,解得==z 故选:B36.(2022秋·安徽阜阳·高三安徽省临泉第一中学校考期末)已知复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根,则+=p q i ( )A.4 B .C .8D .【答案】D【解析】因为复数+1i 是关于x 的方程++=x px q 02的一个根,所以⎩+=⎨++++=⇒+++=⇒⎧+=p p q p q p p q 201i 1i 02i 002)()()(,解得=−=p q 2,2,所以+==p qi另解:因为复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以复数−1i 也是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以有++−==−+−==p q 1i 1i 2,1i 1i 2)()(解得=−=p q 2,2,所以+=p qi 故选:D37.(2023·全国·模拟预测)若复数=+++⋅⋅⋅+z n i i i i 23,∈n N *则z 的最大值为( )A.1 B C D .2【答案】B【解析】因为=i i 1,=−i 12,=−i i 3,=i 14,,=+k i i 41,=−+k i 142,=−+k i i 43,=k i 14,∈k N ,且+++=i i i i 0234,所以当=n k 4,∈k N *)(时=z 0,则=z 0,当=+n k 41,∈k N )(时=z i ,则=z 1,当=+n k 42,∈k N )(时=−+z 1i ,则==z当=+n k 43,∈k N )(时=−z 1,则=z 1,所以z 故选:B38.(2021秋·上海浦东新·高三上海南汇中学校考阶段练习)已知函数+=−−x f x x 1()log (1)212的定义域为A ,复数−=−−z a 12ii 3i,若∈a A ,则z ||的取值范围是( )A .<z 1B .≤<z 1C .≤≤z 1D .<≤z 1【答案】B 【解析】由+−>−x x 11021,得+>−+x x 102,即−<<x 12,所以=−A (1,2) 因为复数−=−=−+−=+−−z a a a 12i 5i (3i)(12i)i 1(1)i 3i 1所以z ||因为∈−a (1,2),所以z || 故选:B39.(2023春·上海浦东新·高三上海市实验学校校考开学考试)设z 1,z 2为复数,下列命题一定成立的是( )A .如果=z a 1,a 是正实数,那么=z z a 112B .如果z z =12,那z z =±12C .如果≤z a 1,a 是正实数,那么−≤≤a z a 1D .如果+=z z 01122,那么==z z 012 【答案】A【解析】设)(,=+=+∈z x y z x y x y x y i,i ,,,R 1112221122,对A :∵==z a 1,则+=x y a 11222,∴=+−=+=z z x y x y x y a i i 11111111222)()(,A 正确;对B :∵z z =12=+=+x y x y 11222222,不能得到=±=±x x y y ,1212,更不能得到z z =±12,例如==z z 1,i 12,则==z z 112,但≠±z z 12,B 错误;对C :∵=z a 1,则+≤x y a 11222,但只有实数才能比较大小,对于虚数无法比较大小,C 错误;对D :∵+=z z 01122,则+++=−++−+=+−−++x y x y x y x y x y x y x x y y x y x y i i 2i 2i 2i=0112211112222121211222222222222)()()()()()(,可得⎩+=⎨+−−=⎧x y x y x x y y 00112212122222,不能得到====x y x y 01122,例如==z z 1,i 12,则+=−=z z 1101122,但显然≠≠z z 0,012,D 错误.故选:A.40.(2022秋·山西阳泉·高三统考期末)已知复数1232023i i i i 1i +++++=z ,则复数z 的虚部是( ) A .21B .−21C .2i 1D .−2i 1【答案】A 【解析】1232023i i i i 1i 1i 1i++++===+++−−+−−+++++++z i 1i 505i 1i 1i i i 505i i i i 1231234)()()()(+===−−+−−1i 2211i1i )(,故虚部为21 ,故选:A 41.(2022春·广西)下列关于复数的命题中(其中i 为虚数单位),说法正确的是( )A .若关于x 的方程+++−=∈i x ax i a R 11402)()(有实根,则=−a 25B .复数z 满足+=z i i12020)(,则z 在复平面对应的点位于第二象限C .=−+++z a a a i 412312)(,=++i z a a a 222)((i 为虚数单位,∈a R ),若>−a 21,则>z z 12D .+i 12是关于x 的方程++=x px q 02的一个根,其中p 、q 为实数,则=q 5 【答案】D【解析】对于A 中,设方程的实数根为t ,代入方程可得+++−=i i t at 11402)(,所以⎩−=⎨++=⎧t t at 401022,解得=±a 25,所以A 不正确;对于B 中,复数+=z i i 12020)(,可得==−++=i i i i z 12112112020,则复数z 在复平面内对应的点为−22(,)11,位于第四象限,所以B 不正确;对于C 中,复数=−+++z a a a i 412312)(,=++i z a a a 222)(,当>−a 21时,可知当+≠a a 02时 ,因为虚数不能比较大小,所以C 不正确;对于D 中,+i 12是关于x 的方程++=x px q 02的一个根, 根据复数方程的性质,可得−i 12也是方程的根,可得⎩+−=⎨⎧++−=−i i q i i p (12)(12)1212,解得=−=p q 2,5,所以D 正确.故选:D.42.(2023秋·河北唐山·高三统考期末)(多选)已知i 为虚数单位,复数,,=−=+∈z a z a a 2i 2i R 12)(,下列结论正确的有( )A .z z =12B .=z z 12C .若+=⋅z z z z 21212)(,则=a 2D .若=−z i 2,则=a 0 【答案】AC【解析】A 选项,==z z 12,A 选项正确. B 选项,=+≠z a z 2i 12,B 选项错误. C 选项,+=++−z z a a 22424i 12)()(, ⋅=+−z z a a 44i 122)(,若+=⋅z z z z 21212)(,则⎩−=−⎨⎧+=a a a a 2442442,解得=a 2,所以C 选项正确. D 选项,当=a 0时,=≠−z 2i 2,所以D 选项错误. 故选:AC43.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)(多选)设i 为虚数单位,下列关于复数的命题正确的有( ) A .=⋅z z z z 1212B .若z z ,12互为共轭复数,则z z =12C .若z z =12,则=z z 1222D .若复数=++−z m m 11i )(为纯虚数,则=−m 1【答案】ABD 【解析】由题意得:对于选项A :令=+=+z a b z c d i,i 12则⋅=++=−++z z a b c d ac bd ad bc i i i 12)()()( =−++ac bd ad bc 22)()(=⋅z z 12所以=⋅z z z z 1212,故A 正确;对于选项B :令=+=−z a b z a b i,i 12,z z 12z z =12,故B 正确;对于选项C :令=+=−z a b z a b i,i 12,==z z 12,根据复数的乘法运算可知:=+=−+z a b a b ab i 2i 12222)(,=−=−−z a b a b ab i 2i 22222)( ,≠z z 1222,所以C 错误;对于选项D :若复数=++−z m m 11i )(为纯虚数,则+=m 10,即=−m 1,故D 正确. 故选:ABD44.(2023春·安徽·高三校联考开学考试)(多选)若复数=+z i 121,=−z 73i 2,则下列说法正确的是( ).A .=z 1B .在复平面内,复数z 2所对应的点位于第四象限C .⋅z z 12的实部为13D .⋅z z 12的虚部为−11 【答案】ABC【解析】由题意得,==z 1A 正确;在复平面内,复数z 2所对应的点为−7,3)(,位于第四象限,故B 正确; ∵⋅=+−=−++=+z z 12i 73i 73i 14i 61311i 12)()(, ∴⋅z z 12的实部为13,虚部为11,故C 正确,D 错误. 故选:ABC .45.(2023秋·浙江宁波·高三期末)(多选)已知∈z z C ,12,且=+=z z z 10112,则( )A .当R =−=+∈z z x y x y 1i,i(,)12时,必有++−=x y (1)(1)1022B .复平面内复数z 1C .−=z i 1min 1D .=+z z 1max12【答案】BD【解析】A 项:+=⇒++−=z z x y 10111001222)()(,故错误;B 项:因为=z 1,故正确;C 项:−≥−=z i z i ||||111,当z 1与i 对应向量同向时取等,故错误;D 项:==≤==+z z 112+z z 12与z 1对应向量反向时取等,故正确. 故选:BD.46.(2023秋·湖北·高三校联考阶段练习)(多选)设z 1,z 2为复数,则下列四个结论中正确的是( )A .−=+−z z z z z z 412121222)(B .−z z 11是纯虚数或零C .+≤+z z z z 1212恒成立D .存在复数z 1,z 2,使得<z z z z 1212【答案】BC【解析】对于A :+−=−z z z z z z 412121222)()(,令−=+z z x y i 12, 则−=+=−+z z x y x y xy i 2i 122222)()(,−==+z z x y 12222,+xy 22与−+x y xy 2i 22不一定相等,故A 错误;对于B :=+z a b i 1,则=−z a b i 1,−=z z b 2i 11,当=b 0时为零,当≠b 0时为纯虚数,故B 正确;对于C :=+=+==z x y z a b z z i,i,1212则+=z z 12+=z z ||||12,(ay bx −≥02),则+−≥a y b x abxy 202222,∴+++≥++a x b x a y b y a x b y abxy 442222222222222)()(∴++≥+x y a b ax by 42222222)()()(∴+ax by 22∴++++≥+++++x y a b x y a b ax by 2222222222,∴≥22,∴+−+≥z z z z ||||0121222)()(故C 正确;对于D :设=+=+==z x y z a b z z i,i,1212则z z ||||12=+++=−++z z ax xb ay by ax by xb ay i i i i 122)()(==z z 12z z ||||12,故D 错误.故选:BD.47.(2022秋·甘肃甘南)(多选)已知=+∈z a b a b i ,R )(为复数,z 是z 的共轭复数,则下列命题一定正确的是( )A .若z 2为纯虚数,则=≠a b 0B .若∈z R 1,则∈z RC .若−=z i 1,则z 的最大值为2D .⋅=z z z ||2【答案】BCD【解析】对于A ,=+=−+z a b a b ab (i)2i 2222)(为纯虚数,所以⎩≠⎨−=⎧ab a b 20022,即=±≠a b 0,所以A 错误;对于B ,()()++−++===−−z a b a b a b a b a ba b a bi i i i 11i 2222, 因为∈zR 1,所以=b 0,从而∈z R ,所以B 正确;对于C , 由复数模的三角不等式可得=−+≤−+=z z z i i i i 2)(,所以C 正确;对于D ,⋅=+−=+=z z a b a b a b z i i ||222)()(,所以D 正确.故选:BCD .48.(2023秋·吉林长春·高三长春市第二中学校考期末)(多选)已知复数z 1,z 2,则下列结论中一定正确的是( ) A .若=z z 012,则=z 01或=z 02B .若+=z z 01222,则==z z 012 C .若=z z 1222,则z z =12D .若z z =12,则=z z 1222【答案】AC【解析】对于A , 设=+=+∈z x y z a b x y a b i,i,,,,R 12)(, 若=z z 012,则=++=−=z z x y a b xa yb xb ya i i ++i 012)()()(,所以⎩=⎨⎧−=xb ya xa yb +00,即⎩=−⎨⎧=xb ya xa yb,所以=−x y ab ab 22,若0a b ,则=−x y ab ab 22成立,此时=z 02;若,=≠a b 00,由=xa yb 得=y 0,由=−xb ya 得=x 0,此时=z 01; 若,≠≠a b 00,由=−x y ab ab 22得=−x y 22,所以==x y 0,此进=z 01, 所以若=z z 012,则=z 01或=z 02,故A 正确;对于B ,设=+=−z z 1i,1i,12则+=+−=z z 1i +1i 0122222)()(,故B 不正确; 对于C ,设=+=+∈z x y z a b x y a b i,i,,,,R 12)(,所以=+−=−∈z x y x y xy z a b ab x y a b i =+2i,+2i ,,,R 12222222)()(,若=z z 1222,则⎩⎩==⎨⎨⇒⎧−=−⎧=xy ab y b x y a b x a 222222或⎩=−⎨⎧=−y b x a , 所以z z =12,故C 正确;对于D , 由z z =12,取=+z 1i 1,=−z 1i 2满足条件,而=≠=−z z 2i 2i 1222,故D 不正确. 故选:AC.49.(2023·高一课时练习)在复平面上的单位圆上有三个点Z 1,Z 2,Z 3,其对应的复数为z 1,z 2,z 3.若−=+=z z z 1213△Z Z Z 123的面积S =______.【解析】由题意知,===z z z 1123, 由复数的加减法法则的几何意义及余弦定理,得⋅∠==−+−−z z Z OZ z z z z 22cos 112121212222,即∠=︒Z OZ 12012,⋅∠=−=+−+z z Z OZ z z z z 22cos 113131313222,即∠=︒Z OZ 6013,当OZ 2与OZ 3反向,=⨯⨯=S 22221;当线段OZ3在∠Z OZ12的内部时,==S2211所以△Z Z Z123..50(2023·高三课时练习)已知复数=−θz cos i1,=+θz sin i2,则⋅z z12的最大值为______.【答案】23【解析】⋅=⋅== z z z z1212===∵∈θsin20,12][,∴当=θsin212时,⋅z z12=23.故答案为:23.51.(2023·=______.====21)52.