6.凝析气藏及非常规气藏资料
- 格式:ppt
- 大小:2.01 MB
- 文档页数:60
选择题1.孔隙空间与岩石总体积之比称为(B)。
A孔隙度B总孔隙度C有效孔隙度D平均孔隙度2.依靠自然消耗开采的储层的压力下降取决于(C)。
①总的产气量②水层的水侵量③储层压实性④水力扩散系数A②③④ B①②④ C①②③ D①③④3.存在于地下岩层中的天然气,有的和原油伴生(伴生气),有的单独存在(非伴生气)。
其中非伴生的天然气藏大约占(C)。
A 40%B 50%C 60%D 70%4.相国寺石炭系气藏属于(A)。
A视均质气藏B非均质含硫气藏C裂缝D多裂缝系统5.根据断层走向和构造关系将断层分为(A)。
⑴走向断层⑵横向断层⑶斜向断层⑷平移断层A(1)(2)(3)B(1)(2)(4)C (1)(3)(4)D(2)(3)(4)6.地温梯度(G T)指恒温带以下每加深一定深度,温度随之增加的度数。
其中,常温气藏(B)。
A G T <2.7B 2.7W G T <3.3C G T N3.3D G T=3.07.气藏驱动一般分为(C)。
①气驱②弹性气驱③弹性水驱④水驱A①②③B①②④C①③④D②③④8.气藏从发现起,经过勘探到投入开发的整个过程,大体可分为除下列(C)外三阶段。
A预测B评价钻探C探明储量D开发9.下列哪项不是计算气藏储量的方法(D)。
A容积法B物质平衡法C气藏探边测试法D升压法10.气藏层系可划分为:(ACD)A纯气层B纯水层C气水层D凝析油气层11.影响气井举升能力的因素不包括()(A )油管尺寸(B)井底压力(C )临界流速(D)产量答案:D12.按烃类气的湿度系数,将烃类气分为干气和湿气。
一般以甲烷含量小于() 的天然气称为湿气()(A) 80% (B) 85% (C) 90% (D)95%答案:D13.以下哪个国家煤层气资源量最大()(A)俄罗斯(B)中国(C)美国(D)加拿大答案:A14.美国完钻世界上第一口页岩气井是在()年。
(A) 1831 (B) 1921 (C) 1931 (D) 1821答案:D15.泡沫排水采气中,气体流速对排水量有影响。
《凝析气藏气液变相态渗流理论研究》篇一一、引言凝析气藏是一种重要的能源资源,具有独特的气液变相态特性。
气液变相态渗流研究对于了解凝析气藏的开发利用、提高采收率及保障能源安全具有重要意义。
本文将围绕凝析气藏气液变相态渗流理论展开深入研究,为实际工程应用提供理论依据。
二、凝析气藏基本特性凝析气藏是指在地下高压高温环境下,烃类组分凝结为液体的气藏。
凝析气藏的主要特点是存在多相渗流,包括气体、轻质油和重质油等多种相态。
在储层条件下,由于温度和压力的变化,各相态之间会发生相互转化,导致渗流规律复杂多变。
三、气液变相态渗流理论基础在凝析气藏中,气液变相态渗流主要涉及以下几个方面:相态分布、多相渗流模型和传质过程等。
在理论研究过程中,我们需要充分考虑气体、液体的性质和流动特点,分析多相态间的转化关系以及其在不同储层条件下的分布特征。
在此基础上,我们提出了一种新型的气液变相态渗流模型,该模型能够更准确地描述凝析气藏的渗流规律。
四、模型建立与求解(一)模型建立针对凝析气藏的气液变相态渗流问题,我们建立了多相渗流模型。
该模型考虑了气体、轻质油和重质油等多种相态的分布和转化关系,以及储层条件对各相态的影响。
通过引入状态方程和物质守恒原理,我们建立了相应的数学模型。
(二)模型求解在模型求解过程中,我们采用了数值模拟方法。
通过对方程进行离散化处理,将其转化为易于求解的线性方程组。
在求解过程中,我们充分考虑了多相态的分布特征和转化关系,确保计算结果的准确性。
此外,我们还对求解过程中可能出现的问题进行了分析,并提出了相应的解决方案。
五、实验验证与结果分析(一)实验验证为了验证模型的准确性,我们进行了室内实验和现场试验。
