最新高一数学必修1综合测试题(1)
- 格式:doc
- 大小:187.00 KB
- 文档页数:6
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修1综合测试题3套(附答案)高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2}(D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)3 6.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12-8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D)(23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D)212ca b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
必修1数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式 \(x^2 - 5x + 6 < 0\) 的解集?A. \(x < 2\)B. \(x > 2\)C. \(2 < x < 3\)D. \(x < 3\) 或 \(x > 2\)答案:C2. 函数 \(f(x) = 2x^3 - 6x^2 + 9x + 1\) 的导数 \(f'(x)\) 是:A. \(6x^2 - 12x + 9\)B. \(6x^2 - 12x + 3\)C. \(6x^2 - 12x + 9x\)D. \(6x^2 - 12x + 1\)答案:A3. 已知 \(a\) 和 \(b\) 是两个非零实数,且 \(a^2 - b^2 = 0\),则 \(a\) 和 \(b\) 的关系是:A. \(a = b\)B. \(a = -b\)C. \(a = b\) 或 \(a = -b\)D. \(a\) 和 \(b\) 无关系答案:C4. 直线 \(y = 2x + 3\) 与 \(y = -x + 1\) 的交点坐标是:A. \((-2, -1)\)B. \((1, 3)\)C. \((-1, 1)\)D. \((2, 5)\)答案:B5. 集合 \(A = \{x | x^2 - 4x + 3 < 0\}\) 和集合 \(B = \{x | x - 2 < 0\}\) 的交集是:A. \(\{x | 1 < x < 2\}\)B. \(\{x | 1 < x < 3\}\)C. \(\{x | x < 2\}\)D. \(\{x | x < 1\}\)答案:A6. 已知 \(\sin A = \frac{3}{5}\),且 \(A\) 为锐角,则 \(\cos A\) 的值是:A. \(\frac{4}{5}\)B. \(\frac{1}{5}\)C. \(\frac{3}{4}\)D. \(\frac{4}{3}\)答案:A7. 函数 \(y = \log_2(x)\) 的定义域是:A. \(x > 0\)B. \(x < 0\)C. \(x \leq 0\)D. \(x \geq 0\)答案:A8. 函数 \(y = x^3 - 3x^2 + 4\) 的单调递增区间是:A. \((-\infty, 1)\)B. \((1, +\infty)\)C. \((-\infty, 2)\)D. \((2, +\infty)\)答案:B9. 已知 \(\tan \alpha = 2\),求 \(\sin \alpha \cos \alpha\) 的值:A. \(\frac{2}{5}\)B. \(\frac{1}{5}\)C. \(\frac{2}{3}\)D. \(\frac{1}{3}\)答案:A10. 函数 \(y = \frac{1}{x}\) 的图像关于:A. 原点对称B. \(y\) 轴对称C. \(x\) 轴对称D. 直线 \(y = x\) 对称答案:A二、填空题(每题4分,共20分)1. 函数 \(f(x) = x^2 - 6x + 9\) 的最小值是 \(\boxed{3}\)。
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
人教版高一数学必修一教材配套检测题及参考答案目录第一章集合与函数概念教材配套检测题 (1)第一章检测题参考答案 (3)第二章基本初等函数教材配套检测题 (4)第二章检测题参考答案 (6)第三章函数的应用教材配套检测题 (7)第三章参考答案 (9)人教版高一数学必修一第一章集合与函数概念教材配套检测题一、选择题(每小题只有一个正确选项)1.方程260x px -+=的解集为M ,方程260x x q +-=的解集为N ,且{}2M N = ,那么p q +=.21A .8B .6C .7D 2.下列四组函数中,表示相等函数的一组是().A f x x =,()g x =.B ()f x =())2g x =()21.1x C f x x -=-,()1g x x =+().D f x =()g x =3.下列四个函数中,在()0,+∞上为增函数的是().3A f x x=-()2.3B f x x x=-()1.1C f x x =-+().D f x x=-4.()f x 是定义在[]6,6-上的偶函数,且()()31f f >,则下列各式一定成立的是()().06A f f <()().32B f f >()().13C f f -<()().20D f f >5.已知函数()f x 是R 上的增函数,()0,1A -、()3,1B 是其图象上的两点,那么()11f x +<的解集的补集是().1,2A -().1,4B ()[).,14,C -∞-+∞ (][).,12,D -∞-+∞ 二、填空题6.函数12y x=-的定义域为。
7.已知函数()f x 是偶函数,当0x <时,()()1f x x x =+,则当0x >时,()f x =。
8.()201,2,0x x f x x x ≤⎧+=⎨->⎩若()10f x =,则x =。
三、解答题9.求函数211x y x -=+,[]3,5x ∈的最小值和最大值。
班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