(2023·高一课时练习)设z 1,z 2,∈z C 3,下列命题中,假命题的个数为______. ①z z −=11;②若=z z 1222,则⋅=⋅z z z z 1122;③⋅=z z z z z z 3333121222; ④若−+−=z z z z 0122322)()(,则==z z z 123;⑤+≤z z z z 2121222.【答案】2【解析】令+z a b =i 1,+z c d =i 2,则−z a b =i 1,−z c d =i 2.则①−==z z 11,判断正确;②若=z z 1222,则=z z 1222,则=z z 1222又⋅=z z z 1112,⋅=z z z 2222,则⋅=⋅z z z z 1122.判断正确;③==⋅z z z z z z z z z 333333121212222.判断正确; ④若令z =2i 1,z =i 2,+z =1i 3,则−+−=−+=z z z z 110122322)()(, 但此时≠≠z z z 123.判断错误; ⑤当+z =23i 1,+z =2i 2时,=<+−=−=−z z z z z z 22i 402212121222)()(,即+>z z z z 2121222.判断错误.故答案为:253.(2023·上海·统考模拟预测)设∈z z ,C 12且=⋅z z i 12,满足−=z 111,则−z z 12的取值范围为_____.【答案】⎣⎡0,2【解析】设=+=+∈z a b z c d a b c d i,i,,,,R 12,=−z c d i 2,则+=⋅−=+a b c d d c i i i i )(,所以⎩=⎨⎧=b c a d ,−=−+==z a b 11i 11)(,所以−+=a b 1122)(,即z 1对应点a b ,)(在以1,0)(为圆心,半径为1的圆−+=x y 1122)(上.=+=+z c d b a i i 2,z 2对应点为b a ,)(,a b ,)(与b a ,)(关于=y x 对称,所以点b a ,)(在以0,1)(为圆心,半径为1的圆+−=x y 1122)(上,−z z 12表示a b ,)(与b a ,)(两点间的距离,圆−+=x y 1122)(与圆+−=x y 1122)(,如图所示,所以−z z 12的最小值为0+=112所以−z z 12的取值范围为⎣⎡0,2.故答案为:⎣⎡0,254.(2023·高三课时练习)复数z 1与z 2在复平面上对应的向量分别为OZ 1与OZ 2,已知=z i 1,OZ OZ ⊥12,且=OZ OZ 12,则复数=z 2______.【答案】1或−1【解析】依题意,(3,1)OZ =1,设(,)OZ x y =2,由OZ OZ ⊥12得:30OZ OZ ⋅=+=x y 12,由=OZ OZ 12得:+=x y 422,联立解得⎩⎪=⎨⎪⎧=y x 1⎩⎪⎨⎪⎧=−y x 1(1,3)OZ =−2或(1,3)OZ =−2,所以=z 12或=−z 12.故答案为:1或−155(2023·高三课时练习)已知复数z 满足−−≤−−+z z 12log 11121,则z 在复平面上对应的点Z所围成区域的面积为______. 【答案】π21 【解析】12log 1,2,215z z z z −+−+−−−−≤−∴≥<−≤z 12121111,∴=−=s π(52)21π22. 故答案为: π2156(2022春·上海闵行·高三上海市七宝中学校考阶段练习)已知=+z x y i ,x 、∈y R ,i 是虚数单位.若复数++z1ii 是实数,则z ||的最小值为______.【【解析】复数++−+=+=+=++−++−+−+z x y x y y x x y y x 1i (1i)(1i)222i i i i (i)(1i)()i 2是实数, 所以=−+y x 202,得=+x y 2.所以===≥z ||当且仅当=−y 1,=x 1取等号,所以z ||.。
2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。
2024年高考数学高频考点题型归纳与方法总结第26练复数(精练)一、单选题1.(2022·全国·统考高考真题)(22i)(12i)+-=()A .24i -+B .24i --C .62i+D .62i-【答案】D【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.2.(2021·全国·统考高考真题)已知2i z =-,则()i z z +=()A .62i -B .42i -C .62i+D .42i+【答案】C【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.3.(2021·全国·高考真题)已知()21i 32i z -=+,则z =()A .31i2--B .31i2-+C .3i2-+D .3i2--【答案】B【分析】由已知得32i2iz +=-,根据复数除法运算法则,即可求解.【详解】()21i 2i 32i z z -=-=+,()32i i 32i 23i 31i 2i 2i i 22z +⋅+-+====-+--⋅.故选:B.4.(2022·全国·统考高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-【答案】A【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12z i=-【A组在基础中考查功底】一、单选题根据复数模的几何意义可知,如图可知,i z +的最小值是点故选:B.26.(2022·全国·高三专题练习)设A .13i22-C .31i 22--【答案】C【分析】首先利用诱导公式将复数出其共轭复数;【详解】解:因为sin15z =+ 所以()22sin15i cos15z =+= 22sin 15cos 152sin15cos15=-+ cos30sin 30i =-+ 31i 22=-+所以2z 的共轭复数是3122--故选:C【B 组在综合中考查能力】一、单选题1.(2023春·安徽亳州·高三校考阶段练习)已知A .3±B .3【答案】C。
一、复数选择题1.212i i+=-( ) A .1 B .−1 C .i - D .i2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 4.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =- B .直线12y x = C .直线12x =- D .直线12y 6.已知复数()211i z i -=+,则z =( ) A .1i --B .1i -+C .1i +D .1i - 7.设2i z i +=,则||z =( )A B C .2 D .58.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③9.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .811.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .3 13.若i 为虚数单位,,a b ∈R ,且2a i b i i+=+,则复数a bi -的模等于( )A B C D14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 19.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20zB .2z z =C .31z =D .1z = 22.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根23.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 24.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 25.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 26.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .5 27.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z28.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 29.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D2.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限,3.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 4.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.5.C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-. 6.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 7.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .8.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.9.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D10.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D11.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.12.C【分析】首先求出复数的共轭复数,再求模长即可.【详解】据题意,得,所以的共轭复数是,所以.故选:C.解析:C【分析】首先求出复数z 的共轭复数,再求模长即可.【详解】 据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B 解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.BC分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.22.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.23.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误;对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.24.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 25.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.26.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+,∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.27.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.28.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误;4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
2024年高考数学总复习第五章《平面向量与复数》§5.5复数最新考纲1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.2.理解复数的基本概念及复数相等的充要条件.3.了解复数的代数表示法及其几何意义.4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位).(2)分类:满足条件(a ,b 为实数)复数的分类a +b i 为实数⇔b =0a +b i 为虚数⇔b ≠0a +b i 为纯虚数⇔a =0且b ≠0(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系.3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.概念方法微思考1.复数a +b i 的实部为a ,虚部为b 吗?提示不一定.只有当a ,b ∈R 时,a 才是实部,b 才是虚部.2.如何理解复数的加法、减法的几何意义?提示复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.(×)(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.(×)(3)复数中有相等复数的概念,因此复数可以比较大小.(×)(4)原点是实轴与虚轴的交点.(√)(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)题组二教材改编2.设z =1-i1+i +2i ,则|z |等于()A .0 B.12C .1D.2答案C 解析∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i 2+2i =i ,∴|z |=1.故选C.3.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是()A .1-2i B .-1+2iC .3+4iD .-3-4i答案D解析CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.4.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为()A .-1B .0C .1D .-1或1答案A解析∵z 为纯虚数,2-1=0,-1≠0,∴x =-1.题组三易错自纠5.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案C解析∵复数a +bi=a -b i 为纯虚数,∴a =0且-b ≠0,即a =0且b ≠0,∴“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.故选C.6.(2020·模拟)若复数z 满足i z =2-2i(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析由题意,∵z =2-2i i =(2-2i )·(-i )i·(-i )=-2-2i ,∴z =-2+2i ,则z 的共轭复数z 对应的点在第二象限.故选B.7.i 2014+i 2015+i 2016+i 2017+i 2018+i 2019+i 2020=________.答案-i解析原式=i 2+i 3+i 4+i 1+i 2+i 3+i 4=-i.题型一复数的概念1.