九年级数学《比例的性质》练习题
- 格式:doc
- 大小:68.50 KB
- 文档页数:2
《解比例》练习一、判断题。
1、在一个比例里,两个外项的积和两个内项的积相等。
2、解比例的依据是比例的基本性质。
3、如果∶7=∶4,那么=。
4、如果甲∶乙=12∶13,那么甲是乙的倍。
二、填空题。
1、8∶2021∶ =( )5。
2、把13∶2=∶改写成2=13×的依据是 。
3、男生人数的23相当于女生人数的34,则男生人数∶女生人数= ∶8。
4、在比例里,两个外项的积是最小的合数,一个内项是14,另一个内项是 。
三、解比例。
1、x 8=342、16∶14=112∶3、5∶9=23∶4、∶=∶四、根据题意列出比例,并解比例。
1、2与的比等于与的比。
2、910和221的比等于和27的比。
3、比例的两个内项分别是23和18,两个外项分别是和19。
五、生活中的数学。
1、幸福小区1号楼实际高度为45米,它的高度与模型高度的比是600∶1,模型的高度是多少厘米2、有大、小两个圆,大圆直径是8 cm ,大圆周长与小圆周长之比是2∶1,求小圆的直径。
六、解决问题。
学校原有足球、篮球2334141418659102212723181934,再根据已知条件写出比例式,并根据比例的基本性质解比例,最后写出答。
2、解:设小圆的直径为cm。
(8π):(π)=2:18:=2:1=4答:小圆的直径为4 厘米。
解析:用方程来解决问题。
设小,再根据已知条件分别表示出大圆和小圆的周长以及它们的比,列出比例式,并根据比例的基本性质解比例,最后写出答。
六、解决问题。
解:设原有足球个,则篮球有(2021个。
:(2021=7:3=14答:原有足球14个。
解:设买回足球y个。
(14y):(2021=4:5y=10答:买回足球10个。
解析:可先求出原有足球有多少个,再根据买回一些足球后足球的个数与总数的比求出买回足球有多少个。
2022年秋冀教版九年级数学上册同步练习:25.1比例线段填空题已知a=0.5 m,b=25 cm,则a∶b=________.【答案】2∶1【解析】把a,b的值统一单位后代入即可求解.∵a=0.5m=50cm,b=25cm,∴a:b=50:25=2:1.故答案为2:1.填空题C是线段AB上一点,AB=2AC,则BC∶AB=________.【答案】1:2【解析】根据C是线段AB上一点,由AB=2AC,可知点C是AB 的中点,进而得出BC:AB=1:2.如图,∵C是线段AB上一点,∴AB=AC+BC,∵AB=2AC,∴2AC=AC+BC,∴AC=BC,∴AB=2AC=2BC,∴BC:AB=1:2.故答案为1:2.选择题已知四组线段的长度(单位:cm)如下,其中是成比例线段的一组是()A. 1,2,3,4B. 1,2,2,4C. 3,5,9,13D. 1,2,2,3【答案】B【解析】根据成比例线段的概念,对选项一一分析,排除错误答案.A、1×4≠2×3,故选项错误;B、1×4=2×2,故选项正确;C、3×13≠5×9,故选项错误;D、1×3≠2×2,故选项错误.故选:B.填空题已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)【答案】是【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.∵四条线段a=0.5m=50cm,b=25cm,c=0.2m=20cm,d=10cm,50×10=5000,25×20=5000,∴四条线段能够成比例.选择题已知2x=3y(y≠0),则下面结论成立的是()A. B. C. D.【答案】A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.选择题已知线段a=4,b=16,线段c是线段a,b的比例中项,那么线段c的长为()A. 10B. 8C. -8D. ±8【答案】B【解析】根据线段比例中项的概念,a:c=c:b,可得c2=ab=64,故c的值可求.∵线段c是a、b的比例中项,∴c2=ab=64,解得c=±8,又∵线段是正数,∴c=8.故选:B.选择题若3y=4x,则下列式子中不正确的是()A. B. C. D.【答案】D【解析】根据比例的性质,把乘积式转化为x=y,然后代入各选项进行计算,再利用排除法求解即可.∵3y=4x,∴x=y,A、,故本选项正确;B、,故本选项正确;C、,故本选项正确;D、,故本选项错误.故选:D.填空题若,则=________.【答案】【解析】由得9m=4n,从而可求出结果.∵,∴9m=4n,∴=.故答案为:.填空题若,则=________.【答案】【解析】根据,得到n=1.5m,q=1.5p,y=1.5x,代入原式即可得到结果.∵,∴n=1.5m,q=1.5p,y=1.5x,∴==.故答案为:.选择题乐器上的一根琴弦AB=60厘米,两个端点A,B固定在乐器板面上,支撑点C是AB的黄金分割点(AC>BC),则AC的长为()A. (90-30)厘米B. (30+30)厘米C. (30-30)厘米D. (30-60)厘米【答案】C【解析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.根据黄金分割点的概念得:AC=AB=(30-30)厘米.故选:C.选择题我们把两条邻边中较短边与较长边的比值等于黄金比的矩形称为黄金矩形.若矩形的两边长分别为a,b,则下列数据能构成黄金矩形的是()A. a=4,b=+2B. a=4,b=-2C. a=2,b=+2D. a=2,b =-1【答案】D【解析】根据黄金矩形的定义判断即可.∵宽与长的比是的矩形叫做黄金矩形,∴,∴a=2,b=-1,故选:D.填空题在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比值为0.60,那么她穿约________厘米的高跟鞋看起来会更美.(精确到十分位)【答案】7.5【解析】根据下半身与全身的比等于黄金比,列方程求解.设应选择xcm的高跟鞋,∵张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,∴其身高为1.60米=160厘米,身体躯干高为160×0.60=96厘米,则有,解得:x≈7.5.故本题答案为:7.5.选择题已知,则的值是()A.B.C.D.【答案】D【解析】试题分析:由,得,故选:D.选择题已知a∶b∶c=2∶3∶4,则的值为()A. B. 1 C. -1 D. 或-1【答案】B【解析】试题此题考查了比例的性质.此题比较简单,解题的关键是掌握比例变形与设===k的解题方法.首先设===k,即可得a=2k,b=3k,c=4k,然后将其代入,即可求得答案.解:设===k,∴a=2k,b=3k,c=4k,∴==1.故选B.选择题如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. B. 1: C. D.【答案】D【解析】连接AC,设AO=x,则BO=x,CO=x,故AC=AP=x,∴线段AP与AB的比是:x:2x=:2.故选:D.选择题已知a,b,c都不为0,且=k,则k的值是() A. 2 B. -1 C. 2或-1 D. 3【答案】C【解析】根据比例的性质,三等式相加,即可得出k值.=k,,分两种情况:①a+b+c≠0∴k=2.②a+b+c=0时,a+b=-c∴k=-1.故k的值为:2或-1.故选:C.填空题已知三条线段的长度分别是4,8,5,请写出另一条线段的长度:____________,使这四条线段是成比例线段.【答案】或或10【解析】设所加的线段是x,则得到:或或,即可求得.设所加的线段是x,则得到:或或,解得:x=10或或.填空题已知,则_________________.【答案】【解析】试题解析:设a=5k,b=3k,则.解答题已知线段a,b,c,且.(1)求的值;(2)若线段a,b,c满足a+b+c=27,求a,b,c的值.【答案】(1);(2)a=6,b=9,c=12.【解析】(1)根据比例的性质得出,即可得出的值;(2)首先设=k,则a=2k,b=3k,c=4k,利用a+b+c=27求出k的值即可得出答案.(1)∵,∴,∴=,(2)设=k,则a=2k,b=3k,c=4k,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12.解答题已知=2,且b+d+f≠0.(1)求的值;(2)若a-2c+3e=5,求b-2d+3f的值.【答案】(1)2;(2)2.5【解析】(1)根据合比性质求解即可;(2)用b、d、f表示出a、c、e,然后代入整理即可得解.(1)∵=2,∴;(2)∵=2,∴a=2b,c=2d,e=2f,∵a-2c+3e=5,∴2b-2(2d)+3(2f)=5,∴b-2d+3f=2.5.解答题阅读理解:如图①,点C将线段AB分成两部分,若,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,从而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.问题解决:如图②,在△ABC中,已知D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于点E,过点D作DF ∥CE,交AC于点F,连接EF(如图③),则直线EF也是△ABC的黄金分割线.请你说明理由.【答案】(1)对.理由见解析;(2)三角形的中线不是该三角形的黄金分割线.(3)直线EF也是△ABC的黄金分割线.【解析】(1)根据黄金分割的定义得,再根据三角形面积公式得到,,所以,然后根据黄金直线的定义得直线CD是△ABC的黄金分割线;(2)根据三角形中线的性质和三角形面积公式得到,而<1,由此可根据黄金直线的定义判断三角形的中线不是该三角形的黄金分割线;(3)根据两平行线之间的距离定值,得到S△FDE=S△FDC,S△DEC=S△FEC,则S△AEF=S△ADC,S四边形BEFC=S△BDC,然后由得到,则可根据黄金直线的定义判断直线EF也是△ABC 的黄金分割线.(1)直线CD是△ABC的黄金分割线.理由如下:∵点D是AB的黄金分割点,∴,∵,,∴,∴直线CD是△ABC的黄金分割线;(2)∵三角形的中线把AB分成相等的两条线段,即AD=BD,∴,,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF∥CE,∴S△FDE=S△FDC,S△DEC=S△FEC,∴S△AEF=S△ADC,S四边形BEFC=S△BDC,∵,∴,∴直线EF是△ABC的黄金分割线.。