室内实验主要针对不同储层条件下的凝析气藏进行模拟实验,以验证模型的适用性。
现场试验则通过收集实际生产数据与模型计算结果进行对比分析,以验证模型的可靠性。
(二)结果分析通过实验验证,我们发现所建立的多相渗流模型能够较好地描述凝析气藏的气液变相态渗流规律。
《石油与天然气地质学》复习题第一章油气藏中的流体——石油、天然气、油田水一、名词解释石油、石油的灰分、组分组成、石油的比重、石油的荧光性;天然气、气顶气、气藏气、凝析气(凝析油)、固态气水合物、煤型气、煤成气、煤层气;油田水、油田水矿化度二、问答题1. 简述石油的元素组成。
2. 简述石油中化合物组成的类型及特征。
3.何谓正构烷烃分布曲线?在油气特征分析中有哪些应用?4. 简述Tissot和Welte 三角图解的石油分类原则及类型。
5. 简述海陆相原油的基本区别。
(如何鉴别海相原油和陆相原油?)6. 描述石油物理性质的主要指标有哪些?7. 简述天然气依其分布特征在地壳中的产出类型及分布特征。
8. 油田水的主要水型及特征。
9. 碳同位素的地质意义。
第二章油气生成与烃源岩一、名词解释沉积有机质、干酪根、成油门限(门限温度、门限深度)、生油窗、烃源岩、有机碳、有机质成熟度、氯仿沥青“A”、CPI值、TTI法(值);二、问答题1.沉积有机质的生化组成主要有哪些?对成油最有利的生化组成是什么?2.按化学分类,干酪根可分为几种类型?简述其化学组成特征。
3.论述有机质向油气转化的现代模式及其勘探意义。
(试述干酪根成烃演化机制)4.试述有机质成烃的主要控制因素。
(简述时间—温度指数(TTI)的理论依据、方法及其应用。
)5.试述有利于油气生成的大地构造环境和岩相古地理环境(地质条件)。
6.天然气可划分哪些成因类型?有哪些特征?7.试述生油理论的发展。
8.评价生油岩质量的主要指标。
9.油源对比的基本原则是什么?目前常用的油源对比的指标有哪几类?第三章储集层和盖层一、名词解释储集层、绝对孔隙度、有效孔隙度、绝对渗透率、有效(相)渗透率、相对渗透率、孔隙结构、流体饱和度、砂岩体、盖层、排替压力二、问答题1.试述压汞曲线的原理及评价孔隙结构的参数。
2.碎屑岩储集层的孔隙类型有哪些?影响碎屑岩储集层物性的地质条件(因素)。
(简述碎屑岩储集层的主要孔隙类型及影响储油物性的因素。
天然气地质学复习重点一.名称解释腐泥型:指脂肪族有机质在缺氧条件下分解和聚合作用的产物,来自海洋或湖泊环境水下淤泥中的孢子及浮游类生物。
以生油为主、生气为辅。
腐殖型:指泥炭形成的产物,来自有氧条件下沼泽环境的陆生植物。
以生气为主、生油为辅。
气层的有效厚度:指达到储量起算标准的含气层系中具有产气能力的那部分储层厚度凝析气藏:特殊的气藏气。
地层高温、高压下,呈气态,采出后反而呈液态油。
高二氧化碳气藏:CO2>2%的气藏。
高氮气藏:N2含量>10%的气藏。
富硫化氢气藏:H2S>1% 的气藏。
干气:C2+(重烃)含量体积百分比<5%湿气:C2+(重烃)含量体积百分比≥5%天然气运聚散的动平衡:地下天然气的散失和补充达到某种程度的相对平衡流体势:相对于基准面单位质量流体所具有的机械能总和。
页岩气:是指赋存于富有机质泥页岩及其夹层中,以吸附及游离状态为主要存在方式的烃类气体。
煤层气:在煤化作用过程中生成的天然气体,基本没有经过运移或只经过少量运移,呈吸附状态储集在煤层中,就是煤层气天然气水合物:是一种由水分子和碳氢气体分子组成的结晶状固态简单化合物(M·nH2O)油源裂解气:指在成熟和高成熟演化阶段(Ro 值为0. 6 %~2. 0 %),有机质经热催化作用降解而形成的天然气。
油源热解气:系指在过成熟阶段(Ro 值大于2. 0 %),残余干酪根、已生成的液态烃和部分重烃气经过高温裂解作用而形成的天然气。
