初一下数学证明经典例题及答案
- 格式:doc
- 大小:46.50 KB
- 文档页数:5
如图,已知D是△ABC内一点,试说明AB+AC>BD+CD 证明:延长BD交AC于E在△ABC中,AB+AE>BE,即AB+AE>BD+DE……①在△DEC中,DE+EC>DC……②①+②,得(AB+AE)+(DE+EC)>(BD+DE)+CD 即AB+(AE+EC)+DE>(BD+DE)+CD即AB+AC+DE>BD+DE+CD∴AB+AC>BD+CD如图,△ABC中,D是BC的中点,求证:(1)AB+AC>2AD(2)若AB=5,AC=3,求AD的范围。
(1)延长AD到点G,使DG=AD.连接BG在△CDA和△BDE中AD=GD,∠ADC=∠GDB∵D是BC的中点∴CD=BD∴△CDA≌△BDG.∴BG=AC在△ABG中,AB+BG=AB+BCAG=2AD因为三角形两边和大于第三边,所以AB+BE>AG ∴AB+BC>2AD(2)AB-AC<2AD<AB+ACDC BAEAB CDG2<2AD <8 1<AD <4如图,AB=AD,AC=AE,∠BAD=∠CAE=90°,点F 为DE 的中点,求证:BC=2AF. 延长AF 到点G,使AF=DF.连接GD 在△AFE 和△DFG 中 AF=GF,∠AFE=∠DFG ∵点F 为DE 的中点 ∴DF=EF所以△AFE ≌△DFG. (SAS) GD=AE=AC;∠G=∠FAE.∴DG ∥AE.(内错角相等,两直线平行)则∠GDA+∠DAE=180°.(两直线平行,同旁内角互补) 又∵∠BAC+∠DAE=180°.∴∠GDA=∠BAC.(同角的补角相等). 又∵AD=AB.∴⊿ADG ≌⊿BAC(SAS) ∴AG=BC,即2AF=BC. ∴BC=2AF.如图,AD 是△ABC 的中线,点E 在BC 的延长线上,CE=AB, ∠BAC=∠BCA 求证:AE=2AD证明:在AD 的延长线上取点F,使AD =FD,连接CF ∵AD 是中线∴BD =CD,AD =FD,∠ADB =∠FDCECDBA∴△ABD≌△FCD (SAS)∴CF=AB,∠B=∠FCD∵∠ACF=∠BCA+∠BCE,∠ACE=∠BAC+∠B,∠BAC=∠BCA∴∠ACF=∠ACE∵CE=AB∴CE=CF∴△ACE≌△ACF (SAS)∴AE=AF∵AF=AD+FD=2AD∴AE=2AD如图,△ABC中,∠ABC=90°,AC=CE,BC=CD,∠ACE=∠BCD=90°,BC的延长线交DE于F。
人教版七年级数学下册:平行线与相交线证明一.解答题(共8小题)1.如图,已知DF∥AC,∠C=∠D,要证∠AMB=∠2,请完善证明过程:∵DF∥AC(_________)∴∠D=∠1(_________)∵∠C=∠D(_________)∴∠1=∠C(_________)∴DB∥EC(_________)∴∠ABM=∠2(_________)2.已知:如图,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求证:DG⊥BC证明:∵EF⊥AB CD⊥AB_________∴∠EFA=∠CDA=90°(垂直定义)∠1=∠_________∴EF∥CD_________∴∠1=∠2(已知)∴∠2=∠ACD(等量代换)∴DG∥AC_________∴∠DGB=∠ACB_________∵AC⊥BC(已知)∴∠ACB=90°(垂直定义)∴∠DGB=90°即DG⊥BC.3.请填空完成下面的证明:如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,DE∥BA,∠A=∠FDE.求证:DF∥AC.证明:∵DE∥BA∴∠A=_________(_________)∵∠A=∠FDE∴∠FDE=_________∴DF∥AC(_________)4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=_________.(_________)又因为∠1=∠2,所以∠1=∠3.(_________)所以AB∥_________.(_________)所以∠BAC+_________=180°(_________)又因为∠BAC=70°,所以∠AGD=_________.5.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠_________,∠ECB=∠_________∵∠ABC=∠ACB (已知)∴∠_________=∠_________.∠_________=∠_________(已知)∴∠F=∠_________∴EF∥AD_________.6.补全下列推理过程:如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.因为EF∥AD (已知)所以∠2=_________(_________)又因为∠1=∠2 (已知)所以∠1=∠3(等量代换)所以AB∥_________(_________)所以∠BAC+_________=180°(两直线平行,同旁内角互补)因为∠BAC=80°(已知)所以∠AGD=_________(等量代换)7.