人教版数学九年级下册第26章测试题一.选择题1. y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或22.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A. B.C. D.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.85.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.67.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣28.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>212.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.15.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b= (用含m的代数式表示);(2)若S△OAF +S四边形EFBC=4,则m的值是.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.三.解答题17. 画出的图象.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A (m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?答案解析一.选择题1.函数y=(m2﹣m)是反比例函数,则()A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或2【考点】反比例函数.【分析】依据反比例函数的定义求解即可.【解答】解:由题意知:m2﹣3m+1=﹣1,整理得m2﹣3m+2=0,解得m1=1,m2=2.当m=l 时,m2﹣m=0,不合题意,应舍去.∴m的值为2.故选C.【点评】本题主要考查的是反比例函数的定义,依据反比例函数的定义列出关于m的方程是解题的关键.需要注意系数k≠0.2.下面四个关系式中,y是x的反比例函数的是()A.y=B.yx=﹣C.y=5x+6 D.=【考点】反比例函数.【分析】直接利用反比例函数的定义分析得出答案.【解答】解:A、y=,是y与x2成反比例函数关系,故此选项错误;B、yx=﹣,y是x的反比例函数,故此选项正确;C、y=5x+6是一次函数关系,故此选项错误;D、=,不符合反比例函数关系,故此选项错误.故选:B.【点评】此题主要考查了反比例函数的定义,正确把握相关定义是解题关键.3.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】反比例函数的图象特点.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.4.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y 轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 D.8【考点】反比例函数图象特点.【分析】根据反比例函数的对称性可得阴影部分的面积等于长是8,宽是2的长方形的面积,据此即可求解.【解答】解:阴影部分的面积是4×2=8.故选D.【点评】本题考查了反比例函数的图象的对称性,理解阴影部分的面积等于长是8,宽是2的长方形的面积是关键.5.反比例函数是y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质进行解答即可.【解答】解:∵反比例函数是y=中,k=2>0,∴此函数图象的两个分支分别位于一、三象限.故选B.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出反比例函数y=在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.7.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣2【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行分析即可.【解答】解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不符合题意;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S=AC•CQ=(m﹣1)n=mn﹣n.四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选B.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数的性质.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.10.如图,已知点P是双曲线y=(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣B.y=﹣C.y=D.y=【考点】确定反比例函数表达式;反比例函数系数k的几何意义.【分析】先判断出k的符号,再由反比例函数系数k的几何意义即可得出结论.【解答】解:∵反比例函数的图象在二四象限,∴k<0.=2,∵PA⊥x轴于点A,且S△PAO∴k=﹣4,∴反比例函数的解析式为y=﹣.故选A.【点评】本题考查的是用待定系数法求反比例函数的解析式,熟知反比例函数系数k的几何意义是解答此题的关键.11.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的综合应用.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.12.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x【考点】反比例函数在实际问题中的应用.【分析】利用工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y 天,即xy=100,即可得出答案.【解答】解:根据题意可得:y=.故选:B.【点评】此题主要考查了根据实际问题列反比例函数解析式,正确运用xy=100得出是解题关键.二.填空题13.已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【考点】反比例函数的性质.【专题】开放型.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.14.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为﹣8.【考点】反比例函数图象的特点.【专题】数形结合.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴AO==,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.故答案为:﹣8【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形,注意:反比例函数图象上的点(x ,y )的横、纵坐标的积是定值k ,即xy=k ,这是解决问题的关键.15.如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= m + (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .【考点】反比例函数与一次函数的综合应用.【分析】(1)根据待定系数法点A 的纵坐标相等列出等式即可解决问题.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),所以S △ADM =2S △OEF ,推出EF=AM=NB ,得B (2m ,)代入直线解析式即可解决问题.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,且点A 的横坐标为m ,∴点A 的纵坐标为,即点A 的坐标为(m ,).令一次函数y=﹣x +b 中x=m ,则y=﹣m +b ,∴﹣m +b=即b=m +.故答案为:m +.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y=,一次函数y=﹣x +b 都是关于直线y=x 对称,∴AD=BC ,OD=OC ,DM=AM=BN=CN ,记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),∴S △ADM =2S △OEF ,由对称性可知AD=BC ,OD=OC ,∠ODC=∠OCD=45°,△AOM ≌△BON , ∴AM=NB=DM=NC ,∴EF=AM=NB ,∴点B 坐标(2m ,)代入直线y=﹣x +m +, ∴=﹣2m=m +,整理得到m 2=2,∵m >0,∴m=. 故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R≥3.6.【考点】反比例函数在物理学中的应用.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.【点评】本题是反比例函数的应用,会利用待定系数法求反比例函数的关系式,并正确认识图象,运用数形结合的思想,与不等式或等式相结合,解决实际问题.三.解答题17.画出的图象.【考点】反比例函数图象的画法.【分析】从正数,负数中各选几个值作为x的值,进而得到y的值,描点,连线即可.【解答】解:列表得:x﹣4﹣2﹣11 24y0.512﹣2﹣1﹣0.5描点,连线得:【点评】本题主要考查反比例函数图象;注意自变量的取值为不为0的任意实数,反比例函数的图象为双曲线.18.证明:任意一个反比例函数图象y=关于y=±x轴对称.【考点】反比例函数图象的特点.【专题】证明题.【分析】利用反比例函数图象上任意一点关于y=±x轴对称点还在反比例函数y=图象上进行证明.【解答】证明:设P(a,b)为反比例函数图象y=上任意一点,则ab=k,点P关于直线y=x的对称点为(b,a),由于b•a=ab=k,所以点(b,a)在反比例函数y=的图象上,即反比例函数图象y=关于y=x轴对称;点P关于直线y=﹣x的对称点为(﹣b,﹣a),由于﹣b•(﹣a)=ab=k,所以点(﹣b,﹣a)在反比例函数y=的图象上,即反比例函数图象y=关于y=﹣x 轴对称,即任意一个反比例函数图象y=关于y=±x轴对称.【点评】本题考查了反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=﹣x;②一、三象限的角平分线y=x;对称中心是坐标原点.19.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.【考点】反比例函数的性质.