致密砂岩气:是指孔隙度低、渗透率比较低、含气饱和度低、含水饱和度高、天然气在其中流动速度较为缓慢的砂岩层中的非常规天然气。
深盆气:指在特殊地质条件下形成的,发育于盆地深部的,具有特殊圈闭机理和分布规律的非常规天然气藏。
高、中、低含凝析油气藏:当天然气中凝析油含量等于或大于50g/m3时称为凝析气。
又可分为低含凝析油(50~200g/m3)、中含凝析油(200~400g/m3)和高含凝析油(>400g/m3)气藏三个亚类天然气的扩散运移:指天然气在浓度梯度的作用下,自发地发生的从高浓度区向低浓度区转移运移相态:游离态、溶解态、吸附态、固态气水合物天然气储层下限值:天然气储层的有效下限值:酸性气藏:二. 填空、简答、论述题1.天然气储量计算常用方法?容积法中的参数有哪些?了解参数的求取?有容积法、动态法(物质平衡法、弹性二相法等)、产量递减法、物质平衡法等。
气藏分类SY/T6168—19951范围本标准规定了天然气藏单因素分类和多因素组合分类系列与指标,同时规定了组合分类的原则和命名方法。
本标准适用于天然气常规气藏、凝析气藏和非常规等气藏的分类。
3.1按气藏圈闭因素分类天然气藏按圈闭类型可分为四类十亚类,见表1。
3.2按储层因素分类3.2.1依据储层岩石类型划分。
见表2。
3.2.2依据储层物性划分,见表3。
按储层物性划分气藏类型时,应以试井资料求取得有效渗透率为主,绝对渗透率和孔隙度参数仅作参考使用。
尤其是非孔隙型储层,绝不能仅使用绝对渗透率进行划分。
表1 按圈闭因素划分表2 气藏按储层岩类的划分表3 气藏按储层物性的划分表4 气藏储渗空间类型特征表气藏按驱动方式可分为三类,其类型划分及特征见表5。
表5 气藏按驱动因素分类3.4按相态因素分类:按天然气藏地层条件下的压力—温度相态可分为干气藏、湿气藏、凝析气藏、水溶性气藏、水化物气藏五类。
3.4.1干气藏:储层气组成中部含常温常压条件下液态烃(C5以上)组分,开采过程中地下储层内和地面分离器中均无凝析油产出,通常甲烷含量大于95%,气体相对密度小于0.65。
3.4.2湿气藏:气藏衰竭式开采时储层中不存在反凝析现象,其流体在地下始终为气态,而地面分离器内可有凝析油析出,但含量较低,一般小于50g/m3 。
3.4.3凝析气藏:在初始储层条件下流体呈气态,储层温度处于压力--温度相图的临界温度与最大凝析温度之间。
在衰竭式开采时储层中存在反凝析现象,地面有凝析油产出。
3.4.4水溶性气藏:烃类气体在地层条件下溶于地层水之中,形成的具有工业开采价值的气藏。
3.4.5水化物气藏:烃类气体与水在储层条件下呈固态存在,具有工业开采价值的气藏。
3.5凝析气藏的分类3.5.1按露点在压力—温度相图中的位置划分A)常规凝析气藏:储层温度距流体压力—温度相图的临界温度点较远,露点压力随凝析油含量增多而增高。
B)近临界态凝析气藏:在初始储层条件下流体呈气态。
采油气工程中凝析气藏的开发技术分析摘要:凝析气藏是介于油藏和天然气藏之间的一种重要的油气藏类型,是一种特殊而复杂的气田。
凝析气除含有大量的甲烷、乙烷外,还含有一定数量的丙烷、丁烷、戊烷及戊烷以上的烃类。
在开发过程中由于地层压力的降低会出现反凝析现象,使气藏中的重组分滞留在地层中无法采出,降低凝析油采收率。
凝析气藏的开采方式主要有衰竭式开采、保持压力开采和部分保持压力开采等。
虽然采用衰竭式开采会导致大量的液烃由于反凝析而损失在地层中,但是该种开发方式投资费用低、投资回收快,所以仍是我国凝析气藏的主要开发方式。
对于高含凝析油的大型凝析气田采用保持压力开采经济效益较好,例如我国牙哈凝析气田采用循环注气开发,经济效益非常好。
关键词:凝析气藏;开发特征;技术措施1、凝析气藏开发井的参数设计1.1井网井距凝析气藏的井网井距包括油环区域与凝析气藏两部分。
对于油环区域,技术人员应用Eclipse软件明确不同井距对应的井数,通过油气藏数值模拟技术预测不同井距的采出程度。
