高一数学函数的单调性
- 格式:ppt
- 大小:738.00 KB
- 文档页数:23
高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
函数的单调性1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。
1. 从特殊到一般,掌握增函数、减函数、单调区间的概念;2. 会根据图像说出函数的单调区间,并能指出其增减性;3. 会用定义证明一些简单函数的单调性.自学评价观察函数x x f =)(,2)(x x f =的图象从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的,2)(x x f =的图象在y 轴左侧是______的,f (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2)(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2)(x x f =在),0(+∞上,f (x )随着x 的增大而________.一、 函数的单调性1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
x(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
※ 增函数、减函数的定义 ;2、单调性的判定方法 (1)定义法:判断下列函数的单调区间:21xy =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
高一函数的单调性知识点函数的单调性是数学中的一个重要概念,它描述了函数在定义域上的增减情况。
了解函数的单调性有助于我们更好地理解和运用函数,下面就是关于高一函数的单调性知识点的详细介绍。
一、函数的递增和递减区间在讨论函数的单调性时,首先需要了解函数的递增和递减区间。
我们将函数在定义域上递增(或递减)的部分称为函数的递增(或递减)区间。
1. 函数的递增区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1)< f(x2),那么 f(x) 在 [x1, x2] 上递增。
我们可以通过求函数的导数来确定函数的递增区间。
2. 函数的递减区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1) > f(x2),那么 f(x) 在 [x1, x2] 上递减。
同样地,我们可以通过求函数的导数来确定函数的递减区间。
二、函数单调性的判定在大部分情况下,我们可以通过函数的导数来判定函数的单调性。
具体而言,可以根据函数导数的正负性来确定函数的单调性。
1. 函数导数的正负性如果函数 f(x) 的导数在某个区间内恒大于 0,则 f(x) 在该区间上递增;如果导数恒小于 0,则 f(x) 在该区间上递减。
通过求导数,我们可以得到函数的递增区间和递减区间。
2. 临界点和极值点函数的单调性与其临界点和极值点也有密切关系。
在函数的临界点和极值点处,其单调性会发生改变。
- 临界点:函数 f(x) 在定义域上的某个点 x=c 处,如果 f'(c)=0 或者f'(c) 不存在,那么点 c 称为函数的临界点。
在临界点之间,函数的单调性可能会改变。
- 极值点:函数 f(x) 在定义域上的某个点 x=c 处,如果存在一个邻域,使得对于临界点 x 不等于 c,在该邻域内 f(c) 是 f(x) 的最大值或最小值,那么点 c 称为函数的极值点。
高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。
如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。
(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。
函数的单调性是对某个区间而言的,是一个局部概念。
⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。
(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。
实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。
(1)定义法:利用增减函数的定义证明。
在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。
⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。