高一数学必修1综合测试题1.集合EMBED Equation.3 ,EMBED Equation.DSMT4 则EMBED Equation.DSMT4 为()A. EMBED Equation.3 B.{0,1} C.{1,2} D. EMBED Equation.32.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C. EMBED Equation.DSMT4 D. EMBED Equation.DSMT43.设EMBED Equation.DSMT4 ,EMBED Equation.DSMT4 ,EMBEDEquation.DSMT4 ,则().A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT44.已知函数EMBED Equation.DSMT4 是定义在R上的奇函数,且当EMBED Equation.3 时, EMBED Equation.3 ,则 EMBED Equation.DSMT4 在R上的解析式为()A. EMBED Equation.3 B. EMBED Equation.3C. EMBED Equation.3 D. EMBED Equation.35.要使EMBED Equation.DSMT4 的图象不经过第二象限,则t的取值范围为()A. EMBED Equation.DSMT4B. EMBED Equation.DSMT4C. EMBED Equation.DSMT4D. EMBED Equation.DSMT46.已知函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上是EMBED Equation.DSMT4 的减函数,则 EMBED Equation.DSMT4 的取值范围是()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT47.已知 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 上的减函数,那么 EMBED Equation.DSMT4 的取值范围是()A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT48.设EMBED Equation.DSMT4 ,函数EMBED Equation.DSMT4 在区间EMBED Equation.DSMT4 上的最大值与最小值之差为EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.2 C.EMBED Equation.DSMT4 D.49. 函数 EMBED Equation.3 与 EMBED Equation.3 在同一直角坐标系下的图象大致是(C)10.定义在R上的偶函数 EMBED Equation.3 满足 EMBED Equation.3 ,且当EMBED Equation.DSMT4 EMBED Equation.3 时EMBEDEquation.DSMT4 ,则 EMBED Equation.DSMT4 等于()A. EMBED Equation.DSMT4 B. EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT411.根据表格中的数据,可以断定方程 EMBED Equation.3 的一个根所在的区间是(). EMBED Equation.3 -10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)-10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)0123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)23 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)3 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)7.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)20.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2345(-1,0)B.(0,1)C.(1,2)D.(2,3)345(-1,0)B.(0,1)C.(1,2)D.(2,3)45(-1,0)B.(0,1)C.(1,2)D.(2,3)5(-1,0)B.(0,1)C.(1,2)D.(2,3)(-1,0)B.(0,1)C.(1,2)D.(2,3)A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.下表显示出函数值 EMBED Equation.3 随自变量 EMBED Equation.3 变化的一组数据,由此判断它最可能的函数模型是().x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型5678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型78910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型8910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型1921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型21232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型2527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型13.若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 .14. EMBED Equation.3 =15.已知函数 EMBED Equation.3 同时满足:(1)定义域为 EMBED Equation.DSMT4 且EMBED Equation.DSMT4 恒成立;(2)对任意正实数EMBED Equation.3 ,若 EMBED Equation.3 有 EMBED Equation.3 ,且 EMBED Equation.3 .试写出符合条件的函数 EMBED Equation.DSMT4 的一个解析式16.给出下面四个条件:① EMBED Equation.DSMT4 ,② EMBED Equation.DSMT4 ,③ EMBED Equation.DSMT4 ,④ EMBED Equation.DSMT4 ,能使函数 EMBED Equation.DSMT4 为单调减函数的是 .17. 