(2018·武汉华中师大一附中月考)若复数z 满足(1+2i)z =1-i ,则复数z 的虚部为()A.35B .-35C.35i D .-35i答案B解析因为(1+2i)z =1-i ,所以z =1-i 1+2i=(1-i )(1-2i )5=-1-3i5,因此复数z 的虚部为-35,故选B.2.(2019·钦州质检)复数2+i1+i的共轭复数是()A .-32+12iB .-32-12iC.32-12iD.32+12i 答案D解析由复数2+i 1+i =(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i ,所以共轭复数为32+12i ,故选D.3.(2018·烟台模拟)已知复数a +2i2-i是纯虚数(i 是虚数单位),则实数a 等于()A .-4B .4C .1D .-1答案C解析a +2i 2-i =(a +2i )(2+i )(2-i )(2+i )=2a -2+(a +4)i5,∵复数a +2i2-i为纯虚数,∴2a -2=0且a +4≠0,解得a =1.故选C.思维升华复数的基本概念有实部、虚部、虚数、纯虚数、共轭复数等,在解题中要注意辨析概念的不同,灵活使用条件得出符合要求的解.题型二复数的运算命题点1复数的乘法运算例1(1)(2018·全国Ⅲ)(1+i)(2-i)等于()A .-3-iB .-3+iC .3-iD .3+i答案D解析(1+i)(2-i)=2+2i -i -i 2=3+i.(2)i (2+3i )等于()A .3-2iB .3+2iC .-3-2iD .-3+2i答案D解析i(2+3i)=2i +3i 2=-3+2i ,故选D.命题点2复数的除法运算例2(1)(2018·全国Ⅱ)1+2i1-2i等于()A .-45-35iB .-45+35iC .-35-45iD .-35+45i答案D解析1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i1-(2i )2=-3+4i 5=-35+45i.故选D.(2)(2018·烟台模拟)已知i 是虚数单位,若复数z 满足z (1+i)=1-i ,则z 等于()A .iB .-iC .1+iD .1-i答案A解析由题意,复数z =1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-i ,所以z =i ,故选A.命题点3复数的综合运算例3(1)(2018·达州模拟)已知z (1+i)=-1+7i(i 是虚数单位),z 的共轭复数为z ,则|z |等于()A.2B .3+4i C .5D .7答案C解析z =-1+7i 1+i=(-1+7i )(1-i )2=3+4i ,故z =3-4i ⇒|z |=5,故选C.(2)(2018·成都模拟)对于两个复数α=1-i ,β=1+i ,有下列四个结论:①αβ=1;②αβ=-i ;③|αβ|=1;④α2+β2=0,其中正确结论的个数为()A .1B .2C .3D .4答案C解析对于两个复数α=1-i ,β=1+i ,①αβ=(1-i)·(1+i)=2,故①不正确;②αβ=1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-2i 2=-i ,故②正确;③|αβ|=|-i |=1,故③正确;④α2+β2=(1-i)2+(1+i)2=1-2i -1+1+2i -1=0,故④正确.故选C.思维升华(1)复数的乘法:复数乘法类似于多项式的四则运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.跟踪训练1(1)已知a ∈R ,i 是虚数单位,若z =3+a i ,z ·z =4,则a 为()A .1或-1B .1C .-1D .不存在的实数答案A解析由题意得z =3-a i ,故z ·z =3+a 2=4⇒a =±1,故选A.(2)(2018·潍坊模拟)若复数z 满足z (2-i)=(2+i)·(3-4i),则|z |等于()A.5B .3C .5D .25答案C解析由题意z (2-i)=(2+i)(3-4i)=10-5i ,则z =10-5i 2-i =(10-5i )(2+i )(2-i )(2+i )=5,所以|z |=5,故选C.题型三复数的几何意义例4(1)(2018·天津河东区模拟)i 是虚数单位,复数1-ii在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析由题意得1-i i =(1-i )i i 2=1+i-11-i ,因为复数-1-i 在复平面上对应的点在第三象限,故选C.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →,BC →所表示的复数;②对角线CA →所表示的复数;③B 点对应的复数.解①∵AO →=-OA →,∴AO →所表示的复数为-3-2i.∵BC →=AO →,∴BC →所表示的复数为-3-2i.②∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i.思维升华复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.跟踪训练2(1)(2018·洛阳模拟)已知复数z =5i 3+4i (i 是虚数单位),则z 的共轭复数z 对应的点在()A .第四象限B .第三象限C .第二象限D .第一象限答案A解析∵z =5i 3+4i =5i·(3-4i )(3+4i )·(3-4i )=45+35i ,∴z =45-35i ,则z 的共轭复数z 对应的点在第四象限.故选A.(2)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别为A ,B ,C ,O 为坐标原点,若OC →=xOA →+yOB →,则x +y 的值是________.答案5解析由已知得A (-1,2),B (1,-1),C (3,-2),∵OC →=xOA →+yOB →,∴(3,-2)=x (-1,2)+y (1,-1)=(-x +y,2x -y ),x +y =3,x -y =-2,=1,=4,故x +y =5.1.已知复数z 1=6-8i ,z 2=-i ,则z 1z 2等于()A .-8-6iB .-8+6iC .8+6iD .8-6i答案C解析∵z 1=6-8i ,z 2=-i ,∴z 1z 2=6-8i -i =(6-8i )i -i 2=8+6i.2.(2018·聊城模拟)设复数z =(1-i )21+i,则|z |等于()A .4B .2 C.2D .1答案C解析z =-2i (1-i )(1+i )(1-i )=-i(1-i)=-1-i ,|-1-i|=2,故选C.3.(2018·海淀模拟)已知复数z 在复平面上对应的点为(1,-1),则()A .z +1是实数B .z +1是纯虚数C .z +i 是实数D .z +i 是纯虚数答案C解析由题意得复数z =1-i ,所以z +1=2-i ,不是实数,所以选项A 错误,也不是纯虚数,所以选项B 错误.所以z +i =1,是实数,所以选项C 正确,z +i 是纯虚数错误,所以选项D 错误.故选C.4.已知i 为虚数单位,若复数z 满足z +iz -i=1+i ,那么|z |等于()A .1 B.2C.5D .5答案C解析∵z +i z -i=1+i ,z +i =(1+i)(z -i ),i z =(2+i)i ,∴z =2+i ,∴|z |=1+4=5,故选C.5.(2018·成都七中模拟)已知i 为虚数单位,a ∈R ,若i -2a -i为纯虚数,则a 等于()A.12B .-12C .2D .-2答案B 解析由题意知i -2a -i =(i -2)(a +i )(a -i )(a +i )=(-2a -1)+(a -2)i a 2+1=-2a -1a 2+1+a -2a 2+1i ,又由i -2a -i为纯虚数,所以-2a -1=0且a -2≠0,解得a =-12,故选B.6.若复数z 满足(3+4i )z =1-i(i 是虚数单位),则复数z 的共轭复数z 等于()A .-15-75iB .-15+75iC .-125-725iD .-125+725i 答案D解析由题意可得z =1-i 3+4i =(1-i )(3-4i )(3+4i )(3-4i )=-1-7i25,所以z =-125+725i ,故选D.7.(2018·济南模拟)设复数z 满足z (1-i)=2(其中i 为虚数单位),则下列说法正确的是()A .|z |=2B .复数z 的虚部是i C.z =-1+iD .复数z 在复平面内所对应的点在第一象限答案D解析z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴|z |=12+12=2,复数z 的虚部是1,z =1-i ,复数z 在复平面内所对应的点为(1,1),显然在第一象限.故选D.8.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.答案3或6解析∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.9.(2018·江苏)若复数z 满足i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.答案2解析由i·z =1+2i ,得z =1+2ii=2-i ,∴z 的实部为2.10.(2018·天津)i 是虚数单位,复数6+7i1+2i=________.答案4-i解析6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i.11.已知复数z 满足z +3z =0,则|z |=________.答案3解析由复数z 满足z +3z=0,则z 2=-3,所以z =±3i ,所以|z |= 3.12.若复数z =1-i ,则z +1z 的虚部是________.答案-12解析z +1z =1-i +11-i =1-i +1+i 2=32-12i ,故虚部为-12.13.(2018·厦门质检)已知复数z 满足(1-i)z =i 3,则|z |=________.答案22解析由题意知z =i 31-i =-i (1+i )(1-i )(1+i )=-i +12=12-12i ,则|z |=22.14.(2019·天津调研)已知i 为虚数单位,复数z (1+i)=2-3i ,则z 的虚部为________.答案-52解析由z (1+i)=2-3i ,得z =2-3i 1+i =(2-3i )(1-i )(1+i )(1-i )=-1-5i 2=-12-52i ,则z 的虚部为-52.15.已知复数z =b i(b ∈R ),z -21+i是实数,i 是虚数单位.(1)求复数z ;(2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围.解(1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i.又因为z -21+i 是实数,所以b +22=0,所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,2-4>0,4m >0,解得m <-2,即m ∈(-∞,-2).16.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解存在.设z =a +b i(a ,b ∈R ,b ≠0),则z +5z =a +b i +5a +b i=又z +3=a +3+b i 的实部与虚部互为相反数,z +5z是实数,0,+3=-b ,因为b ≠02+b 2=5,=-b -3,=-1,=-2=-2,=-1.所以z =-1-2i 或z =-2-i.17.(2018·威海模拟)若复数a +i 1+i (i 是虚数单位)在复平面内对应的点在第一象限,则实数a 的取值范围是()A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)答案C 解析由题意得z =a +i 1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,因为z 在复平面内对应的点在第一象限,+1>0,-a >0,所以-1<a <1.故选C.18.已知a ∈R ,i 是虚数单位,若复数z =a +3i 3+i∈R ,则复数z =________.答案3解析∵复数z =a +3i 3+i =(a +3i )(3-i )(3+i )(3-i )=3(1+a )+(3-a )i 4=3(1+a )4+3-a 4i ∈R ,∴3-a 4=0,即a =3.则复数z =3(1+a )4=434= 3.19.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+4sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是()A .[-1,8] B.-916,1C.-916,7 D.916,7答案A 解析由复数相等的充要条件可得=2cos θ,-m 2=λ+4sin θ,化简得4-4cos 2θ=λ+4sin θ,由此可得λ=-4cos 2θ-4sin θ+4=-4(1-sin 2θ)-4sin θ+4=4sin 2θ-4sin θ=θ-1,因为sin θ∈[-1,1],所以4sin 2θ-4sin θ∈[-1,8].20.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案④解析由复数的概念及性质知,①错误;②错误;若a =-1,则a +1=0,不满足纯虚数的条件,③错误;z 3+1=(-i)3+1=i +1,④正确.。
复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