求差:; 变形:化简、因式分解; 判断:差的符号的正或负。
黄冈中学高一数学 函数的单调性 反函数1、函数的单调性:(1)设函数y=f(x)的定义域是M ,区间D 是M 的一个子集,若对于当x 1<x 2时,恒有f(x 1)<f(x 2)成立,则称函数y=f(x)在区间D 上是单调递增函数.(2)设函数y=f(x)的定义域是M ,区间D 是M 的一个子集,若对于当x 1<x 2时,恒有f(x 1)>f(x 2)成立,则称函数y=f(x)在区间D 上是单调递减函数.(3)单调函数:单调递增函数与单调递减函数统称为单调函数.若y=f(x)在区间D 上为单调函数,则称D 是这个函数的单调区间.2、单调函数的基本性质:(1)y=f(x)在区间I 上是单调递增(减)函数,c ,d 都是常数,则y=cf(x)+d 在I 上也是单调函数.若c >0,y=cf(x)+d 在I 上是单调递增(减)函数;若c <0,y=cf(x)+d 在I 是单调递减(增)函数.(2)若函数y=f (x )与y=g (x )在区间I 上同为单调递增(减)函数,则y=f(x)+g(x)在I 上也是单调递增(减)函数.(3)u=g(x)在区间(a,b)上为增(减)函数,y=f(u)在(g(a),g(b))(或(g(b), g(a)))上为增(减)函数,则y=f(g(x))在(a ,b )上为增函数.(4)u=g(x)在(a ,b )上为增(减)函数,y=f(u)在(g(a),g(b))(或(g(b),g(a)))上为减(增)函数,则y=f(g(x))在(a ,b )上为减函数.3、一次函数,反比例函数和二次函数的单调性函数 y=ax+b(a≠0)y=(a≠0) y=ax 2+bx +c(a≠0) 单调区间 (-∞,+∞)(-∞,0) (0,+∞) (-∞,-] [-,+∞) 单调性 a>0 增函数 减函数 减函数 减函数 增函数 a<0 减函数 增函数 增函数 增函数 减函数4、反函数的概念:(1)只有自变量x 与其对应的函数值y 是一一对应的函数才存在反函数,反函数的对应法则是原函数对应法则f 的逆对应,反函数的定义域、值域分别是原函数的值域、定义域.(2)互为反函数的两个函数的图象关于直线y=x对称,即点(a,b)在y=f(x)的图象上,则点(b,a)必在y=f-1(x)图象上.(3)互为反函数的两个函数具有相同的单调性.5、反函数的性质:(1)y =f-1(x)是y=f(x)的反函数,则y=f(x)也是y =f-1(x)的反函数,即y=f(x)和y =f-1(x)互为反函数.(2)函数y=f(x)存在反函数的充要条件是函数y=f(x)是定义域到值域的一一映射.(3)函数y=f(x)和反函数y =f-1(x)的定义域,值域互换,即函数y =f-1(x)函数y=f(x)定义域 A C值域 C A6、互为反函数的图象关系:函数y=f(x)的图象和它的反函数y =f-1(x)的图象关于直线y=x对称.7、反函数与原函数的其它性质和联系:1)反函数与原函数 f[f-1(x)]=x,f-1[f(x)]=x注:f-1 [f-1(x)])并不是反函数的反函数,而是y=f-1(x)与自身形成的复合函数,谨防出现f-1 [f-1(x)]=f(x)的错误作法.(2)反函数与单调性:如果函数y=f(x)有单调性,则反函数y=f-1(x)也有与y=f(x)一致的单调性,即y=f(x)在[a,b]上为增函数,则y=f-1(x)在[f(a),f(b)]上为增函数;y=f(x)在[a,b]上为减函数,则y=f-1(x)在[f(b),f(a)]上为减函数.8、复合函数的单调性::复合函数y=f[g(x)]的单调性规律是“同则增,异则减”,即f(u)与g(x)若具有相同的单调性,则f[g(x)]必定是增函数,若具有不同的单调性,则f[g(x)]必定是减函数,讨论复合函数单调性的步骤是:(1)求出复合函数的定义域;(2)把复合函数分解成若干个常见的基本函数,并判定其定义域;(3)把中间变量的变化范围转化为自变量的变化范围;(4)根据上述复合函数的单调性规律判定其单调性.三、方法指导1、判定函数单调性的方法:(1)定义法:根据函数单调性的定义进行证明,其步骤如下:第一步:取值.即设x1、x2是该区间内的任意两个值,且x1<x2.第二步:作差变形.即作差f(x1)-f(x2),并通过因式分解,配方,有理化等方法,向有利于判断差的符号的方向变形.第三步:定正负.确定差f(x1)-f(x2)的正负,当正负不确定时,可以进行分区间讨论.第四步:判断.根据定义作出结论.即“取值——作差变形——定正负——判断”这几个步骤.(2)直接法:运用已知的结论,直接得到函数的单调性.如一次函数,二次函数,反比例函数的单调性均可直接说出,注意了解以下一些结论,对于直接判断函数的单调性有好处:①函数y=-f(x)与函数y=f(x)的单调性相反.