已知函数 EMBED Equation.DSMT4 的定义域为 EMBED Equation.DSMT4,且同时满足下列条件:(1) EMBED Equation.DSMT4 是奇函数;(2) EMBED Equation.DSMT4在定义域上单调递减;(3) EMBED Equation.DSMT4求 EMBED Equation.DSMT4 的取值范围HYPERLINK"/"18.函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上有最大值 EMBED Equation.DSMT4 ,求实数 EMBED Equation.DSMT4 的值HYPERLINK "/"19.已知函数 EMBED Equation.3 ,求函数 EMBED Equation.3 的定义域与值域.20.集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈ EMBED Equation.3 且f(x)在(0,+∞)上是增函数.(1)试判断 EMBED Equation.DSMT4 (x≥0)是否在集合A中,若不在集合A中,试说明理由;(2)对于(1)中你认为是集合A中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x≥0总成立.高一数学必修1综合测试题(一)参考答案:1----5 DCACA 6----10BCDCD 11.C 12.A13. 3 14. EMBED Equation.DSMT4 15. EMBED Equation.DSMT4等16. ①④17解: EMBED Equation.DSMT4EMBED Equation.DSMT4 , EMBED Equation.DSMT4 EMBED Equation.DSMT4 .18解:对称轴 EMBED Equation.DSMT4 ,当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递减区间,EMBED Equation.DSMT4 ;6分当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递增区间,EMBED Equation.DSMT4 ;9分当 EMBED Equation.DSMT4 时 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 矛盾;所以 EMBED Equation.DSMT4 或 EMBED Equation.DSMT4 HYPERLINK "/"19 解:由 EMBED Equation.3 ,得 EMBED Equation.3 . 解得 EMBED Equation.DSMT4 EMBED Equation.DSMT4 定义域为 EMBEDEquation.DSMT4令 EMBED Equation.3 ,则 EMBED Equation.3 .∵ EMBED Equation.3 ,∴ EMBED Equation.3 ∴值域为 EMBED Equation.3 .20.解:(1) EMBED Equation.3 EMBED Equation.3 EMBED Equation.3不在集合A中又 EMBED Equation.3 的值域 EMBED Equation.3 , EMBED Equation.3当 EMBED Equation.3 时 EMBED Equation.3 为增函数 EMBED Equation.3 在集合A中(2) EMBED Equation.3 EMBED Equation.3EMBED Equation.3EMBED Equation.3 对任意 EMBED Equation.3 ,不等式 EMBED Equation.3 总成.高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.A EMBED PBrush BB.B EMBED PBrush AC.A=BD.A∩B= EMBED Equation.33.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q EMBED Equation.3 (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9 EMBED Equation.3D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)= eq \b\lc\{(\a\al(x2x>0,πx=0,0 x<0)) ,则f{f[f(-3)]}等于A.0B.πC.π2D.910.已知2lg(x-2y)=lg x+lg y,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0, EMBED Equation.3C.( eq\f(1,2) ,+∞) D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3 EMBED Equation.3 >( eq \f(1,3) )x+1对一切实数x恒成立,则实数a 的取值范围为___ ___.16. f(x)= EMBED Equation.3 ,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.高一数学必修1综合测试题(二)参考答案一、选择题题号123456789101112答案C B C D B D A C C B D A二、填空题123456789101112答案C B C D B D A C C B D A二、填空题23456789101112答案C B C D B D A C C B D A二、填空题3456789101112答案C B C D B D A C C B D A二、填空题456789101112答案C B C D B D A C C B D A二、填空题56789101112答案C B C D B D A C C B D A二、填空题6789101112答案C B C D B D A C C B D A二、填空题789101112答案C B C D B D A C C B D A二、填空题89101112答案C B C D B D A C C B D A二、填空题9101112答案C B C D B D A C C B D A二、填空题101112答案C B C D B D A C C B D A二、填空题1112答案C B C D B D A C C B D A二、填空题12答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题C B CD B D A C C B D A二、填空题B C D B D A C C B D A二、填空题C D B D A C C B D A二、填空题D B D A C C B D A二、填空题B D AC C BD A二、填空题D A C C B D A二、填空题A C CB D A二、填空题C C BD A二、填空题C BD A二、填空题B D A二、填空题D A二、填空题A二、填空题二、填空题二、填空题13. EMBED Equation.3 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1]17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).