完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=_________(_________),∵DF∥CA,∴∠A=_________(_________),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(_________),∴∠C=_________,∴AC∥BD(_________).参考答案与试题解析一.解答题(共8小题)1.如图,已知DF∥AC,∠C=∠D,要证∠AMB=∠2,请完善证明过程:∵DF∥AC(已知)∴∠D=∠1(两直线平行,内错角相等)∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴DB∥EC(同位角相等,两直线平行)∴∠ABM=∠2(两直线平行,同位角相等)考点:平行线的判定与性质.专题:推理填空题.分析:先根据平行线的性质由DF∥AC得到∠D=∠1,再根据等量代换得到∠1=∠C,于是可根据平行线的判定方法得到DB∥EC,然后根据平行线的性质得到∠AMB=∠2.解答:证明:∵DF∥AC(已知),∴∠D=∠1(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠1=∠C(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠AMB=∠2(两直线平行,同位角相等).故答案为:已知,两直线平行,内错角相等,已知,等量代换,同位角相等,两直线平行,两直线平行,同位角相等.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等.2.已知:如图,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求证:DG⊥BC 证明:∵EF⊥AB CD⊥AB已知∴∠EFA=∠CDA=90°(垂直定义)∠1=∠ACD∴EF∥CD(两直线平行,同位角相等)∴∠1=∠2(已知)∴∠2=∠ACD(等量代换)∴DG∥AC(内错角相等,两直线平行)∴∠DGB=∠ACB(两直线平行,同位角相等)∵AC⊥BC(已知)∴∠ACB=90°(垂直定义)∴∠DGB=90°即DG⊥BC.考点:平行线的判定与性质;垂线.专题:推理填空题.分析:根据垂直定义求出∠EFA=∠CDA=90°,求出∠1=∠ACD,推出EF∥CD,根据平行线的性质得出∠2=∠ACD,推出DG∥AC,根据平行线的性质推出∠ACB=∠DGB即可.解答:证明:∵EF⊥AB,CD⊥AB(已知),∴∠EFA=∠CDA=90°(垂直定义),∴EF∥CD(同位角相等,两直线平行),∴∠1=∠ACD(两直线平行,同位角相等),∵∠1=∠2(已知),∴∠2=∠ACD(等量代换),∴DG∥AC(内错角相等,两直线平行),∴∠DGB=∠ACB(两直线平行,同位角相等),∵AC⊥CB,∴∠ACB=90°,∴∠DGB=90°,即DG⊥BC,故答案为:已知,ACD,(两直线平行,同位角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).点评:本题考查了平行线的判定和性质,三角形内角和定理,垂直定义的应用,主要考查学生的推理能力.3.请填空完成下面的证明:如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,DE∥BA,∠A=∠FDE.求证:DF∥AC.证明:∵DE∥BA∴∠A=∠DEC(两直线平行,同位角相等)∵∠A=∠FDE∴∠FDE=∠DEC∴DF∥AC(内错角相等,两直线平行)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质得出∠A=∠DEC,求出∠FDE=∠DEC,根据平行线的判定推出即可.解答:证明:∵DE∥BA,∴∠A=∠DEC(两直线平行,同位角相等),∵∠A=∠FDE(已知),∴∠FDE=∠DEC(等量代换),∴DF∥AC(内错角相等,两直线平行),故答案为:∠DEC,两直线平行,同位角相等;∠DEC,内错角相等,两直线平行.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②内错角相等,两直线平行.4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=∠3.(两直线平行,同位角相等)又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥DG.(内错角相等,两直线平行)所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又因为∠BAC=70°,所以∠AGD=110°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质推出∠1=∠2=∠3,推出AB∥DG,根据平行线的性质得出∠BAC+∠DGA=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°.点评:本题考查了平行线的性质和判定的应用,注意:平行线的性质是①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.5.