②当f(x)恒为正或恒为负时,函数的单调性相反.③在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等.(3)图象法:根据函数的图象进行判断.例1、讨论函数(x>0)的单调性.例2已知f(x)=8+2x-x2, g(x)=f(2-x2),试求g(x)的单调区间.例3、已知函数(-5≤x≤0),点P(-2,-4)在它的反函数的图象上.(1)求f(x)的反函数f-1(x);(2)证明f-1(x)在其定义域上是减函数.例4、求函数的值域例5、已知函数y=kx+b的图象过(1,2)点,它的反函数f-1(x)的图象过(4,0)点,求函数f(x)的解析式.例6、设f(x)的定义域为(0,+∞),且对一切x、y>0,都有=f(x)-f(y),当x>1时,有f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性并证明;(3)若f(6)=1,解不等式.。
1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第一课时 函数的单调性Q 情景引入ing jing yin ru德国心理学家艾宾浩斯研究发现,遗忘在学习之后立即开始,而且遗忘的进程并不是均匀的,最初遗忘速度较快,以后逐渐缓慢.他认为“保持和遗忘是时间的函数”,并根据实验结果绘成描述遗忘进程的曲线,即著名的艾宾浩斯记忆遗忘曲线.如下图:这条曲线告诉我们,学习中的遗忘是有规律的,遗忘的进程是不均衡的,记忆的最初阶段遗忘的速度很快,后来就逐渐变慢了.这条曲线表明了遗忘规律是“先快后慢”.通过这条曲线能说明什么数学问题呢?X 新知导学in zhi dao xue1.增函数和减函数知识点拨] (1)函数f (x )在区间D 上是增函数,x 1,x 2∈D ,则x 1<x 2⇔f (x 1)<f (x 2).(2)函数f (x )在区间D 上是减函数,x 1,x 2∈D ,则x 1<x 2⇔f (x 1)>f (x 2). 2.单调性(1)定义:如果函数y =f (x )在区间D 上是__增函数__或__减函数__,那么就说函数y =f (x )在区间D 上具有(严格的)单调性,区间D 叫做函数y =f (x )的__单调区间__.(2)图象特征:函数y =f (x )在区间D 上具有单调性,则函数y =f (x )在区间D 上的图象是上升的或下降的.[归纳总结] 基本初等函数的单调区间如下表所示:Y 预习自测u xi zi ce1.函数y =f (x )在区间(a ,b )上是减函数,x 1,x 2∈(a ,b ),且x 1<x 2,则有( B ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2)D .以上都有可能[解析] 因为函数y =f (x )在(a ,b )上是减函数,且x 1<x 2,所以f (x 1)>f (x 2),故选B . 2.下列函数中,在区间(0,2)上为增函数的是( B ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-x 2[解析] 分别画出各个函数的图象,在区间(0,2)上上升的图象只有B .3.若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有 f (a )-f (b )a -b>0成立,则必有( A )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )是先增后减D .函数f (x )是先减后增[解析] 由单调性的定义可知,对任意两个不相等的实数a 、b ,总有f (a )-f (b )a -b >0成立,则f (x )在R 上是增函数,故选A .4.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为__f (a 2-a +1)≤f (34)__.[解析] ∵a 2-a +1=(a -12)2+34≥34,又∵f (x )在区间(0,+∞)上为减函数, ∴f (a 2-a +1)≤f (34).5.判断并证明函数f (x )=-1x +1在(0,+∞)上的单调性.[解析] 函数f (x )=-1x +1在(0,+∞)上是增函数.证明:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则 f (x 1)-f (x 2)=(-1x 1+1)-(-1x 2+1)=-1x 1+1x 2=x 1-x 2x 1x 2.由x 1,x 2∈(0,+∞),得x 1x 2>0. 又由x 1<x 2,得x 1-x 2<0. 