专题03 复数问题【高考真题】1.(2022·全国乙理) 已知z =1-2i ,且z +a z -+b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2 1.答案 A 解析 z -=1+2i ,z +a z -+b =1-2i +a (1+2i)+b =(1+a +b )+(2a -2i)i ,由z +a z -+b =0,得a =1,b =-2,故选A .2.(2022·全国乙文) 设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A .a =1,b =-1B .a =1,b =1C .a =-1,b =1D .a =-1,b =-12.答案 A 解析 因为a ,b 为实数,(a +b )+2a i =2i ,所以a +b =0,2a =0,解得,a =1,b =-1. 故选A .3.(2022·全国甲理) 若z =-1+3i ,则z z z --1=( )A .-1+3iB .-1-3iC .-13+33iD .-13-33i3.答案 C 解析 z -=-1-3i ,z z -=(-1+3i)(-1-3i)=4,z z z --1=z 3=-13+33i .故选C .4.(2022·全国甲文) 若z =1+i .则|i z +3z -|=( )A .45B .42C .25D .2 24.答案 D 解析 因为z =1+i .所以i z +3z -=i(1+i)+3(1-i)=2-2i ,所以|i z +3z -|=22.故选D . 5.(2022·新高考Ⅰ) 若i(1-z )=1,则z +z -=( )A .-2B .-1C .1D .2 5.答案 D 解析 由题设有1-z =1i =-i ,所以z =1+i ,故z +z -=2,故选D .6.(2022·新高考Ⅰ) (2+2i)(1-2i)=( )A .-2+4iB .-2-4iC .6+2iD .6-2i 6.答案 D 解析 (2+2i)(1-2i)=2+4-4i +2i =6-2i ,故选D . 7.(2022·北京) 若复数z 满足i z =3-4i =,则|z |=( )A .1B .5C .7D .257.答案 B 解析 由题意有z =3-4i i=1+i ,故|z |=(-4)2+(-3)2=5.故选B .8.(2022·浙江)已知a ,b ∈R ,a +3i =(b +i) i(i 为虚数单位),则( )A .a =1,b =-3B .a =-1,b =3C .a =-1,b =-3D .a =1,b =38.答案 B 解析 a +3i =-1+b i ,而a ,b 为实数,故a =-1,b =3,故选B .【知识总结】1.复数的相关概念及运算法则 (1)复数z =a +b i(a ,b ∈R )的分类①z 是实数⇔b =0;②z 是虚数⇔b ≠0;③z 是纯虚数⇔a =0且b ≠0. (2)共轭复数复数z =a +b i(a ,b ∈R )的共轭复数z =a -b i. (3)复数的模复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2. (4)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). 特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ; 除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0).()其中a ,b ,c ,d ∈R2.复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ). 【同类问题】 题型一 复数的概念1.(2021·浙江)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a 等于( )A .-1B .1C .-3D .3 1.答案 C 解析 方法一 因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3. 方法二 因为(1+a i)i =3+i ,所以1+a i =3+i i =1-3i ,所以a =-3.2.(2020·全国Ⅲ)若z (1+i)=1-i ,则z 等于( )A .1-iB .1+iC .-iD .i 2.答案 D 解析 因为z =1-i1+i =1-i 21+i 1-i=-i ,所以z =i .3.若复数z 满足z (1+i )i 32-i=1-i ,则复数z 的虚部为( )A .iB .-iC .1D .-13.答案 C 解析 ∵z (1+i )i 32-i =1-i ,∴z (1+i)(-i)=(2-i)(1-i),∴z (1-i)=(2-i)(1-i),∴z =2-i ,∴z =2+i ,∴z 的虚部为1.4.(2020·全国Ⅰ)若z =1+i ,则|z 2-2z |等于( )A .0B .1C .2D .2 4.答案 D 解析 方法一 z 2-2z =(1+i)2-2(1+i)=-2,|z 2-2z |=|-2|=2. 方法二 |z 2-2z |=|(1+i)2-2(1+i)|=|(1+i)(-1+i)|=|1+i|·|-1+i|=2. 5.已知x1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( )A .2+iB .2-iC .1+2iD .1-2i5.答案 B 解析 由x 1+i =1-y i ,得x 1-i 1+i 1-i =1-y i ,即x 2-x2i =1-y i ,∴⎩⎨⎧x2=1,x2=y ,解得x=2,y =1,∴x +y i =2+i ,∴其共轭复数为2-i .6.(2021·上海)已知z =1-3i ,则|z --i|=________. 6.答案5 解析 ∵z =1-3i ,∴z -=1+3i ,∴z --i =1+3i -i =1+2i ,∴|z --i|=12+22=5.7.如果复数2+b ii(b ∈R )的实部与虚部相等,那么b =( )A .-2B .1C .2D .4 7.答案 A 解析 2+b i i =(2+b i )(-i )i (-i )=b -2i ,所以实部为b ,虚部为-2,故b 的值为-2,故选 A .8.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为________.8.答案 -1 解析 ∵z 为纯虚数,∴⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,∴x =-1.9.(多选)若复数z =21+i,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为-1B .|z |=2C .z 2为纯虚数D .z 的共轭复数为-1-i 9.答案 ABC 解析 z =21+i =2(1-i )(1+i )(1-i )=2-2i 2=1-i ,对于A ,z 的虚部为-1,正确;对于B ,模长|z |=2,正确;对于C ,因为z 2=(1-i)2=-2i ,故z 2为纯虚数,正确;对于D ,z 的共轭复数为1+i ,错误.10.(多选)(2022·武汉模拟)下列说法正确的是( )A .若|z |=2,则z ·z =4B .若复数z 1,z 2满足|z 1+z 2|=|z 1-z 2|,则z 1z 2=0C .若复数z 的平方是纯虚数,则复数z 的实部和虚部相等D .“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件10.答案 AD 解析 若|z |=2,则z ·z =|z |2=4,故A 正确;设z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ),由|z 1+z 2|=|z 1-z 2|,可得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1-z 2|2=(a 1-a 2)2+(b 1-b 2)2则a 1a 2+b 1b 2=0,而z 1z 2=(a 1+b 1i)(a 2+b 2i)=a 1a 2-b 1b 2+a 1b 2i +b 1a 2i =2a 1a 2+a 1b 2i +b 1a 2i 不一定为0,故B 错误;当z =1-i 时,z 2=-2i 为纯虚数,其实部和虚部不相等,故C 错误;若复数z =(a -1)+(a 2-1)i(a ∈R )是虚数,则a 2-1≠0,即a ≠±1,所以“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件,故D 正确. 题型二 复数的四则运算11.(2021·新高考全国Ⅰ)已知z =2-i ,则z (z +i)等于( )A .6-2iB .4-2iC .6+2iD .4+2i 11.答案 C 解析 因为z =2-i ,所以z (z +i)=(2-i)(2+2i)=6+2i . 12.(2021·北京)在复平面内,复数z 满足(1-i)·z =2,则z =( )A .1B .iC .1-iD .1+i 12.答案 D 解析 由题意可得z =21-i =2·(1+i )(1-i )(1+i )=1+i . 13.(2020·新高考全国Ⅰ)2-i1+2i等于( )A .1B .-1C .iD .-i 13.答案 D 解析2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-5i5=-i .14.(2021·全国乙)设i z =4+3i ,则z 等于( )A .-3-4iB .-3+4iC .3-4iD .3+4i14.答案 C 解析 方法一 (转化为复数除法运算)因为i z =4+3i ,所以z =4+3i i =(4+3i)(-i)i -i=-4i -3i 2-i 2=3-4i . 方法二 (利用复数的代数形式)设z =a +b i(a ,b ∈R ),则由i z =4+3i ,可得i(a +b i)=4+3i ,即-b+a i =4+3i ,所以⎩⎪⎨⎪⎧ -b =4,a =3,即⎩⎪⎨⎪⎧a =3,b =-4,所以z =3-4i . 方法三 (巧用同乘技巧)因为i z =4+3i ,所以i z ·i =(4+3i)·i ,所以-z =4i -3,所以z =3-4i .15.(2021·全国乙)设2(z +z -)+3(z -z -)=4+6i ,则z =( )A .1-2iB .1+2iC .1+iD .1-i15.答案 C 解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,代入2(z +z -)+3(z -z -)=4+6i ,可得4a +6b i =4+6i ,所以a =1,b =1,故z =1+i .16.(2021·全国甲)已知(1-i)2z =3+2i ,则z =( )A .-1-32i B .-1+32iC .-32+iD .-32-i16.答案 B 解析 z =3+2i (1-i )2=3+2i -2i =3i -22=-1+32i .17.(多选)(2022·湛江一模)若复数z =3-i ,则( )A .|z |=2B .|z |=4C .z 的共轭复数z -=3+i D .z 2=4-23i17.答案 AC 解析 依题意得|z |=(3)2+(-1)2=2,故A 正确,B 错误;z -=3+i ,C 正确;z 2=(3-i)2=3-23i +i 2=2-23i ,D 错误.18.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=________.18.答案 -i 解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i1-2i 1+2i 1-2i=-3i3=-i . 19.已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且z1-i=3+2i ,则a =________,b =________. 19.答案 5 1 解析 由z =a +b i(a ,b ∈R ,i 为虚数单位),则z =a -b i ,所以z1-i =1+i 2(a -b i)=a +b 2+a -b 2i =3+2i ,故a +b 2=3,a -b2=2,所以a =5,b =1. 20.(多选)设z 1,z 2,z 3为复数,z 1≠0.下列命题中正确的是( )A .若|z 2|=|z 3|,则z 2=±z 3B .若z 1z 2=z 1z 3,则z 2=z 3C .若z 2=z 3,则|z 1z 2|=|z 1z 3|D .若z 1z 2=|z 1|2,则z 1=z 220.答案 BC 解析 由|i|=|1|,知A 错误;z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又z 1≠0,所以z 2=z 3,故B 正确;|z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,又z 2=z 3,所以|z 2|=|z 2|=|z 3|,故C 正确,令z 1=i ,z 2=-i ,满足z 1z 2=|z 1|2,不满足z 1=z 2,故D 错误. 题型三 复数的几何意义21.(2021·新高考全国Ⅱ)复数2-i1-3i在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 21.答案 A 解析2-i 1-3i=(2-i )(1+3i )10=5+5i 10=1+i 2,所以该复数在复平面内对应的点为⎝⎛⎭⎫12,12,该点 在第一象限.22.已知i 是虚数单位,则复数z =i 2 023+i(i -1)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限22.答案 C 解析 因为z =i 2 023+i(i -1)=-i -1-i =-1-2i ,所以复数z 在复平面内对应的点是(-1,-2),位于第三象限.23.若复数z =(2+a i)(a -i)在复平面内对应的点在第三象限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围为( )A .(-2,2)B .(-2,0)C .(0,2)D .[0,2)23.答案 B 解析 z =(2+a i)(a -i)=3a +(a 2-2)i 在复平面内对应的点在第三象限,∴⎩⎪⎨⎪⎧3a <0,a 2-2<0,解得-2<a <0.24.如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i24.答案 D 解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +41+i 1-i 1+i=1-i +4+4i2=1-i +2+2i =3+i .25.(2020·北京)在复平面内,复数z 对应的点的坐标是(1,2),则i·z 等于( )A .1+2iB .-2+iC .1-2iD .-2-i 25.答案 B 解析 由题意知,z =1+2i ,∴i·z =i(1+2i)=-2+i . 26.在复平面内,复数z -=5i3-4i(i 为虚数单位),则z 对应的点的坐标为( )A .(3,4)B .(-4,3)C .⎝⎛⎭⎫45,-35D .⎝⎛⎭⎫-45,-35 26.答案 D 解析 因为z -=5i 3-4i =5i (3+4i )(3-4i )(3+4i )=3i -45=-45+35i ,所以z =-45-35i ,所以复数z所对应的点的坐标为⎝⎛⎭⎫-45,-35. 27.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .x 2+(y +1)2=1 27.答案 C 解析 ∵z 在复平面内对应的点为(x ,y ),∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1,∴x 2+(y -1)2=1.28.(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.28.答案 23 解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R ,因为z 1+z 2=3+i ,所以2z 1=(3+a )+(1 +b )i ,2z 2=(3-a )+(1-b )i .因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4,所以3+a2+1+b 2=4,①,3-a 2+1-b 2=4,②,①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=23.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →,则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →,且|OA →|=|AC →|=|OC →|=2,可得|BA →|=2|OA →|sin 60°=23.故|z 1-z 2|=|BA →|=23.29.已知复数z 满足|z -1-i|≤1,则|z |的最小值为( )A .1B .2-1C .2D .2+129.答案 B 解析 令z =x +y i(x ,y ∈R ),则由题意有(x -1)2+(y -1)2≤1,∴|z |的最小值即为圆(x -1)2+(y -1)2=1上的动点到原点的最小距离,∴|z |的最小值为2-1.30.(多选)欧拉公式e x i =cos x +isin x 是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项正确的是( )A .复数e 2i 对应的点位于第二象限B .πi 2e 为纯虚数C .复数e x i 3+i的模长等于12 D .πi 6e 的共轭复数为12-32i30.答案 ABC 解析 对于A ,e 2i =cos 2+isin 2,因为π2<2<π,即cos 2<0,sin 2>0,复数e 2i 对应的点位于第二象限,A 正确;对于B ,πi 2e =cos π2+isin π2=i ,πi 2e 为纯虚数,B 正确;对于C ,e x i 3+i=cos x +isin x 3+i =(cos x +isin x )(3-i)(3+i)(3-i)=3cos x +sin x 4+3sin x -cos x 4i ,于是得⎪⎪⎪⎪⎪⎪e x i 3+i =⎝ ⎛⎭⎪⎫3cos x +sin x 42+⎝ ⎛⎭⎪⎫3sin x -cos x 42=12,C 正确;对于D ,πi 6e =cos π6+isin π6=32+12i ,其共轭复数为32-12i ,D 不正确.。