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF 平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠ABC,∠ECB=∠ACB∵∠ABC=∠ACB (已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).考点:平行线的判定.专题:推理填空题.分析:利用角平分线的性质得出∠DBC=∠ABC,∠ECB=∠ACB,进而求出∠F=∠ECB,得出答案即可.解答:解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB (已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).点评:此题主要考查了平行线的判定以及角平分线的性质,得出∠F=∠ECB是解题关键.6.补全下列推理过程:如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.因为EF∥AD (已知)所以∠2=∠3(两直线平行,同位角相等)又因为∠1=∠2 (已知)所以∠1=∠3(等量代换)所以AB∥DG(内错角相等,两直线平行)所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补)因为∠BAC=80°(已知)所以∠AGD=100°(等量代换)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线性质推出∠2=∠3,推出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°,∵∠BAC=80°,∴∠AGD=100°,故答案为:∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠AGD,100°.点评:本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.7.完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行).考点:平行线的判定与性质.专题:推理填空题.分析:(1)根据平行线的性质得出∠FDE=∠BFD,∠A=∠BFD,推出即可;(2)根据对顶角相等和已知求出∠C=∠D,根据平行线的判定推出即可.解答:(1)证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A,故答案为:∠BFD,两直线平行,内错角相等,∠BFD,两直线平行,同位角相等;(2)证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行),故答案为:对顶角相等,∠D,内错角相等,两直线平行.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.8.如图,在△ABC中,DE∥BC,连结DC,点F是边BC上一点,GF⊥AB,垂足为G,∠1=∠2,求证:CD⊥AB.考点:平行线的判定与性质;垂线.专题:证明题.分析:求出∠BGF=90°,根据平行线的性质和已知求出∠2=∠BCD,推出FG∥CD,根据平行线的性质得出∠CDB=∠BGF=90°即可.解答:证明:∵FG⊥AB,∴∠BGF=90°,∵DE∥BC,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴FG∥CD,∴∠CDB=∠BGF=90°,∴CD⊥AB.点评:本题考查了平行线的性质和判定,垂直的定义的应用,主要考查学生的推理能力.。
七年级下册数学证明题及参考答案初一下的数学不好学,因为迎来很多的证明题,这些的证明题的解法是怎样的呢?下面就是店铺给大家整理的初一下数学证明题内容,希望大家喜欢。
初一下数学证明题方法一如图,CE平分∠ACB且CE⊥BD,∠DAB =∠DBA,AC = 18,△CDB的周长是28。
求BD的长大家看我的步骤,我的步骤只做到这里就坐不下去了解:因为∠DAB =∠DBA(已知)所以AD=BD(等角对等边)因为CE平分∠ACB,CE⊥BD(已知)所以∠DCE= ∠BCE(角平分线的意义)∠BEC= ∠DEC=90度(垂直意义)在△ACE与△BCE中因为{ ∠DCE= ∠BCE(已求){CE=EC(公共边){ ∠BEC= ∠DEC(已求)所以△ACE≌ △BCE(A.S.A)所以BC=CD(全等三角形对应边相等)因为AC=18,即CD+AD=18所以CD+BD=18因为△CDB的周长是28,即CD+BD+BC=28所以BC=28-18=10所以CD=10所以BD=18-10=8初一下数学证明题方法二在△ABC中,已知∠CAB=60°,D,E分别是边AB,AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB= ()A.15°B.20°C.25 °D.30°这题实际上是一传统题的翻版,原题中条件为△ADE为等边三角形,C,B分别是AE,AD延长线的点,且EC=AB,求证;CD=CB,结论明确,本题增加了一个条件∠CDB=2∠CDE,把结论改为求值题,其它改动没有多大变化,很快就会知道△ADE为等边三角形,EC=AB,∠EDC=∠CDB/2=40°,但结论为求值题后使结论没有目标,实际上是故弄玄虚,习难学生,使分析没有方向,要是学生没做过原题要得出正确结论是不大可能的!但学生可做一下投机;地图作得尽量正确,用量角器测一下也可得正确的结论。