于是f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )=-1x+1在(0,+∞)上是增函数.H 互动探究解疑 u dong tan jiu jie yi命题方向1 ⇨利用图象求函数的单调区间典例1 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的单调区间.[思路分析] (1)函数f (x )在D 上单调递增(或单调递减)表现在其图象上有怎样的特征? (2)单调增、减区间与函数在该区间上为增、减函数一样吗?[解析] 函数的单调增区间为[-1.5,3),[5,6),单调减区间为[-4,-1.5),[3,5),[6,7]. 『规律方法』 函数单调区间的求法及表示方法(1)由函数图象确定函数的单调区间是一种直观简单的方法,对于较复杂的函数的单调区间,可利用一些基本函数的单调性或根据函数单调性的定义来求.(2)单调区间必须是一个区间,不能是两个区间的并,如不能写成函数y =1x 在(-∞,0)∪(0,+∞)上是减函数,而只能写成在(-∞,0)和(0,+∞)上是减函数.(3)区间端点的写法;对于单独的一点,由于它的函数值是唯一确定的常数,没有增减变化,所以不存在单调问题,因此写单调区间时,可以包括端点,也可以不包括端点,但对于某些点无意义时,单调区间就不包括这些点.〔跟踪练习1〕据下列函数图象,指出函数的单调增区间和单调减区间.[解析] 由图象(1)知此函数的增区间为(-∞,2],[4,+∞),减区间为[2,4]. 由图象(2)知,此函数的增区间为(-∞,-1],[1,+∞),减区间为[-1,0),(0,1]. 命题方向2 ⇨用定义证明函数的单调性典例2 利用函数单调性的定义证明f (x )=1-x 在(-1,1)上单调递减.[思路分析] 利用减函数的定义来证明,其关键是对f (x 1)-f (x 2)进行变形,尽量化成几个最简单因式的乘积的形式.[解析] 设-1<x 1<x 2<1,∴f (x 1)-f (x 2)=1-x 1-1-x 2 =(1-x 1-1-x 2)(1-x 1+1-x 2)1-x 1+1-x 2=x 2-x 11-x 1+1-x 2.∵x 1<x 2,所以x 2-x 1>0.又1-x 1+1-x 2>0,∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故函数f (x )=1-x 在(-1,1)上单调递减. 『规律方法』 1.函数单调性的证明方法——定义法 利用定义法证明或判断函数单调性的步骤是:2.用定义证明函数单调性时,作差f (x 1)-f (x 2)后,若f (x )为多项式函数,则“合并同类项”,再因式分解;若f (x )是分式函数,则“先通分”,再因式分解;若f (x )解析式是根式,则先“分子有理化”再分解因式.〔跟踪练习2〕(1)用函数单调性定义证明函数f (x )=2x 2+4x 在(-∞,-1]上是单调减函数; (2)用函数单调性定义证明,函数y =2xx +1在(-1,+∞)上为增函数.[证明] (1)设x 1<x 2≤-1,则f (x 1)-f (x 2)=(2x 21+4x 1)-(2x 22+4x 2)=2(x 21-x 22)+4(x 1-x 2)=2(x 1-x 2)(x 1+x 2+2).∵x 1<x 2≤-1, ∴x 1-x 2<0,x 1+x 2+2<0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2), ∴f (x )在(-∞,-1]上是减函数.(2)设x 1>x 2>-1, 则x 1-x 2>0,x 1+1>0,x 2+1>0, y 1-y 2=2x 1x 1+1-2x 2x 2+1=2(x 1-x 2)(x 1+1)(x 2+1)>0,∴y 1>y 2,∴函数y =2xx +1在(-1,+∞)上为增函数.命题方向3 ⇨单调性的应用典例3 已知函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ),求实数a 的取值范围.[思路分析] 根据函数的单调性定义可知,由两个自变量的大小可以得到相应的函数值的大小,反之,由两个函数值的大小也可以得到相应自变量的大小.[解析] ∵函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ), ∴3a -7>11+8a , ∴a <-185, ∴实数a 的取值范围是(-∞,-185).『规律方法』 利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系“f ”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.