【分析】(1)过点B作BM⊥OA于点M,由等边三角形的性质结合点A的坐标找出点B的坐标,再利用中点坐标公式即可求出点D的坐标,最后利用待定系数法即可得出结论;(2)设过点B的反比例函数的解析式为y=,由点B的坐标利用待定系数法求出n的值,根据反比例函数的性质即可得出m的取值范围.【解答】解:(1)过点B作BM⊥OA于点M,如图所示.∵点A(4,0),∴OA=4,又∵△ABO为等边三角形,∴OM=OA=2,BM=OA=6.∴点B的坐标为(2,6).∵点D为线段AB的中点,∴点D的坐标为(,)=(3,3).∵点D为函数y=(x>0,k为常数)的图象上一点,∴有3=,解得:k=9.(2)设过点B的反比例函数的解析式为y=,∵点B的坐标为(2,6),∴有6=,解得:n=12.若要第一象限的双曲线y=与△BDE没有交点,只需m<k或m>n即可,∴m<9或m>12.答:若第一象限的双曲线y=与△BDE没有交点,m的取值范围为m<9或m>12.【点评】本题考查了反比例函数的性质、中点坐标公式、等边三角形的性质以及待定系数法求反比例函数的解析式,解题的关键是:(1)求出点D的坐标;(2)求出过点B的反比例函数的系数.本题属于基础题,难度不大,解决该题型题目时,利用等边三角形的性质结合中点坐标公式求出反比例函数图象上一点的坐标,再利用待定系数法求出反比例函数的系数即可.20.平面直角坐标系中,点A在函数y1=(x>0)的图象上,y1的图象关于y 轴对称的图象的函数解析式为y2=,B在y2的图象上,设A的横坐标为a,B 的横坐标为b:(1)当AB∥x轴时,求△OAB的面积;(2)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求ab的值.【考点】反比例函数系数k的几何意义.【分析】(1)AB交y轴于C,由于AB∥x轴,根据题意知道两个函数图象关于y轴对称,则点A、B关于y轴对称,由此求得可以得到a=﹣b,则易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;(2)根据函数图象上点的坐标特征得A、B坐标分别为:(a,),(b,﹣),根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的两腰相等的性质易得a2+()2=b2+(﹣)2,即(a2﹣b2)(1﹣)=0.由此可以求得ab的值.【解答】解:(1)如图1,设A(a,),B(b,﹣),当AB∥x轴时,=﹣,∴a=﹣b,∴S=×(a﹣b)×=×2a×=2;△OAB(2)如图2,设A(a,),B(b,﹣),∵△OAB是以AB为底边的等腰三角形,OA=OB,由OA2=a2+()2,OB2=b2+(﹣)2,∴a2+()2=b2+(﹣)2,整理得:( a2﹣b2)(1﹣)=0.∵AB与x轴不平行,∴|a|≠|b|,∴1﹣=0,∴ab=±2.∵a>0,b<0,∴ab<0.∴ab=﹣2.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、图形与坐标的性质,三角形的面积公式.注意:根据两个反比例函数的解析式可以得到这两个函数图象关于y轴对称,可以省去不少的计算过程.21.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2(用含m的式子表示);(2)求反比例函数的解析式.【考点】确定反比例函数表达式.【分析】(1)由点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y轴的平行线交反比例函数的图象于点D,CD=,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=.【点评】此题考查了待定系数法求反比例函数的解析式以及平移的性质.注意准确表示出点D的坐标是关键.22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的 1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【考点】反比例函数在实际问题中的应用.【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.人教版数学九年级下册第27章测试题一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=2.已知,那么的值是()A.3 B.4 C.5 D.63.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形C.两个五边形D.两个正方形4.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是()A.4:9 B.2:3 C.16:81 D.9:45.如图,四边形ABCD是平行四边形,E是BC的延长线上一点,AE与CD相交于F,与△CEF相似的三角形有()个.A.1 B.2 C.3 D.46.如图,D为△ABC边BC上一点,要使△ABD∽△CBA,应该具备下列条件中的()A.=B.=C.=D.=7.如图,在△ABC中,若DE∥BC,,DE=3cm,则BC的长为()A.3cm B.6cm C.9cm D.12cm8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.9.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD放大为原来的2倍后得到线段AB,则端点B的坐标为()A.(6,6)B.(6,8)C.(8,6)D.(8,2)10.关于对位似图形的表述,下列命题正确的有()①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.A.①②③④B.②③④C.②③D.②④11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.二、填空题12.如图,△OAC和△BAD都是等腰直角三角形,反比例函数在第四象限经过点B,若OA2﹣AB2=8,则k的值为.13.已知线段AB=1,C是线段AB的黄金分割点,且AC<CB,则AC的长度为.14.)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=.15.一块矩形绸布的宽AB=a m,长AD=1m,按照图中所示的方式将它裁成相同的n面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是.16.如图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是m.三、解答题17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)证明:△ACD∽△CBD;(2)已知AD=2,BD=4,求CD的长.18.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.(1)若四边形EFGH是正方形,求正方形的面积.(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y= .(含x 的代数式),当x=时,y最大,最大面积是.19.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8,点P是AB上一个动点.(1)当AP=3时,△DAP与△CBP相似吗?请说明理由.(2)求PD+PC的最小值.20.如图,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.(1)证明:BE2=AE•DE;(2)若=1,=;并说明理由.答案解析一、选择题1.已知xy=mn,则把它改写成比例式后,错误的是()A .=B .=C .=D .=【考点】比例的性质.【分析】熟练掌握比例的性质是解题的关键.【解答】解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选C.【点评】解答此题应把每一个选项乘以最简公分母后与原式相比较看是否相同.2.已知,那么的值是()A.3 B.4 C.5 D.6【考点】比例的性质.【分析】根据和比性质:=⇒=,可得答案.【解答】解:由=2,得==3.故选:A.【点评】本题考查了比例的性质,利用和比性质是解题关键.3.下列两个图形一定相似的是()A.两个矩形B.两个等腰三角形。
第1课时 线段的比和比例的基本性质基础题知识点1 线段的比1.如图,线段AB∶BC=1∶2,则AC∶BC 等于( )A .1∶3B .2∶3C .3∶1D .3∶22.已知a =0.2,b =0.04,则a∶b=________.3.已知a =2 cm ,b =30 mm ,则a∶b=________.4.在△ABC 中,∠B =90°,AB =BC =10 cm ,在△DEF 中,ED =EF =12 cm ,DF =8 cm ,求AB 与EF 之比, AC 与DF 之比.知识点2 比例线段5.四条线段a ,b ,c ,d 成比例,其中a =3 cm ,d =4 cm ,c =6 cm ,则b 等于( )A .8 cm B.29cm C.92cm D .2 cm 6.2013版《中华人民共和国全图》在左下角特别配有一幅放大的钓鱼岛插图,比例尺为1∶1 500 000,已知钓鱼岛东西长约3.5公里,则在地图上的东西长约为( )A .0.002 3 cmB .0.23 cmC .4.29 cmD .0.042 9 cm7.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为________米.8.已知a 、b 、c 、d 四条线段依次成比例,其中a =3 cm ,b =(x -1)cm ,c =5 cm ,d =(x +1)cm.求x 的值.知识点3 比例的基本性质9.已知x 3=y 2,那么下列式子中一定成立的是( ) A .2x =3y B .3x =2yC .x =2yD .xy =610.若2y -5x =0,则x∶y 等于( )A .2∶5B .4∶25C .5∶2D .25∶411.已知线段m ,n ,且m n =34,求m +n m 的值. 中档题 12.不为0的四个实数a 、b 、c 、d 满足ab =cd ,改写成比例式错误的是( )A.a c =d bB.c a =b dC.d a =b cD.a b =c d13.有四组线段,每组线段长度如下:①2,1,2,2;②3,2,6,4;③12,1,5,2;④1,3,5,7,能组成比例的有( )A .1组B .2组C .3组D .4组14.将两块长a 米,宽b 米的长方形红布,加工成一个长c 米,宽d 米的长方形,有人就a ,b ,c ,d 的关系写出了如下四个等式,不过他写错了一个,写错的那个是( )A.2a c =d bB.a c =d 2bC.2a d =c bD.a 2c =d b15.