初一典型几何证明题1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD解:延长 AD到 E, 使 AD=DE∵D是 BC中点∴ BD=DC在△ ACD和△ BDE中AAD=DE∠BDE=∠ADC BD=DC∴△ ACD≌△ BDE ∴AC=BE=2∵在△ ABE中AB-BE<AE< AB+BE ∵AB=4即4-2 <2AD< 4+2 1<AD<3∴AD=2B CD2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A12B EC F D证明:连接 BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠EDF∴△ BCF≌△ EDF (S.A.S)∴BF=EF,∠ CBF=∠ DEF连接 BE在△ BEF中 ,BF=EF∴ ∠ EBF=∠ BEF。
∵ ∠ ABC=∠ AED。
∴ ∠ ABE=∠ AEB。
∴AB=AE。
在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF∴△ ABF≌△ AEF。
∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。
3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=ACA12FCDEB过C 作 CG∥EF 交 AD的延长线于点G CG∥EF,可得,∠ EFD= CGDDE=DC∠FDE=∠ GDC(对顶角)∴△ EFD≌△ CGDEF=CG∠CGD=∠ EFD又, EF∥AB∴,∠ EFD=∠1∠1=∠2∴∠ CGD=∠2∴△ AGC为等腰三角形,AC=CG又EF=CG∴EF=AC4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C证明:延长 AB取点 E,使 AE=AC,连接 DE∵AD平分∠ BAC∴∠ EAD=∠ CAD∵AE=AC,AD= AD∴△ AED≌△ ACD (SAS)∴∠ E=∠ C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠ BDE=∠ E∵∠ ABC=∠ E+∠BDE∴∠ ABC=2∠E∴∠ ABC=2∠C5、已知: AC平分∠ BAD,CE⊥ AB,∠ B+∠D=180°,求证: AE=AD+BE证明:在AE上取 F,使 EF=EB,连接 CF∵CE⊥AB∴∠ CEB=∠ CEF=90°∵EB=EF,CE= CE,∴△ CEB≌△ CEF∴∠ B=∠ CFE∵∠ B+∠ D=180°,∠ CFE+∠ CFA=180°∴∠ D=∠ CFA∵AC平分∠ BAD∴∠ DAC=∠ FAC∵AC=AC∴△ ADC≌△ AFC(SAS)∴AD=AF∴AE=AF+FE= AD+BE6、如图,四边形 ABCD中, AB∥DC,BE、CE分别平分∠ ABC、∠BCD,且点 E 在 AD上。
初一典型几何证明题1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD解:延长A D到 E,使AD=DE∵D是 BC中点A ∴BD=DC在△ ACD和△ BDE中AD=DE∠BDE=∠ADC B CDBD=DC∴△ACD≌△ BDE∴AC=BE=2∵在△ ABE中AB-BE<AE<AB+BE∵AB=4即 4-2<2AD<4+21<AD<3∴AD=22、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2A21B EC F D证明:连接BF和 EF∵BC=ED,CF=DF∠, BCF=∠EDF∴△BCF≌△ EDF 第1页共22 页∴BF=EF,∠CBF=∠DEFB E连接在△ BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△ AEF。
∴∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=D,E EF证明:连接EF ∵AB∥CD共22 页第9页∴∠B=∠C∴△BEM≌△CFM( SAS)∵M是 BC中点∴CF=BE∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM7. 已知:如图所示,AB=AD,BC=DC,E、F 分别是DC、BC的中点,求证:AE=AF。
证:连接AC DE=BF∵在△ ADC和△ABC中∴△ADE≌△ ABF(SAS)AD=AB ∴AE=AFDC=BCAC=AC∴△ADC≌△ ABC(SSS)D∴∠B=∠ DE∵E、F 分别是DC、BC的中点AC又∵ BC=DCF∴DE=BFB∵在△ ADE和△ABF中AD=AB∠D=∠B8. 如图,在四边形ABCD中, E是AC上的一点,∠1=∠2,∠3=∠4,求证 : ∠5=∠6.证明:∵在△ADC和△ ABC中∴△DEC≌△ BEC(SAS)∠BAC=∠DAC ∴∠DEC=∠BEC∠BCA=∠DCAAC=AC∴△ADC≌△ ABC(AAS)D∵AB=AD,BC=CD在△ DEC与△ BEC中A12E5634CCE=CEB∠BCA=∠DCABC=CD9. 如图,在△ABC中, AD为∠ BAC的平分线,DE⊥AB于 E,DF⊥AC于 F。