〔跟踪练习3〕已知函数g (x )是定义在R 上为增函数,且g (t )>g (1-2t ),求实数t 的取值范围. [解析] ∵g (x )在R 上为增函数,且g (t )>g (1-2t ), ∴t >1-2t ,∴t >13,即所求t 的取值范围为(13,+∞).Y 易混易错警示i hun yi cuo jing shi对单调区间和在区间上单调两个概念理解错误典例4 若函数f (x )=x 2+2ax +4的单调递减区间是(-∞,2],则实数a 的取值范围是__-2__.[错解] 函数f (x )的图象的对称轴为直线x =-a ,由于函数在区间(-∞,2]上单调递减,因此-a ≥2,即a ≤-2.[错因分析] 错解中把单调区间误认为是在区间上单调.[正解] 因为函数f (x )的单调递减区间为(-∞,2],且函数f (x )的图象的对称轴为直线x =-a ,所以有-a =2,即a =-2.[警示] 若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子区间上也是单调的,因此f (x )在区间A 上单调增(或减)和f (x )的单调增(或减)区间为A 不等价.X 学科核心素养ue ke he xin su yang抽象函数单调性的判断与证明所谓抽象函数,一般是指没有给出具体解析式的函数,研究抽象函数的单调性,主要是考查对函数单调性的理解,是一类重要的题型,而证明抽象函数的单调性常采用定义法.典例5 设f (x )是定义在R 上的函数,对m ,n ∈R ,恒有f (m +n )=f (m )·f (n )(f (m )≠0,f (n )≠0),且当x >0时,0<f (x )<1.求证:(1)f (0)=1; (2)x ∈R 时,恒有f (x )>0; (3)f (x )在R 上是减函数.[思路分析] (1)可通过赋值求f (0);(2)可通过f (0)=f [x +(-x )]=f (x )·f (-x )证明f (x )>0;(3)利用定义可证明函数的单调性.[解析] (1)根据题意,令m =0,可得f (0+n )=f (0)·f (n ), ∵f (n )≠0,∴f (0)=1.(2)由题意知x >0时,0<f (x )<1; 当x =0时,f (0)=1>0; 当x <0时,-x >0,∴0<f (-x )<1.∵f [x +(-x )]=f (x )·f (-x ), ∴f (x )·f (-x )=1, ∴f (x )=1f (-x )>0. 故x ∈R 时,恒有f (x )>0.(3)设x 1,x 2∈R ,且x 1<x 2, 则f (x 2)=f [x 1+(x 2-x 1)],∴f (x 2)-f (x 1)=f [x 1+(x 2-x 1)]-f (x 1)=f (x 1)·f (x 2-x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]. 由(2)知f (x 1)>0,又x 2-x 1>0,∴0<f (x 2-x 1)<1, 故f (x 2)-f (x 1)<0,∴f (x )在R 上是减函数.『规律方法』 一般地,在高中数学中,主要有两种类型的抽象函数,一是“f (x +y )”型[即给出f (x +y )所具有的性质,如本例],二是“f (xy )”型.对于f (x +y )型的函数,只需构造f (x 2)=f [x 1+(x 2-x 1)],再利用题设条件将它用f (x 1)与f (x 2-x 1)表示出来,然后利用题设条件确定f (x 2-x 1)的范围(如符号、与“1”的大小关系),从而确定f (x 2)与f (x 1)的大小关系;对f (xy )型的函数,则只需构造f (x 2)=f (x 1·x 2x 1)即可.K 课堂达标验收e tang da biao yan shou1.函数y =f (x )的图象如图所示,其增区间是( C )A .[0,1]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 结合图象分析可知,函数图象在区间[-3,1]是上升的,故其增区间是[-3,1]. 2.已知f (x )=(3a -1)x +b 在(-∞,+∞)上是增函数,则a 的取值范围是( B ) A .(-∞,13)B .(13,+∞)C .(-∞,13]D .[13,+∞)[解析] f (x )=(3a -1)x +b 为增函数,应满足3a -1>0,即a >13,故选B .3.(2019·山东潍坊市高一期中测试)已知函数f (x )在(-∞,+∞)上是减函数,若a ∈R ,则( D )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )[解析] ∵a 2+1-a =(a -12)2+34>0,∴a 2+1>a ,又∵f (x )在(-∞,+∞)上是减函数, ∴f (a 2+1)<f (a ).4.