已知线段a =2,b =2+3,c =2- 3.(1)若a∶b=c∶x,求线段x 的长;(2)若b∶y=y∶c,求线段y 的长.16.在比例尺为1∶8 000 000的地图上,测量出太原到北京的铁路全长为6.4 cm ,若某火车从太原到北京一共行驶了3小时12分钟,求该火车的速度是多少.17.已知三条线段的长分别为1 cm 、2 cm 、 2 cm ,如果另外一条线段与它们是成比例线段,试求出另外一条线段的长. 18.如图所示,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,AP BP =AQ BQ =32,求线段PQ 的长.综合题19.在△ABC 中,AB =12,点E 在AC 上,点D 在AB 上,若AE =6,EC =4,且AD DB =AE EC. (1)求AD 的长;(2)试问DB AB =EC AC能成立吗?请说明理由.参考答案1.D 2.5∶1 3.2∶3 4.在Rt △ABC 中,根据勾股定理知,AC =AB 2+BC 2=10 2 cm ,则AB EF =1012=56,AC DF =1028=524. 5.D 6.B 7.9.6 8.依题意,得3x -1=5x +1.解得x =4.经检验,x =4是原方程的解,∴x =4. 9.A 10.A 11.∵m n =34,∴可设m =3k ,则n =4k.∴m +n m =3k +4k 3k =73. 12.D 13.B 14.D 15.(1)由题意得22+3=2-3x .解得x =12.(2)由题意得2+3y =y 2-3.解得y =±1.由于线段y 为正数,所以y =1. 16.6.4厘米×8 000 000=51 200 000厘米=512千米.3小时12分钟=315小时.该火车的速度是512÷315=160(千米/小时). 17.设另一条线段长为x cm ,有三种情况:①1×2=2x ,解得x =2;②2×2=1×x,解得x =22;③1×2=2x ,解得x =22.综上所述,另外一条线段的长是2 2 cm 或 2 cm 或22cm. 18.设AP =3x ,BP =2x.∵AB=10,∴AB =AP +BP =3x +2x =5x ,即5x =10.∴x=2.∴AP=6,BP =4.∵AQ BQ =32,∴可设BQ =y ,则AQ =AB +BQ =10+y.∴10+y y=32.解得y =20.∴PQ=PB +BQ =4+20=24. 19.(1)AD =365.(2)能,由AB =12,AD =365,故DB =245.于是DB AB =25.又EC AC =410=25,故DB AB =EC AC.比例线段姓名__________一.选择题(共12小题)1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.已知=,那么的值为()A.B.C.D.3.已知,则的值是()A.B.C.D.4.(2016•闵行区一模)在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是()A.2000000cm2 B.20000m2C.4000000m2 D.40000m25.(2016•黄浦区一模)已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm6.(2015春•成都校级期末)下列长度的各组线段中,能构成比例线段的是()A.2,5,6,8 B.3,6,9,18C.1,2,3,4 D.3,6,7,97.(2015秋•龙海市校级期末)下列各组中的四条线段成比例的是()A.6cm、2cm、1cm、4cmB.4cm、5cm、6cm、7cmC.3cm、4cm、5cm、6cmD.6cm、3cm、8cm、4cm8.已知,则的值是()A.3B.4C.﹣4D.﹣39.(2015秋•莘县期末)若==,且3a﹣2b+c=3,则2a+4b﹣3c的值是()A.14 B.42 C.7 D.10.(2015春•苏州校级期末)已知线段a=l,c=5,线段b是线段a、c的比例中项,线段b的值为()A.2.5 B.C.±2.5 D.±11.(2004•遂宁)如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.:1B.1:C.:1D.1:12.(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5二.填空题(共5小题)13.已知≠0,则的值为.14.(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.15.(2015•大庆)已知=,则的值为.16.(2000•天津)已知,则a:b=.17.(2002•福州)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.三.解答题(共1小题)18.(2015秋•浦东新区月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.参考答案一.选择题(共12小题)1.B;2.B;3.D;4.B;5.C;6.B;7.D;8.A;9.D;10.B;11.A;12.A;二.填空题(共5小题)13.;14.3;15.-;16.19:13;17.6;三.解答题(共1小题)18.;成比例线段同步练习题精选命题:平顶山市状元郎数学辅导学校 杨书山【概念回顾】:1.四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比, 如:d c b a =(或a ∶b =c ∶d ),那么这四条线段叫做__________,简称_________.2.成比例线段的性质:如果dc b a =,那么__________ 3.合比性质:_____________________________________4.等比性质:______________________________________________________________________________【练习题】:一、选择题:1、判断下列线段是否是成比例线段:(1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.2、下列线段能成比例线段的是( )(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm(C)2cm,5cm,3cm,1cm(D)2cm,5cm,3cm,4cm3、已知32=b a ,则b b a +的值为( )(A)23 (B)34 (C)35 (D)53 4、若互不相等的四条线段的长a,b,c,d 满足a b =c d ,m 为任意实数,则下列各式中,相等关系一定成立的是( )(A ) a +m b +m =c +m d +m (B )a +b b =c +d c (C )a c =d b (D )a -b a +b =c -d c +d 5、如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)326、若ac =bd ,则下列比例式中不正确的是 ( ) (A)c b d a = (B)d a c b = (C)d b c a = (D)dc a b = 7、若3x =x 4 ,则x 等于( ) (A)12 (B)2 3 (C)- 2 3 (D)±2 38、若(m+n):n=5:2,则m:n 的值是( )(A)5:2 (B)2:3 (C)3:2 (D)2:59、若a b =c d ,下列各式中正确的个数有( )a d =c d , d:c=b:a, ab =a 2b 2 , a b =c+5d+5 , a b =a+c a+d , c d =ma mb (m ≠0)(A)1 (B)2 (C)3 (D)410、若ba c a cbc b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12 二、填空题1 、线段a=1cm ,b=4cm ,c=9cm , 那么a 、b 、c 的第四比例项d=____2、已知5x-8y=0,则x+y x = ,如果053=-y x ,且y ≠0,那么yx = . 3、如果x y =73 ,那么x -y y = ,x +y y = , x +y x +y= 4、如果5:4:3::=c b a ,那么=+--+cb ac b a 3532 ; 5、.若9810z y x ==, 则 ______=+++zy z y x ,已知x 5 =y 3 =z 4 ,则2x+y-z x+3y+z = 6、.若322=-y y x , 则_____=yx . 7、已知32==d c b a ,若0≠+d b ,则=++db c a 8、已知a b =c d =e f =35 ,b +d +f =50,那么a +c +e =9、若0622=--y xy x ,则=y x : ; 10、若43===f e d c b a , 则______=++++fd be c a . 11、若k ba c a cbc b a =+=+=+ 则k=______ 12、已知(-3):5=(-2):(x -1),则x =14、已知a b =c d =e f =35 ,则____432432=+-+-f d b e c a 15、如果y y x +=73 ,那么___=y x ,x -y y = , yx y x +-= 16、如图,已知ΔABC 中,CE AE DB AD =,AC=7cm,CE=3cm,AB=6cm,则AD= ; 17、已知S 正方形=S 矩形,矩形的长和宽分别为10cm 和6cm ,则正方形的边长为18、在Rt ΔABC 中,∠C=90°, ∠A=30°则a:b:c=19、已知x:y=2:3,则(3x+2y ):(2x-3y)=20、已知5x+y 3x-2y =12 ,则x y = , x+y x-y = ;三、解答题1、已知0753≠==z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++354322、已知有三条线段长为1cm 、4cm 、9cm ,请你再添加一条线段,使这四条线段为成比例线段,求所添加线段的长A BCD E3. 已知0≠-=-=-z a c y c b x b a ,求x+y+z 的值.。
学习必备 欢迎下载比例的意义和基本性质练习题一、填空题1、表示()的式子叫做比例。
2、在比例中,两个( )的积等于()的积,这叫做比例的基本性质。
3、解比例的根据是()。
4、比例尺有()比例尺和( )比例尺。
5、用 2、3、4、6 四个数可组成一个比例()。
6、在一个比例中,两个外项互为倒数,其中一个内项为 2,另一个的内项为()。
7、在比例尺是 1:6000000 的地图上,量得 A 、B 两地的距离是 4 厘米,那么两地的实际距离是()千米。
8、已知 3:5=6:10 ,如果将比例中的 6 改为 9,那么 10 应改为()。
