数理逻辑 第一章 逻辑、集合和函数 命题逻辑
- 格式:ppt
- 大小:1.59 MB
- 文档页数:34
数理逻辑与集合论精要与题解第一部分内容精要
第1章命题逻辑的基本概念1
11命题1
12命题联结词及真值表1
13合式公式2
14重言式2
15命题形式化3第2章命题逻辑的等值和推理演算4
21等值定理4
22等值公式4
23命题公式与真值表的关系6
24联结词的完备集6
25对偶式6
26范式7
27推理形式8
28基本的推理公式8
29推理演算9
210归结推理法9第3章命题逻辑的公理化11
31公理系统的结构11
32命题逻辑的公理系统11
33公理系统的完备性和演绎定理12
34命题逻辑的另一公理系统——王浩算法12
35命题逻辑的自然演绎系统13
36非标准逻辑13第4章谓词逻辑的基本概念15
41谓词和个体词15
42函数和量词15
43合式公式16
44自然语句的形式化16
45有限域下公式的表示法17
46公式的普遍有效性和判定问题17第5章谓词逻辑的等值和推理演算18
51否定型等值式18
52量词分配等值式18
53范式18
54基本推理公式19
55推理演算20
56谓词逻辑的归结推理法21第6章谓词逻辑的公理化22
61谓词逻辑的公理系统22
62谓词逻辑的自然演绎系统23
63递归函数24第7章一阶形式理论及模型25 71一阶语言及一阶理论25
72结构、赋值及模型26...。
绪论一、数理逻辑研究什么?★研究前提和结论的可推导性关系,它是由命题的逻辑形式而非内容所决定的二、数理逻辑如何研究?★形式语言第一章预备知识第一节集合一、集合1、集合的内涵和外延(所有元素的共同性质/构成集合的所有元素)2、有序偶和笛卡儿集二、关系1、概念:集合S上的n元关系R2、特殊情况:集合S上的一元关系R(集合S上的性质R)三、函数(映射)1、概念:函数(集合+有序偶+性质)、定义域dom(f)、值域ran(f)2、概念:f(x)(函数f在x处的值)3、概念:f:S->T(函数f是由S到T的映射)、满射、一一映射四、等价1、概念:关系R是集合S上的等价关系(自反+对称+传递)2、概念:元素x的R等价类3、性质:R等价类对集合S的一个划分(两两不相交,且并为S)五、基数1、概念:S~T(两个集合S和T是等势的)2、概念:集合S的基数|S|(集合中的元素个数)3、概念:可数无限集第二节归纳定义和归纳证明一、归纳定义1、集合的归纳定义⑴、直接生成某些元素⑵、给出运算,将其作用在已有元素上,以产生新的元素⑶、只有这样才是集合中的元素,除此之外,再也没有了2、典例:自然数集N的两个归纳定义二、归纳证明1、归纳定理:设R是一个性质,如果⑴、R(0)⑵、对于任何n∈N,如果R(n),则R(n’)那么,对于任何n∈N,都有R(n)2、概念:归纳基础、归纳步骤(包括归纳变元和归纳假设)、归纳命题、归纳证明3、概念:串值归纳法及其变形三、递归定义1、递归定义(在归纳定义的集合上,定义函数)在自然数集N上定义一个这样的函数f:g,h是N上的已知函数f(0)=g(0)f(n’)=h(f(n))2、递归定义原理(这样的函数是存在而且唯一的)第二章经典命题逻辑第一节联结词一、基本概念1、概念:命题(陈述句+确定值)(要么是真,要么是假)2、概念:简单命题和复合命题(区分的关键)3、小结:只考虑复合命题的真假是如何确定的二、联结词1、非A:2、A与B:A为真并且B为真3、A或B:A为真或B为真(A为真或B为真或AB同时为真)4、A蕴涵B:如果A真,则B真(并非A假B真)5、A等值于B:如果A蕴涵B,同时B蕴涵A第二节命题语言一、基本概念1、概念:命题语言(命题逻辑使用的形式语言)2、归纳:命题语言的三类符号(命题符号+联结符号+标点符号)3、概念:表达式、长度、空表达式、两个表达式相等4、概念:段、真段、初始段、结尾段二、基本概念1、定义:原子公式,记为Atom(L P)(单独一个命题符号)2、定义:公式,记为Form(L P)(经典归纳定义及其两种变形)★经典定义容易理解,然而两种变形更容易使用3、定理:如何证明L P的所有公式都满足R性质?★关键:假设S={A∈Form(L P)| R(A)}4、概念:对公式的结构做归纳(上述归纳证明)三、习题解析1、关键:利用二叉树表示公式的生成过程2、关键:蕴涵有多种不同的叙述方式(关键:分清楚充分条件和必要条件)⑴、◆如果p,则q⑵、◆只要p,则q⑶、◆p仅当q⑷、◆只有p,才q⑸、◆除非p,否则q(思路:想方设法转化为上述情形)第三节公式的结构一、引理1、引理1:L P的公式是非空的表达式2、引理2:在L P的每个公式中,左括号和右括号出现的数目相同3、引理3:真初始段不是公式(在L P的公式的任何非空的真初始段中,左括号出现的次数比右括号多。