若函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是__(-∞,1)和(1,+∞)__.[解析]由图象可知,f(x)的单调递增区间为(-∞,1)和(1,+∞).5.求证:函数f(x)=1x2在区间(0,+∞)上是减函数,在区间(-∞,0)上是增函数.[证明]对于任意的x1,x2∈(-∞,0),且x1<x2,有f(x1)-f(x2)=1x21-1x22=x22-x21x21x22=(x2-x1)(x2+x1)x21x22.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21x22>0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以函数f(x)=1x2在(-∞,0)上是增函数.对于任意的x1,x2∈(0,+∞),且x1<x2,有f(x1)-f(x2)=(x2-x1)(x2+x1)x21x22.因为0<x1<x2,所以x2-x1>0,x2+x1>0,x21x22>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以函数f(x)=1x2在(0,+∞)上是减函数.A级基础巩固一、选择题1.下列命题正确的是(D)A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),使得x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数C.若f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在I1∪I2上也一定为减函数D.若f(x)在区间I上为增函数且f(x1)<f(x2)(x1,x2∈I),那么x1<x2[解析]A错误,x1,x2只是区间(a,b)上的两个值,不具有任意性;B错误,无穷并不代表所有、任意;C错误,例如函数y=1x-1在(-∞,1)和(1,+∞)上分别递减,但不能说y=1x-1在(-∞,1)∪(1,+∞)上递减;D正确,符合单调性定义.2.如图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是( C )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上不单调[解析] 若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接. 3.函数y =-x 2的单调减区间为( C ) A .(-∞,0] B .(-∞,0) C .(0,+∞)D .(-∞,+∞)[解析] 根据二次函数y =-x 2的图象可知函数y =-x 2的单调递减区间为(0,+∞). 4.(2019·河北沧州市高一期中测试)在区间(-∞,0)上为增函数的是( C ) A .y =-2x +2 B .y =1xC .y =-|x |+1D .y =-x 2-2x[解析] 函数y =-2x +2是减函数,y =1x 在(-∞,0)上是减函数,y =-x 2-2x =-(x+1)2+1在(-∞,-1]上是增函数,在(-1,0)上是减函数,只有函数y =-|x |+1在(-∞,0)上是增函数,故选C .5.定义在R 上的函数,对任意的x 1,x 2∈R (x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (2)<f (1)B .f (1)<f (2)<f (3)C .f (2)<f (1)<f (3)D .f (3)<f (1)<f (2)[解析] 对任意x 1,x 2∈R (x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则x 2-x 1与f (x 2)-f (x 1)异号,则f (x )在R 上是减函数.又3>2>1,则f (3)<f (2)<f (1).故选A .6.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( C ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)[解析] 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3,故选C .二、填空题7.函数f (x )=1x +1在(a ,+∞)上单调递减,则a 的取值范围是__[-1,+∞)__.