9、0.4 ∶1.2 =0.6 ∶1.8 可改写成 ()×( )=()×( )。
110、把 4×0.05 =0.8 × 4改写成比例是 ()∶( )=() ∶()。
11、若 A ∶B = ∶ ,A = ,则 B =()。
3 5 60、因为5a =b ,所以 b ∶ a =() ∶().124a c13、b =d ,那么 ad = ()。
14、如果 5a =9b ,那么 () ∶() =5∶9。
m nn =∶(。
、如果 = ,那么 m ∶())157 816、求比例中的未知项,叫做() 。
17、如果 3x =5y ,那么 x ∶y =() ∶()。
18、写出24的所有约数() ,其中()这四个数能组成的比例是()。
119、在一个比例里,两个内项互为倒数,已知一个外项是5,则另一个外项是()。
2 820、在5=20这个比例中,两个内项是( )和(),两个外项是( )和( )。
21 、在比例里,两个内项互为倒数,两个外项的积是(),如果一个外项是 2 1,另一4个外项是( )。
22 、在比例式中,两个外项的积是最小的合数,一个内项是 0.2 ,另一个内项是()。
23 、A:B= 1.75 时,那么A×()=B×()。
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)知识点总结1. 比例的性质:①基本性质:两内项之积等于量外项之积。
即若d c b a ::=,则ad bc =。
②合比性质:若d c b a =,则dd c b b a +=+。
③分比性质:若d c b a =,则dd c b b a −=−。
④合分比性质:若d c b a =,则dc d c b a b a −+=−+。
⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。
2. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。
即如图:有EFDE BC AB =; DFDE AC AB =; DFEF AC BC =。
推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。
对应边的比叫做相似比。
②相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。
4.相似三角形的判定:①平行线法判定:平行于三角形一边的直线与三角形的另两边或另两边的延长线相交所构成的三角形与原三角形相似。
②对应边判定:三组对应边的比相等的两个三角形相似。
③两边及其夹角判定法:两组对应边的比相等,且这两组对应边的夹角相等的两个三角形相似。
④两角判定:有两组角(三组角)对应相等的两个三角形相似。
练习题1.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB =∠AED ,∴∠C =∠AED ,∵AD ⊥BE ,∴∠D =∠ABC =90°,∴△ADE ∽△ABC .2.如图,在△ABC 与△A ′B ′C ′中,点D 、D ′分别在边BC 、B ′C ′上,且△ACD ∽△A ′C ′D ′,若 ,则△ABD ∽△A ′B ′D ′. 请从①''''=D C D B CD BD ;②''''=D C B A CD AB ;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A 'D 'C ',∴∠ADB =∠A 'D 'B ',又∵∠BAD =∠B ′A ′D ′,∴△ABD ∽△A 'B 'D '.同理,选①也可以.故答案是:③(答案不唯一).3.如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.4.如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.【分析】(1)根据矩形的性质可得∠ADE=∠ABF,∠∠DAE+∠BAE=90°,结合题干AF⊥AE可得∠BAF+∠BAE=90°,进而可得∠DAE=∠BAF,进而可得△ADE∽△ABF,利用相似三角形的性质可得BF的长度;(2)先根据AG∥CE,GC∥AE进而可得四边形AGCE是平行四边形,通过勾股定理可得GF2、EF2、AE2,再过点G作GM⊥AF于点M,易得△MGF∽△AEF,进而利用相似三角形的性质可得GM的长,即可得GM=GB,进而可得GF是∠AFB的角平分线,最后利用角平分线得性质可得EA=EC,即可得平行四边形AGCE是菱形.【解答】(1)解:∵四边形ABCD是矩形,∴∠ADE=∠ABF=∠BAD=90°,∴∠DAE+∠BAE=90°,∵AF⊥AE,∴∠BAF+∠BAE=90°,∴∠DAE=∠BAF,∴△ADE∽△ABF,∴,即,∴BF=2a,(2)证明:∵四边形ABCD是矩形,∴AG∥CE,∵GC∥AE,∴四边形AGCE是平行四边形.∴AG=CE=8﹣a,∴BG=AB﹣AG=8﹣(8﹣a)=a,在Rt△BGF中,GF2=a2+(2a)2=5a2,在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴,∴,∴=,∴GM =a ,∴GM =BG ,又∵GM ⊥AF ,GB ⊥FC ,∴GF 是∠AFB 的角平分线,∴EA =EC ,∴平行四边形AGCE 是菱形.5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,41=BC DE . (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.【分析】(1)证明△ADE ∽△ABC ,根据相似三角形对应边的比相等列式,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC 的面积是16,同理可得△EFC 的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.6.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.7.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.【分析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF⊥AC;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.【解答】(1)证明:如图,在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△OBF,∵DE=BE,∴∠1=∠2,又∵∠2=∠4,∴∠1=∠4,又∵∠BFA=∠OFB,∴△BAF∽△OBF;(3)解:在矩形ABCD中,∠4=∠3=∠2,∵∠1=∠2,∴∠1=∠4.又∵∠OFB=∠BFA,∴△OBF∽△BFA.∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF.∴,∴,即3CF=2BF,∴3(CF+OF)=3CF+9=2BF+9,∴3OC=2BF+9∴3OA=2BF+9①,∵△ABF∽△BOF,∴,∴BF2=OF•AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±(负值舍去),∴DE=BE=2+1+=3+.8.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.9.【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出CE BD 的值.【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且43==DE AD BC AB .连接BD ,CE . (1)求CEBD 的值; (2)延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【分析】【问题呈现】证明△BAD CAE ,从而得出结论;【类比探究】证明△BAD ∽△CAE ,进而得出结果;【拓展提升】(1)先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;(2)在(1)的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【解答】【问题呈现】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴BD =CE ;【类比探究】解:∵△ABC 和△ADE 都是等腰直角三角形,∴==,∠DAE =∠BAC =45°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,∴==;【拓展提升】解:(1)∵==,∠ABC =∠ADE =90°,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,,∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,∴==;(2)由(1)得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC ==.10.如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F .(1)当F 为BE 的中点时,求证:AM =CE ;(2)若BF EF=2,求ND AN的值;(3)若MN ∥BE ,求NDAN 的值. 【分析】(1)根据矩形的性质,利用AAS 证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得,从而求出BM 的长,再利用△ANM ∽△BMC ,得,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得,可得BM 的长,由(2)同理可得答案.【解答】(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)解:∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.11.在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE 交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.【分析】(1)连接CG,过点G作GJ⊥CD于点J.证明△EAG≌△DAG(SAS),可得EG=DG,∠AEG =∠ADG,再证明△OBE∽△OGC,推出=,可得结论;(2)过点D作DT⊥BC于点T,连接GT.