复数高考试题一 Company number【1089WT-1898YT-1W8CB-9UUT-92108】复数最新高考试题精选(一)一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设复数z满足(1+i)z=2i,则|z|=()A. B.C.D.26.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.28.已知a∈R,i是虚数单位,若z=a+i,z?=4,则a=()A.1或﹣1 B.或﹣C.﹣D.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.311.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i14.复数=()A.i B.1+i C.﹣i D.1﹣i15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.219.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B 等于()A.{﹣1} B.{1} C.{1,﹣1} D.?20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣121.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣122.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.223.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.424.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,425.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣231.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i32.设复数z满足=i,则|z|=()A.1 B.C.D.2二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为.34.已知复数z满足z+=0,则|z|= .35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .复数最新高考试题精选(一)参考答案与试题解析一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【解答】解:A.i(1+i)2=i?2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i【解答】解:原式=2﹣1+3i=1+3i.故选:B.4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z=i(﹣2+i)=﹣2i﹣1对应的点(﹣1,﹣2)位于第三象限.故选:C.5.设复数z满足(1+i)z=2i,则|z|=()A. B.C.D.2【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|=.故选:C.6.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.2【解答】解:∵复数z满足zi=1+i,∴z==1﹣i,∴z2=﹣2i,故选:A.8.已知a∈R,i是虚数单位,若z=a+i,z?=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z?=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选A.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)【解答】解:z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,可得:,解得﹣3<m<1.故选:A.10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.11.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵z===1+i,∴=1﹣i,故选:B12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i【解答】解:z=4+3i,则===﹣i.故选:D.13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i【解答】解:z=1+2i,则===i.故选:C.14.复数=()A.i B.1+i C.﹣i D.1﹣i【解答】解:===i,故选:A15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.19.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B 等于()A.{﹣1} B.{1} C.{1,﹣1} D.?【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣1【解答】解:i607=i604+3=i3=﹣i,它的共轭复数为:i.故选:A.21.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣1【解答】解:i607=i606?i=(i2)303?i=(﹣1)303?i=﹣i.故选:A.22.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.23.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.24.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,4【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.25.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【解答】解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.31.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选;C32.设复数z满足=i,则|z|=()A.1 B.C.D.2【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为﹣2 .【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.34.已知复数z满足z+=0,则|z|= .【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab= 2 .【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= ﹣1 .【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣1。
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。
复 数●试题类编※1.设复数z 1=-1+i ,z 2=2321+i ,则arg 21z z 等于( ) A.-125π B.125π C.127π D.1213π2.复数z =iim 212+-(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限※3.如果θ∈(2π,π),那么复数(1+i )(cos θ+i sin θ)的辐角的主值是( )A.θ+49π B.θ+4πC.θ4π-D.θ+47π 4.复数(2321+i )3的值是( ) A. -i B.i C.-1 D.15.如图12—1,与复平面中的阴影部分(含边界)对应的复数集合是( )※6.已知复数z=i 62+,则arg z 1是( )A.6πB.611πC.3π D.35π图12—1※7.设复数z 1=-1-i 在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转65π后得到向量2OZ ,令2OZ 对应的复数z 2的辐角主值为θ,则tan θ等于( )A.2-3B.-2+3C.2+3D.-2-3※8.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转3π,所得向量对应的复数是( )A.23B.-23iC.3-3iD.3+3i※9.复数z =)5sin5(cos3ππi --(i 是虚数单位)的三角形式是( )A.3[cos (5π-)+i sin (5π-)] B.3(cos5π+i sin5π)C.3(cos54π+i sin 54π)D.3(cos56π+i sin 56π) 10.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 11.设复数z 1=2sin θ+i cos θ(4π<θ<2π)在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转43π后得到向量2OZ ,2OZ 对应的复数为z 2= r (cos ϕ+i sin ϕ),则tan ϕ等于( )A.1tan 2tan 2-θθB.1tan 21tan 2+-θθC.1tan 21+θD.1tan 21-θ※12.复数-i 的一个立方根是i ,它的另外两个立方根是( )A.i 2123±B.i 2123±-C.±i 2123+ D.±i 2123- 13.复数54)31()22(i i -+等于( ) A.1+3i B.-1+3i C.1-3iD.-1-3i14.设复数z =-2321+i (i 为虚数单位),则满足等式z n =z 且大于1的正整数n 中最小的是( )A.3B.4C.6D.715.如果复数z 满足|z +i |+|z -i |=2,那么|z +i +1|的最小值是( )A.1B.2C.2D.5二、填空题16.已知z 为复数,则z +z >2的一个充要条件是z 满足 .17.对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算“⊙”为:z 1⊙z 2=x 1x 2+y 1y 2.设非零复数w 1、w 2在复平面内对应的点分别为P 1、P 2,点O 为坐标原点.如果w 1⊙w 2=0,那么在△P 1OP 2中,∠P 1OP 2的大小为 .18.若z ∈C ,且(3+z )i =1(i 为虚数单位),则z = .19.若复数z 满足方程z i =i -1(i 是虚数单位),则z =_____. 20.已知a =ii213+--(i 是虚数单位),那么a 4=_____.21.复数z 满足(1+2i )z =4+3i ,那么z =_____. 三、解答题22.已知z 、w 为复数,(1+3i )z 为纯虚数,w =iz+2,且|w |=52,求w .23.已知复数z=1+i,求实数a,b使az+2b z=(a+2z)2.24.已知z7=1(z∈C且z≠1).(Ⅰ)证明1+z+z2+z3+z4+z5+z6=0;(Ⅱ)设z的辐角为α,求cosα+cos2α+cos4α的值.※25.已知复数z1=i(1-i)3.(Ⅰ)求arg z1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z-z1|的最大值.26.对任意一个非零复数z ,定义集合M z ={w |w =z 2n -1,n ∈N }. (Ⅰ)设α是方程x +21=x的一个根,试用列举法表示集合M α; (Ⅱ)设复数ω∈M z ,求证:M ω⊆M z .27.对任意一个非零复数z ,定义集合M z ={w |w =z n ,n ∈N }. (Ⅰ)设z 是方程x +x1=0的一个根,试用列举法表示集合M z .若在M z 中任取两个数,求其和为零的概率P ;(Ⅱ)若集合M z 中只有3个元素,试写出满足条件的一个z 值,并说明理由.28.设复数z满足|z|=5,且(3+4i)z在复平面上对应的点在第二、四象限的角平分线上,|2z-m|=52(m∈R),求z和m的值.29.已知复数z0=1-mi(M>0),z=x+yi和ω=x′+y′i,其中x,y,x′,y′均为z·z,|ω|=2|z|.实数,i为虚数单位,且对于任意复数z,有ω=(Ⅰ)试求m的值,并分别写出x′和y′用x、y表示的关系式;(Ⅱ)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.※30.设复数z =3cos θ+i ·2sin θ.求函数y =θ-arg z (0<θ<2)的最大值以及对应的θ值.※31.已知方程x 2+(4+i )x +4+ai =0(a ∈R )有实数根b ,且z =a +bi ,求复数z (1-ci )(c >0)的辐角主值的取值范围.※32.设复数z满足4z+2z=33+i,ω=sinθ-i cosθ(θ∈R).求z的值和|z-ω|的取值范围.※33.已知复数z1满足(z1-2)i=1+i,复数z2的虚部为2,且z1·z2是实数,求复数z2的模.