(C U A)∩(C U B)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴ EMBED Equation.3 解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为 eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100- eq \f(x-3000,50) )(x-150)- eq \f(x-3000,50) ×50整理得:f(x)=- eq \f(x2,50) +162x-2100=- eq \f(1,50) (x-4050)2+307050 ∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=log EMBED Equation.3 x∵x∈[2,4],t=log EMBED Equation.3 x在定义域递减有log EMBED Equation.3 4<log EMBED Equation.3 x<log EMBED Equation.3 2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,- eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 -a EMBED Equation.3 +a EMBED Equation.3 )=eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 )(1+ EMBED Equation.3 )由于a>0,且a≠1,∴1+ EMBED Equation.3 >0∵f(x)为增函数,则(a2-2)( a EMBED Equation.3 -a EMBED Equation.3 )>0 于是有 EMBED Equation.3 ,解得a> eq \r(2) 或0<a<1。
高一数学试卷时量:100分钟 总分:120分一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A CC .()()AB BCD .()A B C4.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或26.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,57.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D 8.函数lg y x = ( )A .是偶函数,在区间(,0)-∞ 上单调递增; B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增; D.是奇函数,在区间(0,)+∞上单调递减9..函数12+=-x ay (0>a ,且1≠a )的图象必经过点( ) A.(0,1) B.(1,1) C. (2, 0) D. (2,2)10.已知不等式为27331<≤x ,则x 的取值范围( )A.321<≤-x B.321<≤x C. R D.3121<≤x 11.下列函数中值域为()∞+,0的是( ) A.xy -=215B.xy -⎪⎭⎫⎝⎛=131 C.121-⎪⎭⎫ ⎝⎛=xy D.xy 21-=12.甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只可能是( )A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④二、填空题(本大题共6小题,每小题4分,共24分。
高一数学必修1综合测试题(一)
1.集合{|1,}A y y x x R ==+∈,{|2,},x
B y y x R ==∈则A B 为( )
A .{(0,1),(1,2)}
B .{0,1}
C .{1,2}
D .(0,)+∞
2.已知集合{
}
1|
1242
x N x x +=∈<<Z ,,{11}M
=-,,则M
N =( )
A .{11}-,
B .{0}
C .{1}-
D .{10}-,
3.设
12
log 3a =,0.2
13b =⎛⎫
⎪
⎝⎭,1
32c =,则( ).
A
a b c << B c b a << C c a b <<
D
b a
c <<
4.已知函数()f x 是定义在R 上嘚奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上嘚解析式为 ( ) A . ()(2)f x x x =-+ B .()||(2)f x x x =-
C .
()(||2)f x x x =- D. ()||(||2)f x x x =-
5.要使1
()3
x g x t +=+嘚图象不经过第二象限,则t 嘚取值范围为 ( )
A.
1t ≤- B. 1t <- C.3t ≤- D. 3t ≥-
6.已知函数
log (2)a y ax =-在区间[0,1]上是x 嘚减函数,则a
嘚取
值范围是( )
A .
(0,1) B .(1,2) C .(0,2) D .(2,)+∞
7.已知(31)4,1()log ,1a
a x a x f x x x -+<=>⎧⎨⎩是(,)-∞+∞上嘚减函数,那么a 嘚取值范围是 ( )
A
(0,1)
B
1
(0,)3
C
11[,)73
D
1
[,1)7
8.设
1a >,函数()log
a
f x x =在区间[,2]a a 上嘚最大值与最小值之差为
1
2
,则
a =( )
A .
2
B .2
C .
22 D .4
9. 函数2()1log f x x =+与1
()2
x g x -+=在同一直角坐标系下嘚图象大致是( )
10.定义在R
上嘚偶函数
()f x 满足(1)()f x f x +=-,且当
x ∈[1,0]-时
()12x
f x ⎛⎫=
⎪⎝⎭
,则
2(log 8)f 等于 ( )
A .