[解析] ∵函数f (x )=1x +1的单调递减区间为(-1,+∞),(-∞,-1),又∵函数f (x )=1x +1在(a ,+∞)上单调递减,∴(a ,+∞)⊆(-1,+∞),∴a ≥-1. 8.函数f (x )=-2x 2+4x -3的单调递增区间为__(-∞,1]__.[解析] f (x )=-2x 2+4x -3的图象是开口向下,对称轴为x =1的抛物线,∴其单调递增区间为(-∞,1].三、解答题9.求证函数f (x )=x +4x 在(2,+∞)上是增函数.[证明] 任取x 1,x 2∈(2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)x 1x 2-4x 1x 2.因为2<x 1<x 2,所以x 1-x 2<0,x 1x 2>4,x 1x 2-4>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2). 所以函数f (x )=x +4x在(2,+∞)上是增函数.B 级 素养提升一、选择题1.已知f (x )为R 上的减函数,则满足f (2x )>f (1)的实数x 的取值范围是( D ) A .(-∞,1) B .(1,+∞) C .(12,+∞)D .(-∞,12)[解析] ∵f (x )在R 上为减函数且f (2x )>f (1). ∴2x <1,∴x <12.2.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( D )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定[解析] ∵x 1,x 2不在同一单调区间内,∴大小关系无法确定.3.已知函数y =ax 和y =-bx 在(0,+∞)上都是减函数,则函数f (x )=bx +a 在R 上是( A )A .减函数且f (0)<0B .增函数且f (0)<0C .减函数且f (0)>0D .增函数且f (0)>0[解析] ∵y =ax 和y =-b x在(0,+∞)都是减函数,∴a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A .4.下列有关函数单调性的说法,不正确的是( C )A .若f (x )为增函数,g (x )为增函数,则f (x )+g (x )为增函数B .若f (x )为减函数,g (x )为减函数,则f (x )+g (x )为减函数C .若f (x )为增函数,g (x )为减函数,则f (x )+g (x )为增函数D .若f (x )为减函数,g (x )为增函数,则f (x )-g (x )为减函数[解析] 若f (x )为增函数,g (x )为减函数,则f (x )+g (x )的增减性不确定.例如f (x )=x +2为R 上的增函数,当g (x )=-12x 时, 则f (x )+g (x )=12x +2为增函数;当g (x )=-3x ,则f (x )+g (x )=-2x +2在R 上为减函数,∴选C .二、填空题5.函数y =-(x -3)|x |的递增区间为__[0,32]__. [解析] y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x (x >0)x 2-3x (x ≤0).作出其图象如图,观察图象知递增区间为[0,32].6.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是__(-∞,40]∪[64,+∞)__.[解析] 对称轴为x =k 8,则k 8≤5或k 8≥8,得k ≤40或k ≥64. 三、解答题7.用函数单调性的定义判断函数f (x )=ax +1x +2(a <12)在(-2,+∞)上的单调性. [解析] 证明: f (x )在(-2,+∞)上是减函数.∵函数f (x )=ax +1x +2=a (x +2)-2a +1x +2=a +1-2a x +2, 任取x 1,x 2∈(-2,+∞),且x 1<x 2.则f (x 1)-f (x 2)=(a +1-2a x 1+2)-(a +1-2a x 2+2)=1-2a x 1+2-1-2a x 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2). ∵-2<x 1<x 2,∴x 2-x 1>0,(x 1+2)(x 2+2)>0,∵a <12,∴1-2a >0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(-2,+∞)上是减函数.8.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[解析] 由题意可知⎩⎪⎨⎪⎧-1<1-a <1-1<2a -1<1,解得0<a <1.