※34.已知向量OZ 所表示的复数z 满足(z -2)i =1+i ,将OZ 绕原点O 按顺时针方向旋转4π得1OZ ,设1OZ 所表示的复数为z ′,求复数z ′+2i 的辐角主值.※35.已知复数z =2321+i ,w =2222+i ,求复数zw +zw 3的模及辐角主值.36.已知复数z =2321+i ,ω=2222+i .复数z ω,z 2ω3在复数平面上所对应的点分别是P 、Q .证明:△OPQ 是等腰直角三角形(其中O 为原点).37.设虚数z 1,z 2满足z 12=z 2.(1)若z 1、z 2是一个实系数一元二次方程的两个根,求z 1、z 2; ※(2)若z 1=1+mi (m >0,i 为虚数单位),ω=z 2-2,ω的辐角主值为θ,求θ的取值范围.38.设z 是虚数,w =z +z1是实数,且-1<ω<2. (Ⅰ)求|z |的值及z 的实部的取值范围; (Ⅱ)设u =zz+-11,求证:u 为纯虚数; (Ⅲ)求w -u 2的最小值.39.已知复数z 1、z 2满足|z 1|=|z 2|=1,且z 1+z 2=2321+i .求z 1、z 2的值.※40.设复数z=cosθ+i sinθ,θ∈(π,2π).求复数z2+z的模和辐角.※41.在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O是原点),已知Z2对应复数z2=1+3i,求Z1和Z3对应的复数.※42.已知z =1+i ,(Ⅰ)设w =z 2+3z -4,求w 的三角形式.(Ⅱ)如果122+-++z z bax z =1-i ,求实数a ,b 的值.43.设w 为复数,它的辐角主值为43π,且ωω4)(2-为实数,求复数w .答案解析1.答案:B解析一:通过复数与复平面上对应点的关系,分别求出z 1、z 2的辐角主值.arg z 1=43π,arg z 2=3π.所以argπππ12534321=-=z z ∈[0,2π), ∴arg12521=z z π. 解析二:因为i i i i i z z )2123()2123()2321)(1(2321121++-=-+-=++-=. 在复平面的对应点在第一象限.故选B评述:本题主要考查复数的运算法则及几何意义、辐角主值等概念,同时考查了灵活运用知识解题的能力,体现了数形结合的思想方法.2.答案:A解析:由已知z =51)21)(21()21)(2(212=-+--=+-i i i i m i i m [(m -4)-2(m +1)i ]在复平面对应点如果在第一象限,则⎩⎨⎧<+>-0104m m 而此不等式组无解.即在复平面上对应的点不可能位于第一象限.3.答案:B解析:(1+i )(cos θ+i sin θ)=2(cos4π+i sin4π)(cos θ+i sin θ)=2[cos (θ+4π)+i sin (θ+4π)]∵θ∈(2π,π) ∴θ+4π∈(43π,45π) ∴该复数的辐角主值是θ+4π.4.答案:C解法一:(2321+i )3=(cos60°+i sin60°)3=cos180°+i sin180°=-1 解法二:i i 2321,2321+-=-=+ωω, ∴1)()()2321(333-=-=-=+ωωi 5.答案:D 6.答案:D 解法一:35arg 21arg ),3sin 3(cos 22)2321(22ππππ=-=+=+=z z i i z 解法二:)31(2i z +=∴22311iz -=∴z 1,0223,0221<->应在第四象限,tan θ=3-,θ=arg z 1. ∴argz 1是35π. 7.答案:C 解析:∵arg z 1=45π,arg z 2=125π ∴tan θ=tan125π=tan75°=tan (45°+30°)=323333+=-+. 8.答案:B解析:根据复数乘法的几何意义,所求复数是i i i i i 32)2321)(33()]3sin()3)[cos(33(-=--=-+--ππ.9.答案:C解法一:采用观察排除法.复数)5sin5(cos3ππi z--=对应点在第二象限,而选项A 、B 中复数对应点在第一象限,所以可排除.而选项D 不是复数的三角形式,也可排除,所以选C.解法二:把复数)5sin5(cos3ππi z --=直接化为复数的三角形式,即).54sin 54(cos 3)]5sin()5[cos(3)5sin5cos(3ππππππππi i i z +=-+-=+-= 10.答案:D 解析:ππππ1223arg 47,47arg ,6arg 02121<⋅<=<<z z z z . 11.答案:A解析:设z 1=2sin θ+i cos θ=|z 1|(cos α+i sin α), 其中|z 1|=||sin 2cos ,cos sin 4122z θαθθ=+, sin α=||cos 1z θ(24πθπ<<). ∴z 2=|z 1|·[cos (α43π-)+i sin (α43π-)] =r (cos ϕ+i sin ϕ).∴tan ϕ=1tan 21tan 2cos sin 2cos sin 2sin cos sin cos )43cos()43sin(cos sin -+=-+=-+=--=θθθθθθααααπαπαϕϕ12.答案:D 解法一:∵-i =cos23π+i sin 23π ∴-i 的三个立方根是cos 3223sin 3223ππππk i k +++(k =0,1,2)当k =0时,i i i =+=+2sin 2cos 323sin 323cos ππππ; 当k =1时,i i i 212367sin 67cos 3223sin 3223cos --=+=+++ππππππ;当k =2时,i i i 2123611sin 611cos 3423sin 3423cos-=+=+++ππππππ. 故选D.解法二:由复数开方的几何意义,i 与-i 的另外两个立方根表示的点均匀地分布在以原点为圆心,1为半径的圆上,于是另外两个立方根的虚部必为-21,排除A 、B 、C ,选D. 评述:本题主要考查了复数开方的运算,既可用代数方法求解,也可用几何方法求解,但由题干中的提示,几何法解题较简捷.13.答案:B解法一:)4sin4(cos2222ππi i +=+,故(2+2i )4=26(cos π+i sin π)=-26,1-)3sin3(cos23ππi i -=,故35sin35cos 2)31(55ππi i +=-.于是i i i i i 31)2321(22)35sin 35(cos2)31()22(5654+=--=+-=-+ππ, 所以选B.解法二:原式=i i i i i 23212)2321()2(21)2321(2)1(1622554--=+--=+--+i i i314)31(4314+-=--=+-=∴应选B解法三:2+2i 的辐角主值是45°,则(2+2i )4的辐角是180°;1-3i 的一个辐角是-60°,则(1-3i )5的辐角是-300°,所以54)31()22(i i -+的一个辐角是480°,它在第二象限,从而排除A 、C 、D ,选B.评述:本题主要考查了复数的基本运算,有一定的深刻性,尤其是选择项的设计,隐藏着有益的提示作用,考查了考生观察问题、思考问题、分析问题的综合能力.14.答案:B 解析:z =-2321+i 是z 3=1的一个根,记z =ω,ω4=ω,故选B. 15.答案:A解析:设复数z 在复平面的对应点为z ,因为|z +i |+|z -i |=2,所以点Z 的集合是y 轴上以Z 1(0,-1)、Z 2(0,1)为端点的线段.|z +1+λ|表示线段Z 1Z 2上的点到点(-1,-1)的距离.此距离的最小值为点Z 1(0,-1)到点(-1,-1)的距离,其距离为1.评述:本题主要考查两复数之差的模的几何意义,即复平面上两点间的距离. 16.答案:Rez >1解析:设z =a +bi ,如果z +z >2,即2a >2∴a >1反之,如果a >1,则z +z =2a >2,故z +z >2的一个充要条件为Rez >1. 评述:本题主要考查复数的基本概念、基本运算及充要条件的判断方法. 17.答案:2π解析:设i y x z i y x zOP OP 221121,+=+=∵w 1⊙w 2=0 ∴由定义x 1x 2+y 1y 2=0 ∴OP 1⊥OP 2 ∴∠P 1OP 2=2π.18.答案:z =-3-i解析:∵(3+z )i =1 ∴3+z =-i ∴z =-3-i 19.答案:1-i解析:∵z i =i -1,∴ii z 1-==(i -1)(-i )=1+i∴z =1-i . 20.答案:-4 解析:a 4=[(i i 213+--)2]2=[5)21)(3(i i ---]4=(555i +-)4=(-1+i )4=(-2i )2=-421.答案:2+i 解析:由已知i ii i i i z-=-++=+-+=++=25)83(6441)21)(34(2134,故z =2+i .22.解法一:设z =a +bi (a ,b ∈R ),则(1+3i )z =a -3b +(3a +b )i . 由题意,得a =3b ≠0.∵|ω|=25|2|=+iz, ∴|z |=10522=+b a . 将a =3b 代入,解得a =±15,b =±15. 故ω=±ii++2515=±(7-i ). 解法二:由题意,设(1+3i )z =ki ,k ≠0且k ∈R , 则ω=)31)((i i k ki++.∵|ω|=52,∴k =±50.故ω=±(7-i ). 23.解:∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以由az +2b z =(a +2z )2得⎩⎨⎧+=-+=+).2(42,422a b a a a b a 两式相加,整理得a 2+6a +8=0, 解得a 1=-2,a 2=-4, 对应得b 1=-1,b 2=2.所以,所求实数为a =-2,b =-1或a =-4,b =2. 24.(Ⅰ)解法一:z ,z 2,z 3,…,z 7是一个等比数列.∴由等比数列求和公式可得:011171=--=--=--=zzz z z z z a q a a S n n ∴1+z +z 2+z 3+…+z 6=0解法二:S =1+z +z 2+…+z 6 ① zS =z +z 2+z 3+…+z 6+z 7 ②∴①-②得(1-z )S =1-z 7=0 ∴S =z-10=0 (Ⅱ)z 7=1,z =cos α+i sin α∴z 7=cos7α+i sin7α=1,7α=2k π z +z 2+z 4=-1-z 3-z 5-z 6=-1-[cos (2k π-4α)+i sin (2k π-4α)+cos (2k π-2α)+i sin (2k π-2α)+cos (2k π-α)+i sin (2k π-α)]=-1-(cos4α-i sin4α+cos2α-i sin2α+cos α-i sin α) ∴2(cos α+cos2α+cos4α)=-1,cos α+cos2α+cos4α=-21 解法二:z 2·z 5=1,z 2=551-=z z同理z 3=4-z ,z =6-z∴z +z 2+z 4=-1-4-z -2-z -z ∴z +z +2-z +z +4-z +z =-1 ∴cos2α+cos α+cos4α=21-25.(Ⅰ)解:z 1=i (1-i )3=i (-2i )(1-i )=2(1-i ) ∴|z 1|=222222=+,arg z 1=22(cos 47π+i sin 47π)∴arg z 1=47π (Ⅱ)解法一:|z |=1,∴设z =cos θ+i sin θ |z -z 1|=|cos θ+i sin θ-2+2i | =)4sin(249)2(sin )2(cos 22πθθθ-+=++-当sin (θ4π-)=1时|z -z 1|2取得最大值9+42 从而得到|z -z 1|的最大值22+1解法二:|z |=1可看成z 为半径为1,圆心为(0,0)的圆. 而z 1可看成在坐标系中的点(2,-2) ∴|z -z 1|的最大值可以看成点(2,-2)到圆上的点距离最大.由图12—2可知:|z -z 1|max=22+126.(Ⅰ)解:∵α是方程x 2-2x +1=0的根∴α1=22(1+i )或α2=22(1-i ) 图12—2当α1=22(1+i )时,∵α12=i ,α12n -1=1121)(αααnn i = ∴)}1(22),1(22),1(22),1(22{}1,,1,{11111i i i i i i M -+---+=--=ααααα 当α2=22(1-i )时,∵α22=-i ∴12}1,,1,{2222ααααααM i i M =--=∴M α=)1(22),1(22),1(22),1(22{i i i i -+---+} (Ⅱ)证明:∵ω∈M z ,∴存在M ∈N ,使得ω=z 2m -1于是对任意n ∈N ,ω2n -1=z (2m -1)(2n -1)由于(2m -1)(2n -1)是正奇数,ω2n -1∈M z ,∴M ω⊆M z . 27.解:(Ⅰ)∵z 是方程x 2+1=0的根, ∴z 1=i 或z 2=-i ,不论z 1=i 或z 2=-i , M z ={i ,i 2,i 3,i 4}={i ,-1,-i ,1} 于是P =31C 224=. (Ⅱ)取z =i 2321+-, 则z 2=2321--i 及z 3=1. 于是M z ={z ,z 2,z 3}或取z =2321--i .(说明:只需写出一个正确答案). 28.解:设z =x +yi (x 、y ∈R ), ∵|z |=5,∴x 2+y 2=25, 而(3+4i )z =(3+4i )(x +yi )=(3x -4y )+(4x +3y )i ,又∵(3+4i )z 在复平面上对应的点在第二、四象限的角平分线上, ∴3x -4y +4x +3y =0,得y =7x ∴x =±22,y =±227 即z =±(22+227i );2z =±(1+7i ).当2z =1+7i 时,有|1+7i -m |=52,即(1-m )2+72=50, 得m =0,m =2. 当2z =-(1+7i )时,同理可得m =0,m =-2.29.解:(Ⅰ)由题设,|ω|=|0z ·z |=|z 0||z |=2|z |, ∴|z 0|=2,于是由1+m 2=4,且m >0,得m =3,因此由x ′+y ′i =)31(i -·i y x y x yi x )3(3)(-++=+,得关系式⎪⎩⎪⎨⎧-='+='yx y y x x 33(Ⅱ)设点P (x ,y )在直线y =x +1上,则其经变换后的点Q (x ′,y ′)满足⎪⎩⎪⎨⎧--='++='1)13(3)31(x y x x 消去x ,得y ′=(2-3)x ′-23+2,故点Q 的轨迹方程为y =(2-3)x -23+2.(Ⅲ)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件, ∴所求直线可设为y =kx +b (k ≠0).解:∵该直线上的任一点P (x ,y ),其经变换后得到的点Q (x +3y ,3x -y )仍在该直线上,∴3x -y =k (x +3y )+b ,即-(3k +1)y =(k -3)x +b ,当b ≠0时,方程组⎪⎩⎪⎨⎧=-=+-kk k 31)13(无解,故这样的直线不存在. 当b =0,由kk k 31)13(-=+-, 得3k 2+2k 3-=0,解得k =33或k =3-, 故这样的直线存在,其方程为y =33x 或y =3-x . 