3 B .
1
8 C . 2- D .
2
11.根据表格中嘚数据,可以断定方程20x e x --=嘚一个根所在嘚区间是( ).
x
-1 0 1 2 3 x e
0.37 1 2.72 7.39 20.09 2x +
1
2
3
4
5
A . (-1,0)
B . (0,1)
C . (1,2)
D . (2,3)
12.下表显示出函数值y 随自变量x 变化嘚一组数据,由此判断它最可能嘚函数模型是( ).
x 4 5 6 7 8 9 10 y
15
17
19
21
23
25
27
A .一次函数模型
B .二次函数模型
C .指数函数模型
D .对数函数模型
13.若0a >,23
49
a
=
,则2
3
log a = .
14.lg 27lg83lg 10
lg1.2
+-=
15.已知函数
()y f x =同时满足:(1)定义域为(,0)(0,)-∞+∞且
()()f x f x -=恒成立;
(2)对任意正实数
12,x x ,若12x x <有12()()f x f x >,且
1212()()()f x x f x f x ⋅=+.试写出符合条件嘚函数()f x 嘚一个解析式
16.给出下面四个条件:①010a x <<<⎧⎨⎩,②010
a x <<>⎧⎨⎩,③1
0a x ><⎧⎨⎩,④10a x >>⎧⎨⎩,
能使函数
2
log a y x
-=为单调减函数嘚是 .
17. 已知函数()f x 嘚定义域为
()1,1-,且同时满足下列条件:
(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)
2
(1)(1)0,f a f a -+-< 求a 嘚取值范围
18.函数
2
()21f x x ax a =-++-在区间
[]0,1上有最大值2,求实数a 嘚值
19.已知函数()22421,x x f x =---,求函数
)(x f 嘚定义域与值域.
20.集合A 是由适合以下性质嘚函数f(x)组成嘚,对于任意嘚x ≥0,f(x)∈[)4,2- 且f(x)在(0,+∞)上是增函数. (1)试判断
121
()2()46()2
x f x x f x =-=-及 (x ≥0)是否在集合A 中,若不在集合A 中,
试说明理由;
(2)对于(1)中你认为是集合A 中嘚函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x ≥0总成立.
参考答案:
1----5 DCACA 6----10BCDCD 11.C 12.A 13. 3 14.
3
2 15. 12
log ||y x = 等 16. ①④ 17解:
22(1)(1)(1)f a f a f a -<--=-,…………………………… 2分
则
2
211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩
, …………………………………………….. 11分
∴
01a <<. …………………………………………13分
18解:对称轴x a =, 2分
当[]
0,0,1a <是()f x 嘚递减区间,max ()(0)121
f x f a a ==-=⇒=-; 6分
当
[]
1,0,1a >是()f x 嘚递增区间,max ()(1)22f x f a a ===⇒=; 9分
当01a ≤≤时
2max 15
()()12,,2f x f a a a a ±==-+==
与01a ≤≤矛盾; 12分
所以1a =-或2
19 解:由420x
-≥,得24x
≤. …………………………………………. 3分
解得2x ≤ ∴定义域为
{}2x x ≤ ……………………………………..8分
令42x
t -=, ………………………………………………………….9分
则
4)1(1242
2++-=---=t t t y . ……………………….11分 ∵20<≤t ,∴35≤<-y ,……………………………………………..14 ∴值域为]3,5(-.
20.解:(1)时当49=x [)4,25)49(1-∉=f
)(1x f ∴不在集合A 中 …………………………………….3分
又)(2x f 嘚值域[)4,2-,[)4,2)(2-∈∴x f
当0≥x 时)(2x f 为增函数
)(2x f ∴在集合A 中………………………………………….7分
(2))1(2)2()(222+-++x f x f x f
⎥
⎦⎤
⎢⎣⎡---+-=++12)21(642)21(64)21(64x x x
)
0(0)21(6)21()21()21(26221≥<-=⎥⎦⎤
⎢⎣⎡--=+++x x x x x
)(2x f ∴对任意0≥x ,不等式)1(2)2()(222+<++x f x f x f 总成
立. …………………………………………….13分。