c=
。
2.在△ABC中,∠C=90°,若c=13,ቤተ መጻሕፍቲ ባይዱ=12,则
a=
。
3.若直角三角形中,有两边长是3和4,则第三
边长的平方为( )
A 25 B 14 C 7 D 7或25
二、提高训练
4.一个长为10 m为梯子斜靠在墙上,梯子的顶端距
地面的垂直高度为8m,梯子的顶端下滑2 m后,底端
滑动
m.
5.已知Rt△ABC中,∠C=90°,若 a+b=14cm, c=10cm,则Rt△ABC的面积为( )
视察这三 个正方形
你发现图中三个正方形的面积之间 存在什么关系吗?
换个角度来看呢?
你发现了什么?
结论1 以等腰直角三角形两直角边为边长 的小正方形的面积的和,等于以斜边为边长的正 方形的面积.
分小组动手操作实践
用四张全等的等腰直角三角形纸片,拼成一个 正方形。(不能重叠,不能有间隙)
∵c2= 4×12 a2 ∴c2=2a2
(1)如果三角形的三边长分别为a,b,c,则 a2+b2=c2
( ×)
(2)如果直角三角形的三边长分别为a,b,c,则a2+b2=c2
( ×)
( 3) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 a+b=c
( ×)
(4) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 b2=c2-a2
2002年国际数 学家大会会标 ——弦图.
四、课堂小结 定理内容
重要的 思想方 法及数 学思想
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界.