模拟结果表明,在井距小于425m时,井距减少,井数增多,采出程度基本保持不变。
就此,考虑到开采成本,技术人员结合工程经验与现场数据,应用综合经济分析法,明确最优井距,为500m。
凝析气藏的计算方式与油环区域类似,技术人员选择600m、800m和1000m作为井距参数,分别计算其对应井数,预测其采出程度。
模拟结果表明,在井距为600m时,10年采出程度为43%,15年采出程度为56%,30年采出程度为78%;在井距为800m时,10年采出程度为33%,15年采出程度为47%,30年采出程度为70%;在井距为1000m时,10年采出程度为22%,15年采出程度为33%,30年采出程度为58%。
虽然井距小,采出程度高,但其所需的井数较多,投入的成本更高。
因此,在计算凝析气藏井距时,还需计算不同井距的经济效益。
技术人员根据采出程度,计算不同井距的内部收益率、净现值与投资回收期,计算结果表明,在井距为600m 时,内部收益率为6.91%,净现值约-3380万元,静态投资回收期为7.24年,动态投资回收期小于10年;在井距为800m时,内部收益率为10.7%,净现值约-636万元,静态投资回收期为5.88年,动态投资回收期小于10年;在井距为1000m时,内部收益率为14.8%,净现值约951万元,静态投资回收期为5.13年,动态投资回收期为8.33年。
一、背景介绍凝析气藏是一种特殊的天然气储层类型,是指在一定的温度和压力条件下,天然气中的一部分水汽随着天然气分离出来,形成水相和气相共存的储层。
凝析气藏由于其特殊的地质构造和气体特性,开发过程中容易产生凝析现象。
二、凝析气藏反凝析伤害评价1. 形成原因由于凝析气藏中的天然气在采出过程中由于压力的减小和温度的降低,使得原来溶解在天然气中的液态成分开始逸出,逸出的液态成分在管道中会逐渐凝析形成水相。
2. 伤害评价凝析现象的发生会导致管道内液态水的积聚,增加了管道内的流体阻力,降低了输送效率,并且在特殊情况下会导致管道的堵塞,严重影响产气系统的正常运行。
凝析现象还会损坏管道和设备,增加了维护成本,降低了设备的使用寿命。
3. 解除方法a. 增加输送温度和压力,减少凝析发生的可能性;b. 通过化学方法改变液态成分的性质,减小凝析点,避免液态成分的凝析;c. 采用隔离和分离设备,及时将液态水与气态分离,避免凝析现象的产生。
三、凝析气藏反凝析伤害解除方法案例1. 某油田凝析气藏开发中出现了严重的凝析现象,导致气体输送量锐减,管道出现堵塞现象。
经过调查发现,主要是因为管道温度过低和气体压力不足导致了凝析现象的发生。
2. 针对该情况,油田采取了以下措施:a. 对管道进行加热处理,增加管道的温度,减少凝析现象的发生;b. 调整生产工艺,增加天然气的压力,防止凝析现象的发生;c. 对已经凝析的水相进行隔离和分离处理,恢复管道的正常运行。
3. 经过以上措施的实施,油田成功解除了凝析现象的伤害,恢复了正常的气体输送量,有效提高了气田的产能和效益。
四、结论凝析气藏反凝析伤害评价和解除方法是凝析气藏开发过程中十分重要的环节,对于避免或解除凝析现象的伤害,保障气田的正常运行和产量稳定具有重要意义。
在实际操作中,针对不同的情况,需要采取相应的措施,及时有效地解除凝析伤害,确保气田的稳定运行和高效开发。
五、凝析气藏反凝析伤害预防措施1. 持续监测和控制气体温度和压力,以确保在允许范围内;2. 定期对管道进行检修和保养,防止管道温度过低和气体压力不足;3. 建立完善的生产工艺管理制度,对凝析现象进行及时预警和处理;4. 采用先进的化学处理技术,调整液态成分的性质,提高凝析点,减小凝析现象的发生。
石油工程专业知识竞赛一、采气、气藏1. 在圈闭内聚集了足够数量并具有同一压力系统的天然气,就形成了( C )。