评述:本题考查了复数的有关概念,参数方程与普通方程的互化,变换与化归的思想方法,分类讨论的思想方法及待定系数法等.30.解:由0<θ<2π得tan θ>0.由z =3cos θ+i ·2sin θ,得0<arg z <2π及tan (arg z )=32cos 3sin 2=θθtan θ故tan y =tan (θ-arg z )=θθθθθtan 2tan 31tan 321tan 32tan 2+=+-∵θtan 3+2tan θ≥26 ∴θθtan 2tan 31+≤126 当且仅当θtan 3=2tan θ(0<θ<2π)时, 即tan θ=26时,上式取等号. 所以当θ=arctan26时,函数tan y 取最大值126 由y =θ-arg z 得y ∈(2,2ππ-).由于在(2,2ππ-)内正切函数是递增函数,函数y 也取最大值arctan126. 评述:本题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.明考复数实为三角.语言简练、情景新颖,对提高考生的数学素质要求是今后的命题方向.31.解:∵方程x 2+(4+i )x +4+ai =0(a ∈R )有实根b , ∴b 2+(4+i )b +4+ai =0, 得b 2+4b +4+(b +a )i =0,即有⎩⎨⎧=+=++00442a b b b∴⎩⎨⎧-==,22b a得z =a +bi =2-2i ,∴i c c ci i ci z )22(22)1)(22()1(-++=-+=-. 当0≤c ≤1时,复数z (1-ci )的实部大于0,虚部不小于0, ∴复数z (1-ci )的辐角主值在[0,2π) 范围内,有arg [z (1-ci )]=arctanc c 2222+-=arctan (c+12-1),∵0<c ≤1,∴0≤c+12-1<1, 有0≤arctan (c +12-1)<4π, ∴0≤arg [z (1-ci )]<4π.当c >1时,复数z (1-ci )的实部大于0,虚部小于0, ∴复数z (1-ci )的辐角主值在(23π,2π) 范围内,有arg [z (1-ci )]=2π+arctan c c 2222+-=2π+arctan (c+12-1).∵c >1,∴-1<c+12-1<0, 有4π-<arctan (c +12-1)<0,∴47π<arg [z (1-ci )]<2π. 综上所得复数z (1-ci )(c >0)的辐角主值的取值范围为[0,4π)∪(47π,2π).评述:本题主要考查复数的基本概念和考生的运算能力,强调了考生思维的严谨性. 32.解:设z =a +bi (a ,b ∈R ),则z =a -bi ,代入4z +2z =33+i得4(a +bi )+2(a -bi )=33+i .∴⎪⎪⎩⎪⎪⎨⎧==2123b a .∴z =2123+i . |z -ω|=|2123+i -(sin θ-i cos θ)| =)6sin(22cos sin 32)cos 21()sin 23(2πθθθθθ--=+-=-+- ∵-1≤sin (θ-6π)≤1,∴0≤2-2sin (θ-6π)≤4.∴0≤|z -ω|≤2.评述:本题考查了复数、共轭复数的概念,两复数相等的充要条件、复数的模、复数模的取值范围等基础知识以及综合运用知识的能力.33.解:由(z 1-2)i =1+i 得z 1=ii+1+2=(1+i )(-i )+2=3-i ∵z 2的虚部为2.∴可设z 2=a +2i (a ∈R ) z 1·z 2=(3-i )(a +2i )=(3a +2)+(6-a )i 为实数. ∴6-a =0,即a =6 因此z 2=6+2i ,|z 2|=1022622=+.34.解:由(z -2)i =1+i 得z =ii+1+2=3-i ∴z ′=z [cos (-4π)+i sin (-4π)]=(3-i )(2222-i )=2-22iz ′+2i =2-2i =2(2222-i )=2(cos 47π+i sin 47π) ∴arg (z 1+2i )=47π评述:本题考查复数乘法的几何意义和复数辐角主值的概念. 35.解法一:zw +zw 3=zw (1+w 2)=(2321+i )(2222+i )(1+i ) =22(1+i )2(2321+i )=)2123(2)2321(222i i i +-=+⋅ )65sin 65(cos2ππi += 故复数zw +zw 3的模为2,辐角主值为65π. 解法二:w =2222+i =cos 4π+i sin 4πzw +zw 3=z (w +w 3)=z [(cos4π+i sin4π)+(cos4π+i sin4π)3]=z [(cos4π+i sin4π)+(cos43π+i sin 43π)]=z (i i 22222222+-+) =)2123(22)2321(i i i +-=⨯+)65sin 65(cos 2ππi += 故复数zw +zw 3的模为2,辐角主值为65π.评述:本题主要考查复数的有关概念及复数的基本运算能力. 36.证法一:)6sin()6cos(2123ππ-+-=-=i i z ω=4sin 4cos 2222ππi i +=+于是z ω=cos12π+i sin 12π,ωz =cos (-12π)+i sin (-12π).z 2ω3=[cos (-3π)+i sin (-3π)]×(cos43π+i sin 43π)=cos 125π+i sin 125π 因为OP 与OQ 的夹角为125π-(-12π)=2π.所以OP ⊥OQ又因为|OP |=|ωz |=1,|OQ |=|z 2ω3|=|z |2|ω|3=1 ∴|OP |=|OQ |.由此知△OPQ 为等腰直角三角形. 证法二:∵z =cos (-6π)+i sin (-6π).∴z 3=-i 又ω=4sin 4cos 2222ππi i +=+. ∴ω4=-1于是i z z z z z z z z ===2433232||ωωωωωωωω 由此得OP ⊥OQ ,|OP |=|OQ |故△OPQ 为等腰直角三角形. 37.解:(1)因为z 1、z 2是一个实系数一元二次方程的两个根,所以z 1、z 2是共轭复数. 设z 1=a +bi (a ,b ∈R 且b ≠0),则z 2=a -bi于是(a +bi )2=(a -bi ),于是⎩⎨⎧-==-bab a b a 222解得⎪⎪⎩⎪⎪⎨⎧=-=2321b a 或⎪⎪⎩⎪⎪⎨⎧-=-=2321b a∴i z i z i z i z 2321,23212321,23212121+-=--=--=+-=或(2)由z 1=1+mi (m >0),z 12=z 2得z 2=(1-m 2)+2mi∴ω=-(1+m 2)+2mi tan θ=-mm m m 12122+-=+由m >0,知m +m1≥2,于是-1≤tan θ≤0 又 -(m 2+1)<0,2m >0,得43π≤θ<π 因此所求θ的取值范围为[43π,π). 38.解:(Ⅰ)设z =a +bi ,a 、b ∈R ,b ≠0 则w =a +bi +i ba bb b a a a bi a )()(12222+-+++=+ 因为w 是实数,b ≠0,所以a 2+b 2=1,即|z |=1.于是w =2a ,-1<w =2a <2,-21<a <1, 所以z 的实部的取值范围是(-21,1). (Ⅱ)i a bb a bi b a bi a bi a z z u 1)1(2111112222+=++---=++--=+-=. 因为a ∈(-21,1),b ≠0,所以u 为纯虚数. (Ⅲ)1212112)1(12)1(222222++-=+--=+-+=++=-a a a a a a a a a b a u w .3]11)1[(2-+++=a a . 因为a ∈(-21,1),所以a +1>0, 故w -u 2≥2·211)1(+⋅+a a -3=4-3=1. 当a +1=11+a ,即a =0时,w -u 2取得最小值1. 39.解:由|z 1+z 2|=1,得(z 1+z 2)(21z z +)=1,又|z 1|=|z 2|=1,故可得z 12z +1z z 2=-1,所以z 12z 的实部=1z z 2的实部=-21.又|1z z 2|=1,故1z z 2的虚部为±23, 1z z 2=-21±23i ,z 2=z 1)2321(i ±-. 于是z 1+z 1i i 2321)2321(+=±-, 所以z 1=1,z 2=i 2321+-或z 1=i 2321+-,z 2=1. 所以⎪⎩⎪⎨⎧+-==i z z 2321121,或⎪⎩⎪⎨⎧=+-=1232121z i z 40.解法一:z 2+z =(cos θ+i sin θ)2+cos θ+i sin θ=cos2θ+i sin2θ+cos θ+i sin θ =2cos23θcos 2θ+i ·2sin 23θcos 2θ=2cos 2θ(cos 23θ+i sin 23θ)=-2cos2θ[cos (π+23θ)+i sin (π+23θ)]∵θ∈(π,2π),∴2θ∈(2π,π),∴-2cos2θ>0 ∴复数z 2+z 的模为-2cos2θ,辐角为2k π+π+23θ(k ∈Z )解法二:z 2+z =z (1+z )=(cos θ+i sin θ)(1+cos θ+i sin θ) =(cos θ+i sin θ)(2cos 22θ+i ·2sin 2θcos 2θ) =2cos2θ(cos θ+i sin θ)(cos 2θ+i sin 2θ)=2cos 2θ(cos 23θ+i sin 23θ)以下同解法一.41.解法一:如图12—3,设Z 1、Z 3对应的复数分别为z 1、z 3,则由复数乘除法的几何意义有z 1=21z 2[cos (4π-)+i sin (4π-)]=i i i 213213)2222)(31(21-++=-+图12—3z 3=i i i i z 231231)2222)(31(21)4sin 4(cos 212++-=++=+ππ.注:求出z 1后,z 3=iz 1=i 231231++- 解法二:设Z 1、Z3对应的复数分别是z 1、z 3,根据复数加法和乘法的几何意义,依题意得⎩⎨⎧=-=+213231iz z z z z z∴z 1=21z 2(1-i )=21(1-3i )(1-i )=213231-++i z 3=z 2-z 1=(1+3i )-(213231-++i )=231231++-i 评述:本题主要考查复数的基本概念和几何意义,以及运算能力.此题以复平面上的简单几何图形为背景,借以考查复数的向量表示与复数运算的几何意义等基本知识,侧重概念、性质的理解与掌握,以及运算能力和转化的思想,对复数教学有良好的导向作用.42.解:(Ⅰ)由z =1+i ,有w =(1+i )2+3(1-i )-4=-1-i ,所以w 的三角形式是2(cos ππ45sin 45i +)(Ⅱ)由z =1+i ,有iia b a i i b i a i z z b az z )2()(1)1()1()1()1(12222+++=++-+++++=+-++ =(a +2)-(a +b )i由题设条件知,(a +2)-(a +b )i =1-i .根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a解得⎩⎨⎧=-=21b a所以实数a ,b 的值分别为-1,2.评述:本题考查了共轭复数、复数的三角形式等基础知识及运算能力. 43.解:因为w 为复数,arg w =π43,所以设w =r (cos π43+i sin π43), 则R,])4(4[22)4)(1(22)4)(2222(1]4)23sin 23(cos )[43sin 43(cos 14)(222222∈-++=-+=---=---=-i r r ri r i r i r i r i r i r w w ππππ,从而4-r 2=0,得r =2. 因此w =2(cos )43sin 43ππi +=-2+2i .。
高考复习试卷含答案一、选择题(每小题只有一个选项是正确的,每小题5分,共100分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2017·山东)复数3-i1-i等于 ( )A .1+2iB .1-2iC .2+iD .2-i 答案:C解析:3-i 1-i =(3-i)(1+i)(1-i)(1+i)=4+2i 2=2+i.故选C.2.(2017·宁夏、海南)复数3+2i 2-3i -3-2i2+3i=( )A .0B .2C .-2iD .2i答案:D解析:3+2i 2-3i -3-2i 2+3i =(3+2i)(2+3i)(2-3i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i 13--13i 13=i +i =2i.3.(2017·陕西)已知z 是纯虚数,z +21-i是实数,那么z 等于( )A .2iB .iC .-iD .-2i 答案:D解析:由题意得z =a i.(a ∈R 且a ≠0). ∴z +21-i =(2+a i)(1+i)(1-i)(1+i)=2-a +(a +2)i2,则a +2=0,∴a =-2.有z =-2i ,故选D.4.(2017·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( )A .2iB .0C .-2iD .-2 答案:B解析:依题意,f (i)=i 3-i 2+i -1=-i +1+i -1=0,选择B.5.(2017·北京朝阳4月)复数z =2-i1+i(i 是虚数单位)在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:z =2-i 1+i =12-32i ,它对应的点在第四象限,故选D.6.(2017·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则ba的值为( )A .-2B .-12C .2 D.12答案:A解析:2+i i =1-2i ,把它表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则b a的值为-2,故选A.7.(2017·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( ) A.74-3i B.14-3i C.74+3i D.14+3i 答案:B解析:z =tan45°-i·sin60°=1-32i ,z 2=14-3i ,故选B.8.(2017·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( ) A.π6 B .-π6C.23πD.56π 答案:D解析:3-i 对应的点为(3,-1),所求直线的斜率为-33,则倾斜角为56π,故选D. 9.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则( )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =0 答案:C解析:因为a +b i c +d i =(a +b i)(c -d i)c 2+d 2=ac +bd c 2+d 2+bc -ad c 2+d 2i ,所以由题意有bc -adc 2+d2=0⇒bc -ad =0.10.