[精选]初一下-三角形证明初一(含答案)–资料1. 引言初中数学的三角形证明是一个基础而重要的内容,它涉及到了三角形的性质和相关定理的证明。
掌握了三角形证明的方法和技巧,能够提高学生的逻辑思维能力和证明能力,并为日后的高中数学学习打下坚实的基础。
本文档精选了一些初一下学期的三角形证明题目,并提供了详细的解答和解题过程,旨在帮助初中学生更好地理解和掌握三角形证明的方法。
2. 题目与解答2.1 证明三角形的内角和为180度题目:证明任意三角形的内角和等于180度。
解答:我们知道,在直角三角形中,其中一个角是90度,而另外两个角的和等于90度。
因此,我们可以通过直角三角形来证明三角形的内角和等于180度。
假设有一个三角形ABC,其中$\\angle A$、$\\angle B$、$\\angle C$ 分别为三个内角。
我们可以通过画一条辅助线,将三角形ABC分割成两个直角三角形来证明。
具体的证明过程如下:1.在边AC上找一点D,在边BC上找一点E;2.链接点D和点B,连接点E和点A,得到线段BD和线段AE;3.由直角三角形的性质可知,$\\angle BDC =90^{\\circ}$,$\\angle AEC = 90^{\\circ}$;4.因为$\\angle ABC$是$\\angle BDC$和$\\angleAEC$的外角,所以 $\\angle ABC = \\angle BDC + \\angle AEC$;5.代入已知的角度,得到 $\\angle ABC = 90^{\\circ}+ 90^{\\circ} = 180^{\\circ}$。
因此,任意三角形的内角和等于180度得证。
2.2 证明等边三角形的三个内角均为60度题目:证明等边三角形的三个内角均为60度。
解答:等边三角形是指三条边的长度相等的三角形。
我们需要证明等边三角形的三个内角均为60度。
具体的证明过程如下:1.画一个等边三角形ABC,其中三条边的长度分别为AB、BC、CA;2.因为等边三角形的三条边的长度相等,所以AB =BC = CA;3.假设等边三角形的任意两个内角分别为$\\angle A$、$\\angle B$;4.因为AB = BC,所以它们所对的两个内角相等,即$\\angle A = \\angle B$;5.同理可以得到$\\angle B = \\angle C$;6.因此,$\\angle A = \\angle B = \\angle C$;7.代入已知的角度,得到 $\\angle A = \\angle B =\\angle C = 60^{\\circ}$。
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23、4、 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDFBC DF ADBC∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
已知:∠1=∠2,CD=DE ,EFP 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABBA CDF2 1 EA在AC 上取点E , 使AE =AB 。
∵AE =AB AP =AP ∠EAP =∠BAE ,∴△EAP ≌△BAP ∴PE =PB 。
PC <EC +PE∴PC <(AC -AE )+PB ∴PC -PB <AC -AB 。
8. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 证明:在AC 上取一点D ,使得角DBC=角C ∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C ; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD 中,AE 是角BAD 的角平分线, ∴AE 垂直BD∵BE ⊥AE∴点E 一定在直线BD 上,在等腰三角形ABD 中,AB=AD ,AE 垂直BD ∴点E 也是BD 的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE9. 如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .P DACB解:延长AD 至BC于点E,∵BD=DC ∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中AB=AC∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC10. 