① 又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1),∴1-a >2a -1,即a <23.② 由①②可知,0<a <23. 即所求a 的取值范围是(0,23). 9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞),都有f (x +y )=f (x )+f (y )-1,且f (4)=5.(1)求f (2)的值;(2)解不等式f (m -2)≥3.[解析] (1)f (4)=f (2+2)=f (2)+f (2)-1,又f (4)=5,∴f (2)=3.(2)由(1)知f (2)=3,∴原不等式可化为f (m -2)≥f (2),∴⎩⎪⎨⎪⎧m -2≤2m -2>0,∴2<m ≤4. ∴不等式的解集为{m |2<m ≤4}.。
高一函数的单调性的知识点函数是数学中的重要概念之一,而在高一阶段学习的数学中,函数的单调性是一个重要的知识点。
下面我们将详细介绍高一函数的单调性的相关知识。
一、函数的单调性定义函数的单调性是指函数在定义域上的变化趋势。
具体来说,若对于定义域上的任意两个数x₁和x₂,当x₁<x₂时,函数f(x₁)的值与函数f(x₂)的值之间的关系。
如果函数在定义域上满足这种关系,我们称之为函数的单调性。
二、单调递增与单调递减函数的单调性可分为单调递增和单调递减两种情况。
1. 单调递增函数f(x)在定义域上,当x₁<x₂时,如果f(x₁)≤f(x₂),则函数f(x)是单调递增的。
例如,对于函数f(x)=x²,在整个实数范围上,无论取哪两个不相等的实数x₁和x₂,当x₁<x₂时,f(x₁)≤f(x₂)恒成立。
因此,函数f(x)=x²是单调递增的。
2. 单调递减函数f(x)在定义域上,当x₁<x₂时,如果f(x₁)≥f(x₂),则函数f(x)是单调递减的。
例如,对于函数f(x)=1/x,在定义域(0,+∞)上,当x₁<x₂时,f(x₁)≥f(x₂)恒成立。
因此,函数f(x)=1/x是单调递减的。
三、判断函数的单调性的方法我们可以通过函数图像、导数和函数的增减性来判断函数的单调性。
1. 函数图像法通过画出函数的图像,观察图像随x的变化趋势,判断函数的单调性。
例如,对于函数f(x)=x³,我们可以绘制出函数的图像。
通过观察图像可知,当x₁<x₂时,f(x₁)≤f(x₂)恒成立,因此函数f(x)=x³是单调递增的。
2. 导数法对于一元函数f(x),如果其导数f'(x)的值恒大于0(或小于0),则函数f(x)是单调递增的(或递减的)。
例如,对于函数f(x)=2x²-3x,我们首先求出其导数f'(x)=4x-3。
通过观察导数的值可知,f'(x)在整个实数范围上恒大于0,也就是说函数f(x)是单调递增的。
高一数学函数单调性知识点随着高中数学课程的深入,函数的概念成为重中之重。
而在函数中,单调性的概念也是非常重要的一个知识点。
掌握函数的单调性不仅可以帮助我们更好地理解和应用函数,还可以在解题过程中起到一定的指导作用。
下面,我们就来了解一下高一数学中关于函数单调性的知识点。
一、函数单调性的定义在介绍函数单调性之前,我们先来回顾一下函数的定义。
函数是两个集合之间的一种对应关系,通常用字母表示,比如f(x)。
数学上,我们把自变量的每个值称为定义域中的一个元素,而函数值称为值域中的一个元素。
函数的单调性指的是函数值的增减趋势。
如果一个函数在定义域上是递增的,那么我们称其为递增函数;如果一个函数在定义域上是递减的,那么我们称其为递减函数。
如果一个函数既不递增也不递减,我们称其为非单调函数。
二、函数单调性的判断方法1. 利用导数的符号判断函数的单调性高中数学中,我们常常通过求函数的导数来判断函数的单调性。
函数的导数是函数在某一点的变化率,可以帮助我们推断函数在该点的单调性。
具体的判断方法如下:- 若导数大于零,则函数递增;- 若导数小于零,则函数递减;- 若导数等于零,则函数在该点不增不减,可能是极值点。
通过这种方法,我们可以将函数图像分成若干个区间,在每个区间内判断函数的单调性。
2. 利用函数的一阶导数和二阶导数判断函数的单调性有些函数的导数难以求解,此时我们可以通过一阶导数和二阶导数的符号来判断函数的单调性。
具体的判断方法如下:- 若一阶导数大于零,而二阶导数小于零,则函数递减;- 若一阶导数大于零,而二阶导数大于零,则函数递增;- 若一阶导数小于零,而二阶导数小于零,则函数递增;- 若一阶导数小于零,而二阶导数大于零,则函数递减;通过这种方法,我们可以更加准确地判断函数的单调性。
三、函数单调性的应用1. 函数单调性在最值问题中的应用函数的单调性在求最值问题中经常被用到。
当我们需要求函数在某个区间上的最大值或最小值时,可以通过函数的单调性来限定最值的位置。