已知复数z =1-2i ,那么1z = ( )A.55+255i B.55-255i C.15+25iD.15-25i 答案:D 解析:由z =1-2i 知z =1+2i ,于是1z =11+2i =1-2i 1+4=15-25i.故选D.11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .6B .-6C .0 D.16答案:A解析:z 1z 2=3-b i 1-2i =(3-b i)(1+2i)(1-2i)(1+2i)=(3+2b )+(6-b )i 5是实数,则实数b 的值为6,故选A.12.(2017·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=( ) A .2 B .4 C .6 D .8 答案:B解析:α(i )表示i n =1的最小正整数n ,因i 4k =1(k ∈N *),显然n =4,即α(i )=4.故选B. 13.若z =12+32i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于( )A .-12+32i B .-3+33iC .6+33iD .-3-33i 答案:B解析:∵T r +1=C r 4x4-r (-z )r , 由4-r =2得r =2,∴a 2=C 24(-z )2=6×(-12-32i )2=-3+33i .故选B.14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B解析:∵△ABC 为锐角三角形, ∴A +B >90°,B >90°-A , ∴cos B <sin A ,sin B >cos A , ∴cos B -sin A <0,sin B -cos A >0, ∴z 对应的点在第二象限.15.如果复数2-bi1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A. 2B.23 C .-23D .2答案:C解析:2-bi 1+2i =(2-bi )(1-2i )5=(2-2b )5+(-4-b )5i由2-2b 5=--4-b 5得b =-23.16.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为( )A .-12+32i B.32-12iC.12+32i D .-32+12i 答案:C解析:∵f (x )=-(x -1)5∴f (12+32i )=-(12+32i -1)5=-ω5(其中ω=-12+32i )=-ω=-(-12-32i )=12+32i .17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( )A .1对B .2对C .3对D .4对 答案:D解析:由(p +qi )2=q +pi 得(p 2-q 2)+2pqi =q +pi ,所以⎩⎪⎨⎪⎧ p 2-q 2=q ,2pq =p .解得⎩⎪⎨⎪⎧ p =0,q =0,或⎩⎪⎨⎪⎧p =0,q =-1,或⎩⎨⎧p =32,q =12,或⎩⎨⎧p =-32,q =12,因此满足条件的实数p ,q 一共有4对.总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特别注意不要出现漏解现象,如由2pq =p 应得到p =0或q =12.18.已知(2x 2-x p )6的展开式中,不含x 的项是2027,那么正数p 的值是 ( )A .1B .2C .3D .4 答案:C解析:由题意得:C 46·1p 4·22=2027,求得p =3.故选C. 总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x 的项,即找常数项.19.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z =a +bi ,与复平面上的点Z (a ,b )对应,由z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )知:a =-lg(x 2+2)<0,又2x +2-x -1≥22x ·2-x -1=1>0;∴-(2x +2-x -1)<0,即b <0.∴(a ,b )应为第三象限的点,故选C.20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为 ( )A .2B .2-2iC .-2+iD .2+i 答案:A解析:令ω=a +bi ,a ,b ∈R ,则ω=[a +(b -1)i ]+i , ∴映射f 下ω的象为[a -(b -1)i ]·i =(b -1)+ai =-1+2i .∴⎩⎪⎨⎪⎧ b -1=-1,a =2.解得⎩⎪⎨⎪⎧b =0,a =2.∴ω=2. 第Ⅱ卷(非选择题 共50分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填在题中的横线上。
复 数A 级——基础达标1.(2021·广东省七校联考)已知复数z =2+i1-i(i 为复数单位),那么z 的共轭复数为( ) A.32+32i B .12-32iC.12+32i D .32-32i解析:选B 由题意知z =(2+i )(1+i )(1-i )(1+i )=2+2i +i -12=12+32i ,所以z =12-32i ,故选B.2.(2021·湖北八校第一次联考)设i 是虚数单位,若复数a +5i1+2i(a ∈R )是纯虚数,则a =( )A .-1B .1C .-2D .2解析:选C 由已知,得a +5i1+2i =a +5i (1-2i )(1+2i )(1-2i )=a +2+i ,由题意得a +2=0,所以a =-2.故选C.3.(2021·武昌区高三调研)已知复数z 满足zz -i=i ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 法一:设z =a +b i(a ,b ∈R ),因为zz -i =i ,所以a +b i a +(b -1)i =i ,所以a +b i =(1-b )+a i ,所以⎩⎪⎨⎪⎧a =1-b ,b =a ,解得a =b =12,所以z 在复平面内对应的点为⎝⎛⎭⎫12,12,位于第一象限,故选A.法二:因为z z -i =i ,所以z =11-i =1+i 2=12+12i ,所以z 在复平面内对应的点为⎝⎛⎭⎫12,12,位于第一象限,故选A.4.(2021·长沙市四校模拟考试)已知复数z =(1+i )2i (1-i ),则下列结论正确的是( )A .z 的虚部为iB .|z |=2C .z 的共轭复数z =-1+iD .z 2为纯虚数解析:选D z =(1+i )2i (1-i )=21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i ,则z 的虚部为1,所以选项A 错误;|z |=12+12=2,所以选项B 错误;z 的共轭复数z =1-i ,所以选项C 错误;z 2=(1+i)2=2i 是纯虚数,所以选项D 正确.故选D.5.(2021·江西五校联考)复数z 满足(z -2)·i =z (i 为虚数单位),z 为复数z 的共轭复数,则下列说法正确的是( )A .z 2=2iB .z ·z =2C .|z |=2D .z +z =0解析:选B 由题意,得z i -2i =z ,z (i -1)=2i ,z =2ii -1=2i (i +1)(i -1)(i +1)=2(i -1)-2=1-i ,则z 2=-2i ,z ·z =(1-i)(1+i)=2,|z |=2,z +z =1-i +1+i =2,故选B.6.(2021·广东省七校联考)设复数z 满足|z -1-i|=2,则|z |的最大值为( ) A. 2 B .2 C .2 2D .4解析:选C 复数z 满足|z -1-i|=2,故复数z 对应复平面上的点是以A (1,1)为圆心,2为半径的圆,|AO |=2(O 为坐标原点),故|z |的最大值为2+2=2 2. 7.(多选)下面是关于复数z =2-1+i 的四个命题,其中的真命题为( )A .|z |=2B .z 2=2iC .z 的共轭复数为1+iD .z 的虚部为-1解析:选BD ∵z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,∴|z |=2,z 2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,故选B 、D. 8.(多选)下列命题正确的是( )A .若复数z 1,z 2的模相等,则z 1,z 2是共轭复数B .z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数C .复数z 是实数的充要条件是z =z (z 是z 的共轭复数)D .已知复数z =x +y i(x ,y ∈R )且|z -2|=3,则yx 的最大值为 3解析:选BCD 对于A ,z 1和z 2可能是相等的复数,故A 错误;对于B ,若z 1和z 2是共轭复数,则相加为实数,不会为虚数,故B 正确;对于C ,由a +b i =a -b i 得b =0,故C 正确;对于D ,∵|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3.由图可知⎝⎛⎭⎫y x max=31= 3.9.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是z 1,z 2,则|z 1-z 2|= .解析:由图象可知z 1=i ,z 2=2-i , 故|z 1-z 2|=|-2+2i|= (-2)2+22=2 2.答案:2 210.(2021·昆明市三诊一模)复数z 的共轭复数z 满足(2+i)z =|3+4i|,z = . 解析:法一:由(2+i)z =|3+4i|,得z =|3+4i|2+i =52+i =5(2-i )(2+i )(2-i )=2-i ,所以z =2+i.法二:设z =a +b i(a ,b ∈R ),则(2+i)(a -b i)=5,即2a +b +(a -2b )i =5,所以⎩⎪⎨⎪⎧ 2a +b =5,a -2b =0,解得⎩⎪⎨⎪⎧a =2,b =1,所以z =2+i. 答案:2+i11.(2021·福建省三明市高三模拟)若|z 1-z 2|=1,则称z 1与z 2互为“邻位复数”.已知复数z 1=a +3i 与z 2=2+b i 互为“邻位复数”,a ,b ∈R ,求a 2+b 2的最大值.解:由题意,|a +3i -2-b i|=1,故(a -2)2+(3-b )2=1, ∴点(a ,b )在圆(x -2)2+(y -3)2=1上, 而a 2+b 2表示点(a ,b )到原点的距离,故a 2+b 2的最大值为(22+(3)2+1)2=(1+7)2=8+27.12.(2021·张家口调研)已知复数z 满足:z 2=3+4i ,且z 在复平面内对应的点位于第三象限.(1)求复数z ;(2)设a ∈R ,且⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫1+z 1+z 2 021+a =2,求实数a 的值. 解:(1)设z =c +d i(c ,d ∈R 且c <0,d <0), 则z 2=(c +d i)2=c 2-d 2+2cd i =3+4i ,∴⎩⎪⎨⎪⎧c 2-d 2=3,2cd =4,解得⎩⎪⎨⎪⎧c =-2,d =-1或⎩⎪⎨⎪⎧c =2,d =1(舍去).∴z =-2-i.(2)∵z =-2+i ,∴1+z1+z =-1-i -1+i =1+i 1-i=(1+i )22=i ,∴⎝ ⎛⎭⎪⎪⎫1+z 1+z 2 021=i 2 021=i 2 020+1=i 505×4+1=i , ∴|a +i|=a 2+1=2,∴a =±3.B 级——综合应用13.(多选)(2021·全国统一考试模拟演练)设z 1,z 2,z 3为复数,z 1≠0,下列命题中正确的是( )A .若|z 2|=|z 3|,则z 2=±z 3B .若z 1z 2=z 1z 3,则z 2=z 3C .若z 2=z 3,则|z 1z 2|=|z 1z 3|D .若z 1z 2=|z 1|2,则z 1=z 2解析:选BC 设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i ,若|z 2|=|z 3|,则a 22+b 22=a 23+b 23,此时z 2=±z 3不一定成立,故A 错误; 若z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又因z 1≠0,所以z 2=z 3,故B 正确; 若z 2=z 3,则a 2=a 3,b 2=-b 3,所以|z1z2|=(a1a2-b1b2)2+(a1b2+a2b1)2=(a1a2)2+(b1b2)2+(a1b2)2+(a2b1)2.|z1z3|=(a1a3-b1b3)2+(a1b3+a3b1)2=(a1a2+b1b2)2+(-a1b2+a2b1)2=(a1a2)2+(b1b2)2+(a1b2)2+(a2b1)2.所以|z1z2|=|z1z3|,故C正确;当z2=z1时,z1z2=|z1|2,此时z1=z2不一定成立,故D错误.14.已知集合M={1,m,3+(m2-5m-6)i},N={-1,3},若M∩N={3},则实数m 的值为.解析:∵M∩N={3},∴3∈M且-1∉M,∴m≠-1,3+(m2-5m-6)i=3或m=3,∴m2-5m-6=0且m≠-1或m=3,解得m=6或m=3,经检验符合题意.答案:3或615.(2021·高仿密卷)已知复数z=b i(b∈R),z-21+i是实数,i是虚数单位.(1)求复数z;(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.解:(1)因为z=b i(b∈R),所以z-21+i=b i-21+i=(b i-2)(1-i)(1+i)(1-i)=(b-2)+(b+2)i2=b-22+b+22i.又因为z-21+i是实数,所以b+22=0,所以b=-2,即z=-2i.(2)因为z=-2i,m∈R,所以(m+z)2=(m-2i)2=m2-4m i+4i2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,所以⎩⎪⎨⎪⎧m 2-4>0,-4m >0,解得m <-2,即m ∈(-∞,-2).C 级——迁移创新16.若虚数z 同时满足下列两个条件: ①z +5z 是实数;②z +3的实部与虚部互为相反数. 则z = .解析:设z =a +b i(a ,b ∈R 且b ≠0),则z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b 2=⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5ba 2+b 2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数, ∴a +3+b =0.②联立①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1,故z =-1-2i 或z =-2-i. 答案:-1-2i 或-2-i。
高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。