(A)油气藏 (B)油藏 (C)气藏 (D)气田2. 是否为工业性气藏的判断标准是( B )。
(A)气质好有开采价值 (B)数量上具有开采价值(C)气藏压力足够高 (D)气藏温度足够高3. 气井在生产过程中只产生凝析水或少量凝析油,这种气井称为(C )气井。
(A)有水 (B)凝析 (C)无水 (D)石油伴生4. 出水气井,都存在控制水的问题,对水的控制是通过控制( A )来实现的。
(A)临界流量 (B)临界压力 (C)临界温度 (D)临界流速5.气田是指受局部构造所控制的同一面积范围的气藏总和 (对)6.(C)是通过关闭气井,连续记录压力随时间的变化,按不稳定渗流的理论和公式,作压力恢复曲线,求出气井产气方程式,计算地层参数。
A干扰试井 B压力降落试井 C压力恢复试井 D多井不稳定试井7.温度相同时,生成水合物的压力随天然气相对密度增加而( B )。
(A)升高 (B)降低 (C)不变 (D)呈无规律变化8.提高温度防止生成水合物方法的实质是,把气流温度提高到生成水合物( C )。
(A)温度以下 (B)温度相同(C)温度以上 (D)温度以上或以下均可9.含有酸性气体组成的天然气在输送过程中,由于沿程温降在管道内凝析出液态水,其最主要危害是(C)(A)增加管道起点压力(B)降低管道输送能力(C)造成管道内腐蚀(D)液态水堵塞管道10. 气水同产井根据出水的形式不一样,其相应的治水措施也不相同。
针对水窜型气层出水,应采取的主要措施是(B)(A)控水采气(B)封堵出水层(C)排水采气(D)放喷提水11.气举阀排水采气的原理是利用从套管注入的高压气,来逐级启动安装在油管柱上的若干个气举阀,逐段降低油管柱的液面,从而使水淹气层恢复生产。
(√)12.影响气井出水的因素有井底距原始气水界面的高度、生产压差、气层渗透性及气层孔缝结构、边水底水水体的能量与活跃程度。
燃气的分类及基本性质第一部分燃气的分类及基本性质一、燃气的分类(一)天然气1、常规天然气(1)、气田气:是指产自天然气气藏的纯天然气,主要组分是甲烷。
(2)、石油伴生气:是指与石油共生的、伴随石油一起开采出来的天然气,其主要组分是甲烷、乙烷、丙烷和丁烷。
(3)、凝析气田气:是指从深层气田开采的含石油轻质馏分的天然气。
主要组分是甲烷、2%-5%戊烷及戊烷以上的碳氢化合物。
2、非常规天然气:是指受目前技术经济条件的限制尚未投入工业开采及制取的天然气资源,包括天然气水合物、煤层气、页岩气、煤制天然气等。
(1)、天然气水合物俗称可燃冰:是天然气与水在一定条件下形成的类冰固态化合物。
主要组分为甲烷。
(2)、煤层气:是煤层形成过程中经过生物化学和变质作用以吸附或游离状态存在于煤层及固岩中的自储式天然气。
(3)、页岩气:是以吸附或游离状态存在于暗色泥页岩或高碳泥页岩中的天然气。
(4)、煤制天然气:是指煤经过气化产生的合成气,再经过甲烷化处理,生产代用天然气(SNG)。
(二)、人工燃气1、固体燃料干馏煤气:利用焦炉等对煤进行干馏所获得的煤气。
2、固体燃料气化煤气:是指以煤作为原料采用纯氧和水蒸气作为气化剂,获得的煤气。
如:水煤气、发生炉煤气等。
2、油制气;是指利用重油(炼油厂提取汽油、煤油、柴油之后剩余的油品)制取城市燃气。
3、高炉煤气:是冶金工厂炼铁时的副产气,主要组分是一氧化碳和氮气。
(三)、液化石油气:是指在天然气及石油开采或炼制石油过程中,作为副产品而获得的。
(四)、生物气:各种有机物质在隔绝空气的条件下发酵,并在微生物的作用下产生的可燃气体,也叫做沼气。
二、燃气的基本性质1、热值:单位体积的燃气完全燃烧所产生的热量。
2、热值单位的换算关系:1千卡=4.187千焦;1千焦=0.239千卡:1千瓦小时=3600千焦=859.8千卡3、常用燃气的热值:4、、爆炸极限:可燃气体和空气的混合物遇明火而引起爆炸时的可燃气体浓度范围成为爆炸极限。