如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证明:∵OM平分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO =∠MBO =90 ∵OM =OM∴△AOM ≌△BOM (AAS ) ∴OA =OB ∵ON =ON∴△AON ≌△BON (SAS ) ∴∠OAB=∠OBA ,∠ONA=∠ONB ∵∠ONA+∠ONB =180 ∴∠ONA =∠ONB =90 ∴OM ⊥AB11. 如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 证明:在AB 上取F ,使AF =AD ,连接EF ∵AE 平分∠DAB ∴∠DAE=∠FAE 在⊿ADE 和⊿AFE 中AD =AF ∠DAE=∠FAE AE = AE∴⊿ADE ≌⊿AFE (SAS ) ∴∠ADE=∠AFE∵AB 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立PEDCBA{{请给予证明;若不成立请说明理由.(1)证:∵DE ⊥AC 于E ,BF ⊥AC 于F , ∴∠DEC=∠BFA=90°,DE ∥BF , 在Rt △DEC 和Rt △BFA 中, ∵AF=CE ,AB=CD , ∴Rt △DEC ≌Rt △BFA (HL ) ∴DE=BF .在△DEM 和△BFM 中 ∠DEM=∠BFM ∠DME=∠BMF DE=BF∴△DEM ≌△BFM(AAS) ∴MB=MD ,ME=MF(2) 证:∵DE ⊥AC 于E ,BF ⊥AC 于F , ∴∠DEC=∠BFA=90°,DE ∥BF , 在Rt △DEC 和Rt △BFA 中, ∵AF=CE ,AB=CD , ∴Rt △DEC ≌Rt △BFA (HL ) ∴DE=BF .在△DEM 和△BFM 中 ∠DEM=∠BFM ∠DME=∠BMF DE=BF{{∴△DEM≌△BFM(AAS)∴MB=MD,ME=MF13如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证:∵∠CEB=∠CAB=90°∠ADB=∠CDE在△ABD中,∠ABD = 180°-∠CAB-∠ADB 在△CED中,∠DCE = 180°-∠CEB-∠CDE ∴∠ABD =∠DCE在△ABD和△ACF中∠DAB=∠CAFAB=AC∠ABD =∠DCF∴△ABD≌△ACF(ASA)∴BD=CF∵BD是∠ABC的平分线∴∠FBE =∠CBE在△FBE和△CBE中∠FBE =∠CBEBE=BE∠BEF =∠BEC∴△FBE≌△CBE(ASA)∴CE=FE CF=2CE∴BD=2CEFEDC BA{ {14. 如图:DF=CE,AD=BC,∠D=∠C。
证明题七年级下册一、相交线与平行线证明题。
1. 如图,已知直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2 : ∠1 = 4:1,求∠AOF的度数。
证明:设∠1 = x,因为∠2:∠1 = 4:1,则∠2 = 4x。
因为OE平分∠BOD,所以∠DOE=∠1 = x。
又因为∠2+∠DOE = 180°(邻补角之和为180°),即4x + x=180°,5x = 180°,解得x = 36°。
所以∠COE=180° - ∠1=180° - 36° = 144°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE=(1)/(2)×144° = 72°。
∠AOC = ∠1 = 36°(对顶角相等)所以∠AOF=∠AOC + ∠COF = 36°+72° = 108°。
2. 已知:如图,AB∥CD,∠1 = ∠2,求证:AM∥CN。
证明:因为AB∥CD,所以∠EAB = ∠ACD(两直线平行,同位角相等)。
又因为∠1 = ∠2,所以∠EAB - ∠1=∠ACD - ∠2,即∠MAC = ∠NCA。
所以AM∥CN(内错角相等,两直线平行)3. 如图,已知∠1 = ∠2,∠C = ∠D,求证:∠A = ∠F。
证明:因为∠1 = ∠2,∠1 = ∠3(对顶角相等),所以∠2 = ∠3。
所以DB∥EC(同位角相等,两直线平行)。
所以∠D = ∠4(两直线平行,同位角相等)。
又因为∠C = ∠D,所以∠C = ∠4。
所以DF∥AC(内错角相等,两直线平行)。
所以∠A = ∠F(两直线平行,内错角相等)二、三角形证明题。
4. 在△ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于F。
求证:AF=(1)/(3)AC。
证明:过点D作DG∥BF交AC于G。
如图,已知D是△ABC内一点,试说明AB+AC>BD+CD 证明:延长BD交AC于E
在△ABC中,AB+AE>BE,即AB+AE>BD+DE……①在△DEC中,DE+EC>DC……②
①+②,得(AB+AE)+(DE+EC)>(BD+DE)+CD 即AB+(AE+EC)+DE>(BD+DE)+CD
即AB+AC+DE>BD+DE+CD
∴AB+AC>BD+CD
如图,△ABC中,D是BC的中点,求证:
(1)AB+AC>2AD
(2)若AB=5,AC=3,求AD的范围。
(1)延长AD到点G,使DG=AD.连接BG
在△CDA和△BDE中
AD=GD,∠ADC=∠GDB
∵D是BC的中点
∴CD=BD
∴△CDA≌△BDG.