证明△EAG≌△DAG(SAS),推出EG=DG,∠AEG=∠ADG,再证明△OBE∽△OGT,推出=,可得结论.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∴∠AFB=∠BAF=45°,∴BA=BF,∵BE=CF,∴AE=AB+BE=BF+CF=BC=AD,∵AG=AG,∴△EAG≌△DAG(SAS),∴EG=DG,∠AEG=∠ADG,∵AD∥FC,AG=GF,∴DJ=JC,∵GJ⊥CD,∴GD=GC,∴∠GDC=∠GCD,∵∠ADC=∠BCD=90°,∴∠ADG=∠GCO,∴∠OEB=∠OCG,∵∠BOE=∠GOC,∴△OBE∽△OGC,∴=,∵GC=GD,BE=CF,∴BO•GD=GO•FC;(2)解:过点D作DT⊥BC于点T,连接GT.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAG=∠AFB,∵AF平分∠DAB,∴∠DAG=∠BAF,∴BAF=∠AFB,∴AE =AB +BE =BF +CF =BC =AD , ∵AG =AG ,∴△EAG ≌△DAG (SAS ), ∴∠AEG =∠ADG , ∵AD ∥FT ,AG =GF , ∴DJ =JT , ∵GJ ⊥DT , ∴GD =GT , ∴∠GDT =∠GTD , ∵∠ADT =∠BTD =90°, ∴∠ADG =∠GTO , ∴∠OEB =∠OTG , ∵∠BOE =∠GOT , ∴△OBE ∽△OGT , ∴=,∵GT =GD ,BE =CF , ∴BO •GD =GO •FC . 12.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证CDBDAC AB =.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明CDBDAC AB =.(1)请参照小慧提供的思路,利用图2证明:CDBDAC AB =; 应用拓展:(2)如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处. ①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【分析】(1)证明△CED ∽△BAD ,由相似三角形的性质得出,证出CE =CA ,则可得出结论;(2)①由折叠的性质可得出∠CAD =∠BAD ,CD =DE ,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C =∠AED =α,则tan ∠C =tan α=,方法同①可求出CD =,则可得出答案.【解答】(1)证明:∵CE ∥AB , ∴∠E =∠EAB ,∠B =∠ECB , ∴△CED ∽△BAD , ∴,∵∠E =∠EAB ,∠EAB =∠CAD , ∴∠E =∠CAD , ∴CE =CA ,(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴tan∠C=tanα=,由(1)可知,,∴tanα=,∴BD=CD•tanα,又∵BC=BD+CD=m,∴CD•tanα+CD=m,∴CD=,∴DE =.13.【基础巩固】(1)如图1,在△ABC 中,D ,E ,F 分别为AB ,AC ,BC 上的点,DE ∥BC ,BF =CF ,AF 交DE 于点G ,求证:DG =EG .【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG ⊥DE ,CD =6,AE =3,求BCDE的值. 【拓展提高】(3)如图3,在▱ABCD 中,∠ADC =45°,AC 与BD 交于点O ,E 为AO 上一点,EG ∥BD 交AD 于点G ,EF ⊥EG 交BC 于点F .若∠EGF =40°,FG 平分∠EFC ,FG =10,求BF 的长.【分析】(1)证明△AGD ∽△AFB ,△AFC ∽△AGE ,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE ,根据相似三角形的性质计算,得到答案;(3)延长GE 交AB 于M ,连接MF ,过点M 作MN ⊥BC 于N ,根据直角三角形的性质求出∠EFG ,求出∠MFN =30°,根据直角三角形的性质、勾股定理计算即可. 【解答】(1)证明:∵DE ∥BC , ∴△AGD ∽△AFB ,△AFC ∽△AGE , ∴=,=,∴=,∵BF =CF , ∴DG =EG ;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.14.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【分析】(1)由矩形的性质及直角三角形的性质证出∠DCE=∠AEF,根据相似三角形的判定可得出结论;(2)①连接AM,由直角三角形的性质得出MB=CM=GM=,则点G在以点M为圆心,3为半径的圆上,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,由勾股定理求出AM=5,则可得出答案;②方法一:过点M作MN∥AB交FC于点N,证明△CMN∽△CBF,由相似三角形的性质得出,设AF=x,则BF=4﹣x,得出MN=BF=(4+x),证明△AFG∽△MNG,得出比例线段,列出方程,解得x=1,求出AF=1,由(1)得,设DE=y,则AE=6﹣y,得出方程,解得y=3+或y=3﹣,则可得出答案.方法二:过点G作GH∥AB交BC于点H,证明△MHG∽△MBA,由相似三角形的性质得出,求出GH=,MH=,证明△CHG∽△CBF,得出,求出FB=3,则可得出AF=1,后同方法一可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x =1, 即AF =1, 由(1)得,设DE =y ,则AE =6﹣y , ∴,解得:y =3+或y =3﹣, ∵0<6,0<3﹣<6, ∴DE =3+或DE =3﹣.15.已知矩形ABCD ,点E 为直线BD 上的一个动点(点E 不与点B 重合),连接AE ,以AE 为一边构造矩形AEFG (A ,E ,F ,G 按逆时针方向排列),连接DG .(1)如图1,当1==AE AGAB AD 时,请直接写出线段BE 与线段DG 的数量关系与位置关系; (2)如图2,当2==AEAGAB AD 时,请猜想线段BE 与线段DG 的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BG ,EG ,分别取线段BG ,EG 的中点M ,N ,连接MN ,MD ,ND ,若AB =5,∠AEB =45°,请直接写出△MND 的面积.【分析】(1)证明△BAE ≌△DAG ,进一步得出结论; (2)证明BAE ∽△DAG ,进一步得出结论;(3)当点E在线段BD上时,解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果;同理可得点E在DB的延长线时的情形.【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(2)BE=,BE⊥DG,理由如下:由(1)得:∠BAE=∠DAG,∵==2,∴△BAE∽△DAG,∴,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(3)如图,当B在线段BD上时,作AH⊥BD于H,∵tan∠ABD=,∴设AH=2x,BH=x,在Rt△ABH中,x2+(2x)2=()2,∴BH=1,AH=2,在Rt△AEH中,∵tan∠AEB=,∴,∴EH=AH=2,∴BE=BH+EH=3,∵BD==5,∴DE=BD﹣BE=5﹣3=2,由(2)得:,DG⊥BE,∴DG=2BE=6,∴S△BEG===9,在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,∴DM=GM=,∵NM=NM,∴△DMN≌△GMN(SSS),∵MN是△BEG的中位线,∴MN∥BE,∴△BEG∽△MNG,∴=()2=,∴S△MND=S△MNG=S△BEG=,如图,同上可得:BE=EH﹣BH=2﹣1=1,DG=2BE=2,∴=1,∴S△BEG=,综上所述:△DMN的面积是或.。
制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日比例线段复习制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日知识考点:本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。
由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。
精典例题:【例1】0543≠==z y x ,那么zy x z y x +++-= 。
变式1:32===f e d c b a ,假设032≠-+-f d b ,那么3222-+--+-f d b e c a = 。
变式2:3:1:2::=z y x ,求y x z y x 232++-的值。
变式3:aa cb bc b a c c b a k -+=+-=-+=,那么k 的值是 。
【例2】如图,在△ABC 中,点E 、F 分别在AB 、AC 上,且AE =AF ,EF 的延长线交BC 的延长线于点D 。
求证:CD ∶BD =CF ∶BE 。
制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日变式1:如图,D 是△ABC 的边BC 的中点,且31=BE AE ,求FCAF 的值。
变式2:如图,BD ∶DC =5∶3,E 为AD 的中点,求BE ∶EF 的值。
变式1图 F E D C B A 变式2图 FE D C BA【例3】如图,在△ABC 中,P 为中线AM 上任一点,CP 的延长线交AB 于D ,BP 的延长线交AC 于E ,连结DE 。
〔1〕求证:DE ∥BC ;〔2〕如图,在△ABC 中,DE ∥BC ,DC 、BE 交于P ,连结AP 并延长交BC 于M ,试问:M 是否为BC 的中点? 探究与创新:【问题】请阅读下面材料,并答复所提出的问题:三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。
如图,△ABC 中,AD 是角平分线。
求证:ACAB DC BD =。
专题27.2 比例的性质及成比例线段(基础篇)(专项练习)一、单选题1.地图上乐山到峨眉的图上距离为3.8厘米,比例尺是1:1000000,那么乐山到峨眉的实际距离是( )A .3800米B .38000米C .380000米D .3800000米2.已知线段b 是线段a 和线段c 的比例中项,若3a =,4c =,则b 的值是( )A .3.5B .6C .D .3.某地图上1cm 2面积表示实际面积900m 2,则该地图的比例尺是( ) A .1:30B .1:3000C .1:900D .1:900000004.已知线段d 是线段a 、b 、c 的第四比例项,其中a =2cm ,b =4cm ,c =5cm ,则d 等于( )A .1cmB .10cmC .52cmD .85cm5.下面的四个数中能组成比例的是( )A .14、34、0.6和0.3B .20、14、4和5C .3、4、12和13D .6、10、9和156.如果4a =5b (ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45b a = 7.已知a cb d=,则下列各式成立的是( ) A .a d c b = B .b a c d=C .a ca d c b=++ D .a b ac d c+=+ 8.下列四组线段中,是成比例线段的是( ) A .0.5,3,2,10 B .3,4,6,2 C .5,6,15,18D .1.5,4,1.2,59.如果:12:8a b =,且b 是a ,c 的比例中项,那么:b c 等于( )A .4:3B .3:2C .2:3D .3:410.如图,P 是线段AB 的黄金分割点,且P A >PB ,S 1表示P A 为一边的正方形的面积,S 2表示长为AB 、宽为PB 的矩形面积,则S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定二、填空题11.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是_______厘米. 12.已知点B 在线段AC 上,2AB BC =,那么:AC AB 的比值是_________. 13.若32a b =,则235a b a b +-=_____.14.若234a b c ==,则63a bb c +=-___________.15.已知线段8a =,2b =,线段c 是线段a ,b 的比例中项,则c =_______. 16.已知52a b =,则():a b b +的值为_________.17.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,可列方程为__________.18.两地的实际距离是1200千米,在地图上量得这两地的距离为2厘米,则这幅地图的比例尺是1∶___.19.已知三条线段a 、b 、c ,其中1a cm =,4b cm =,c 是a 、b 的比例中项,则c =_____cm .20.如图1)一次又一次对开,按图2叠放,可以发现,这些叠放起来的矩形的右上顶点与左下顶点在同一直线上. 若以图2最大矩形的左下顶点为原点,以宽和长所在直线分别为x 轴和y 轴,则这组矩形的右上顶点所在直线的函数表达式为______.三、解答题21.(1)已知线段a =2,b =9,求线段a ,b 的比例中项. (2)已知x :y =4:3,求y xy-的值.22.已知x :y :z =3:5:7,求234532x y zx y z-++-的值.23.线段a 、b 、c ,且234a b c ==. (1)求a bb+的值. (2)如线段a 、b 、c 满足27a b c ++=,求a b c -+的值.24.已知线段a 、b 、c 满足a :b :c =3:2:6,且a +2b +c =26. (1)求a 、b 、c 的值;(2)若线段x是线段a、b的比例中项,求x的值.参考答案1.B【分析】设乐山到峨眉的实际距离为x cm ,利用比例尺的定义得到3.8:x =1:1000000,然后利用比例的性质求出x ,再化单位化为米即可.解:设乐山到峨眉的实际距离为x 厘米,根据题意得3.8:x =1:1000000, 解得x =3800000,所以乐山到峨眉的实际距离是3800000厘米,即38000米. 故选:B .【点拨】本题考查了比例线段,正确理解比例尺的定义是解决问题的关键. 2.C 【分析】根据题意列出比例式,计算即可求得答案 解:23412b ac ==⨯=∴b =故选C【点拨】本题考查了成比例线段,比例中项的概念,理解比例的性质是解题的关键.比例式为 ::a b b c =,则内项 b 称为外项 a 和c 的比例中项.3.B 【分析】先设该地图的比例尺是1:x ,根据面积比是比例尺的平方比,列出方程,求得x 的值即可.解:设该地图的比例尺是1:x ,根据题意得:1:x 2=1:9000000,解得x 1=3000,x 2=−3000(舍去). 则该地图的比例尺是1:3000; 故选:B .【点拨】此题考查了线段的比,根据面积比是比例尺的平方比,列出方程是解题的关键. 4.B 【分析】根据第四比例项的概念,得a :b =c :d ,再根据比例的基本性质,求得第四比例项.解:∶线段d 是线段a 、b 、c 的第四比例项,∶a :b =c :d ∶bc d a=∶a =2cm ,b =4cm ,c =5cm , ∶45102bc da cm ∶线段a ,b ,c 的第四比例项d 是10cm . 故选:B .【点拨】本题考查的是比例的基本性质,熟悉第四比例项的概念,写比例式的时候一定要注意顺序.再根据比例的基本性质进行求解是关键.5.D 【分析】根据比例的性质依次判断四个选项即可.解:A 、因为14:0.3≠0.6:34,所以A 选项不符合题意;B 、因为4:5≠14:20,所以B 选项不符合题意;C 、因为13:12≠3:4,所以C 选项不符合题意;D 、因为6:9=10:15,所以D 选项符合题意. 故选:D .【点拨】本题考查比例的性质,熟练掌握该知识点是解题关键. 6.A 【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案. 解:两边都除以20,得54a b=,故A 正确; B 、两边都除以20,得54a b=,故B 错误; C 、两边都除以4b ,得54a b =,故C 错误; D 、两边都除以5a ,得45ba=,故D 错误. 故选:A .【点拨】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.7.D 【分析】根据比例的性质解答并判断. 解:∶a cb d=, ∶a b c d b d ++=,b ad c=, ∶a b bc d d+=+, ∶a b ac d c+=+, 故选:D .【点拨】此题考查了比例的性质,熟记比例的性质是解题的关键. 8.C 【分析】根据各个选项中的数据可以判断哪个选项中的四条线段不成比例,本题得以解决. 解:∶052310≠.,故选项A 中的线段不成比例,不符合题意; ∶3642≠,故选项B 中的线段不成比例,不符合题意; ∶515=618,故选项C 中的线段成比例,符合题意; ∶151245≠..,故选项D 中的线段不成比例,不符合题意, 故选:C【点拨】本题考查比例线段,解题的关键是明确题意,找出所求问题需要的条件. 9.B 【分析】由b 是a 、c 的比例中项,根据比例中项的定义,即可求得=b ac b,又由a :b =12:8,即可求得答案.解:∶b 是a 、c 的比例中项,∶b 2=ac ,b ac b∴=∶a:b=12:8,∶12382ab==,:3:2b c∴=,故选:B.【点拨】此题主要考查了比例线段,正确把握比例中项的定义是解题关键.10.B【分析】根据黄金分割的定义得到P A2=PB•AB,再利用正方形和矩形的面积公式有S1=P A2,S2=PB•AB,即可得到S1=S2.解:∶P是线段AB的黄金分割点,且P A>PB,∶P A2=PB•AB,又∶S1表示P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∶S1=P A2,S2=PB•AB,∶S1=S2.故选B.【点拨】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.11.4【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求.解:∶线段b是a、c的比例中项,∶b2=ac=2×8=16,解得b=±4,又∶线段是正数,∶b=4.故答案为4.【点拨】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.12.32【分析】根据题意作出图形,进而即可求解. 解:如图,∶2AB BC = 设,BC a =则2AB a =23AC AB BC a a a ∴=+=+=∶:3:2AC AB = 故答案为:3:2【点拨】本题考查了比例线段,数形结合是解题的关键. 13.1213【分析】根据32a b =,设3,2a k b k ==,代入代数式求值即可. 解:∶32a b =,设3,2a k b k ==,∶235a b a b +-661215213k k k k +==-, 故答案为:1213【点拨】本题考查了比例的性质,掌握比例的性质是解题的关键. 14.3 【分析】 设234a b ck ===,则2a k =,3b k =,4c k =,然后代入所求的代数式即可求解. 解:设234a b ck ===,则2a k =,3b k =,4c k =, ∶662315333345a b k k kb c k k k+⨯+===-⨯-, 故答案为:3【点拨】本题考查了比例的性质,根据题意设k 法是比较好的解题方法. 15.4【分析】利用比例中项的定义得到c 2=ab =16,然后求出16的算术平方根即可. 解:∶线段c 是线段a ,b 的比例中项,∶c 2=ab ,而线段a =8,b =2, ∶c 2=8×2=16, 而c >0, ∶c =4. 故答案为:4.【点拨】本题考查了成比例线段,掌握比例中项的定义是解决问题的关键. 16.75【分析】首先得到a =25b ,然后代入代数式求值.解:∶5a =2b ,∶a =25b ,∶277555b b ba b b b b ++===, 故答案为:75.【点拨】本题考查比例的性质和分式的化简求值,解题的关键是掌握分子和分母都除以同一个不为0的数.17.33x xx -=或()233x x =- 【分析】设雕像的下部高为x m ,则上部长为(2-x )m ,然后根据题意列出方程即可. 解:设雕像的下部高为x m ,则上部长为(3-x )m ,由题意得:33x xx -=, 即()233x x =-,故答案为:33x xx -=或()233x x =-.【点拨】本题考查了线段的比,解题的关键在于读懂题目信息并列出方程. 18.60000000【分析】根据比例尺=图上距离:实际距离列式计算即可.解:1200千米=120000000厘米,2:120000000=1:60000000.故答案为:60000000.