∴BG=AC
在△ABG中,AB+BG=AB+BC
AG=2AD
因为三角形两边和大于第三边,所以AB+BE>AG
∴AB+BC>2AD
(2)AB-AC<2AD<AB+AC
2<2AD<8
D
C B
A
E
A
B C
D
G
如图,AB=AD,AC=AE,∠BAD=∠CAE=90°,点F 为DE 的中点,求证:BC=2AF. 延长AF 到点G,使AF=DF.连接GD 在△AFE 和△DFG 中 AF=GF,∠AFE=∠DFG ∵点F 为DE 的中点 ∴DF=EF
所以△AFE ≌△DFG. (SAS) GD=AE=AC;∠G=∠FAE.
∴DG ∥AE.(内错角相等,两直线平行)
则∠GDA+∠DAE=180°.(两直线平行,同旁内角互补) 又∵∠BAC+∠DAE=180°.
∴∠GDA=∠BAC.(同角的补角相等). 又∵AD=AB.
∴⊿ADG ≌⊿BAC(SAS) ∴AG=BC,即2AF=BC. ∴BC=2AF.
如图,AD 是△ABC 的中线,点E 在BC 的延长线上,CE=AB, ∠BAC=∠BCA 求证:AE=2AD
证明:在AD 的延长线上取点F,使AD =FD,连接
CF ∵AD 是中线
∴BD =CD,AD =FD,∠ADB =∠FDC ∴△ABD ≌△FCD (SAS ) ∴CF =AB,∠B =∠FCD
∵∠ACF =∠BCA+∠BCE,∠ACE =∠BAC+∠B,∠BAC =∠BCA D
C
F
E
C
D
B
A
∵CE=AB
∴CE=CF
∴△ACE≌△ACF (SAS)
∴AE=AF
∵AF=AD+FD=2AD
∴AE=2AD
如图,△ABC中,∠ABC=90°,AC=CE,BC=CD,∠ACE=∠BCD=90°,BC的延长线交DE于F。
(1)求证:EF=DF
(2)求证:S△ABC=S△DCE
证明:
①作EG⊥BF,交BF延长线于G
则∠CGE=∠ABC=90°
∵∠ACE=90°
∴∠ACB+∠ECG=90°
∵∠ACB+∠BAC=90°
∴∠ECG=∠BAC
又∵AC=EC
∴△ABC≌△CGE(AAS)
∴BC=EG
∵BC=CD
∴EG=CD
∵∠BCD=90°
∴∠DCF=90°=∠EGF
又∵∠CFD=∠GFE(对顶角相等),CD=EG E
A
∴EF=DF
②∵△CFD ≌△GFE ∴S △CFD=S △GFE
∴S △CFD+S △CFE=S △GFE+S △CFE 即S △DCE=S △CGE ∵△ABC ≌△CGE ∴S △ABC=S △CGE ∴S △ABC=S △DCE
如图,在△ABC ,△DEF 中,AM,DN 分别是两三角形中线,AB=DE,AC=DF,AM=DN. 求证:△ABC ≌△DEF
证明:如图,延长AM 至A′,使A′M=AM 延长DN 至D′,使D′N=DN 连接A′C 、D′F ∵AM 是△ABC 的中线 ∴BM=MC
在△ABM 和△A′CM 中
BM =MC ∠AMB =∠A′MCAM =A′M ∴△ABM ≌△A′CM (SAS ) ∴AB=A′C ,同理可得DE=D′F ∵AB=DE ,∴A′C=D′F
∵AM=DN ,AA′=2AM ,DD′=2DN
∴AA′=DD′,在△AA′C 和△DD′F 中,AC =DFAA′=DD′A′C =D′F ∴△AA′C ≌△DD′F (SSS )
∴∠A′=∠D′,在△A′MC 和△D′NF 中,A′M =D′N ∠A′=∠D′A′C =D′F B
A
M
C
A ′
D
E
D ′
F
N
,∴MC=NF
∵AM、DN分别是两三角形中线
∴BC=2MC,EF=2NF
∴BC=EF,在△ABC和DEF中,AB=DEAC=DFBC=EF ∴△ABC≌DEF(SSS).。