【点拨】本题考查了比例线段,掌握比例尺的定义是解题的关键,注意单位的换算问题.19.2【分析】由c 是a 、b 的比例中项,根据比例中项的定义,列出比例式即可得出线段c 的长,注意线段的长度不能为负.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段长度的乘积.∶c 是a 、b 的比例中项,∶2144c ab ==⨯=,解得:2c =±(线段的长度是正数,负值舍去),则2c cm =.故答案为:2【点拨】本题考查了比例线段;理解比例中项的概念,这里注意线段的长度不能是负数.20.y =【分析】设直线为y =kx +b .解:设直线为y =kx +b ,∶直线经过原点,∶b =0.由矩形的性质可知:矩形的右上顶点的坐标为该矩形的宽和长,∶长∶宽,∶y ∶x ∶1,∶y x ,故答案为y =;【点拨】本题考查了一次函数解析式,矩形的性质,比例的性质;掌握一次函数的性质是解题关键.21.(1)2)1 3 -【分析】(1)设线段x是线段a,b的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.(2)设x=4k,y=3k,代入计算,于是得到结论.解:(1)设线段x是线段a,b的比例中项,∶a=3,b=6,x2=3×6=18,x=±∶线段a,b的比例中项是(2)设x=4k,y=3k,∶y xy-=343k kk-=13-.【点拨】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.22.19 16【分析】根据x:y:z=3:5:7设x=3k、y=5k、z=7k,然后代入234532x y zx y z-++-化简求解即可.解:∶x:y:z=3:5:7,∶设x=3k、y=5k、z=7k,∶234 532 x y z x y z-++-=233547 533527k k kk k k ⨯-⨯+⨯⨯+⨯-⨯=19 16【点拨】此题考查了比例的性质,解题的关键是根据比例的性质转化成含同一字母的式子.23.(1)53;(2)9【分析】(1) 根据比例的性质得出23a b =, 即可得出a b b +的值; (2) 首先设234a b c ===k, 则a=2k, b=3k, c=4k,利用a+b+c=27求出的值即可得出答案. 解:(1)23a b =,∴23a b = ∴53a b b +=; (2)设234a b c ===k, 则a=2k, b=3k, c=4k , 由a+b+c=27,由2k+3k+4k=27,得:k=3,∴a=6,b=9,c=12故a b c -+ =6-9+12=9, 故答案:53;9. 【点拨】这是一道考查代数式求值的题目, 属于中等难度的题目, 只要同学们认真分析就可以求出答案.24.(1)a =6,b =4,c =12;(2)x 的值为【分析】(1)设比值为k ,然后用k 表示出a 、b 、c ,再代入等式求解得到k ,然后求解即可; (2)根据比例中项的定义列式求解即可.解:(1)∶a :b :c =3:2:6,∶设a =3k ,b =2k ,c =6k ,又∶a +2b +c =26,∶3k +2×2k +6k =26,解得k =2,∶a =6,b =4,c =12;(2)∶x 是a 、b 的比例中项,∶x 2=ab ,∶x 2=4×6,x =∶x =x =-(舍去),即x 的值为【点拨】本题考查比例与比例中项问题,掌握比例性质以及比例中项定义,如果a 、b 、c三个量成连比例即a:b=b:c,b叫做a和c的比例中项.。
《比例的性质》练习题一、 填空题a=3;b=12;那么线段a 、b 的比例中项x=___________。
2、线段a=2cm;b=3cm;c=1cm; 那么a 、b 、c 的第四比例项d=____ 。
3.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .4.若9810z y x ==; 则 ______=+++zy z y x . 5.若a ∶3 =b ∶4 =c ∶5 ; 且a +b -c =6; 则a = ;b = ;c = .6.已知x ∶y ∶z = 3∶4∶5 ; 且x +y +z =12; 那么x = ;y = ;z = .7.若43===f e d c b a ; 则______=++++fd be c a . 8.已知x ∶4 =y ∶5 = z ∶6 ; 则 ①x ∶y ∶z = ; ② (x+y )∶(y+z )= .9.若322=-y y x ; 则_____=yx . 10.图纸上画出的某个零件的长是32 mm;如果比例尺是 1∶20;这个零件的实际长是 .11.如图;已知 AB ∶DB = AC ∶EC;AD = 15 cm ; AB = 40 cm ; AC = 28 cm ; 则 AE = ; 12.已知;线段a = 2 cm;)32(-=c cm;则线段a 、c 的比例中项b 是 . (第11题图)二、 选择题a ;宽b =60cm;则a ∶b 的值为( )(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶42.下列线段能成比例线段的是( )(A)1cm;2cm;3cm;4cm (B)1cm;2cm;22cm;2cm(C)2cm;5cm;3cm;1cm (D)2cm;5cm;3cm;4cma =4;b =16;c =8;那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)3232=b a ;则bb a +的值为( ) (A)23 (B)34 (C)35 (D)53 5.已知x ∶y ∶z =1∶2∶3;且2x+y -3z = -15;则x 的值为( )(A)-2 (B)2 (C)3 (D)-36.在比例尺为1∶38000的南京交通游览图上;玄武湖隧道长约为7cm;它的实际长度约为( )(A)km (B)2.66km (C)26.6km (D)266km7.某班同学要测量学校升国旗的旗杆高度;在同一时刻;量得某一同学的身高是1.5米;影长是1米;旗杆的影长是8米;则旗杆的高度是( )(A)12米 (B)11米 (C)10米 (D)9米8.已知点C 是AB 的黄金分割点(AC >BC);若AB=4cm;则AC 的长为( )(A)(2;5 –2)cm (B)(6-2;5 )cm (C)(;5 –1)cm (D)(3-;5 )cm ACD BE三、解答题1.已知0753≠==z y x ;求下列各式的值:(1)y z y x +- (2)z y x z y x +-++35432.2.已知0≠-=-=-z a c y c b x b a ;求x+y+z 的值.a 、b 、c 为ΔABC 的三边;且a+b+c =60cm;a ∶b ∶c =3∶4∶5;求ΔABC 的面积.。
《比例的性质》练习题
一、 填空题
1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。
2、线段a=2cm ,b=3cm ,c=1cm , 那么a 、b 、c 的第四比例项d=____ 。
3.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .
4.若9810z y x ==, 则 ______=+++z
y z y x . 5.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .
6.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = .
7.若43===f e d c b a , 则______=++++f
d b
e c a . 8.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .
9.若322=-y y x , 则_____=y
x . 10.图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .
11.如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ; 12.已知,线段a = 2 cm ,)32(-=c cm ,则线段a 、c 的比例 中项b 是 . (第11题图)
二、 选择题
1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( )
(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶4
2.下列线段能成比例线段的是( )
(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm
(C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm
3.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )
(A)8 (B)16 (C)24 (D)32
4.已知32=b a ,则b
b a +的值为( ) (A)23 (B)34 (C)35 (D)5
3 5.已知x ∶y ∶z =1∶2∶3,且2x+y -3z = -15,则x 的值为( )
(A)-2 (B)2 (C)3 (D)-3
6.在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度约为( )
(A)0.226km (B)2.66km (C)26.6km (D)266km
7.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )
(A)12米 (B)11米 (C)10米 (D)9米
8.已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( )
(A)(2 5 –2)cm (B)(6-2 5 )cm (C)( 5 –1)cm (D)(3- 5 )cm
A
C
D B E
9.若D 、E 分别是ΔABC 的边AB 、AC 上的点,且AD AB =AE AC ,那么下列各式中正确的是( )
(A)AD DB =DE BC (B)AB AD =AE AC (C)DB EC =AB AC (D)AD DB =AE AC
10.若b
a c a c
b
c b a k 222-=-=-=
,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12
三、解答题
1.已知07
53≠==
z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++35432.
2.已知0≠-=-=-z a c y c b x b a ,求x+y+z 的值.
3.已知a 、b 、c 为ΔABC 的三边,且a+b+c =60cm ,a ∶b ∶c =3∶4∶5,求ΔABC 的面积.。