煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术
- 格式:ppt
- 大小:1.14 MB
- 文档页数:22
煤燃烧中氮氧化物生成机理及控制氮氧化物排放技术下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、煤燃烧中氮氧化物生成机理。
煤炭燃烧氮氧化物产生机理及控制方法研究Introduction煤炭是中国最主要的能源来源之一,然而,燃烧煤炭常常带来大量的氮氧化物排放,这对环境和人类健康造成了严重影响。
因此,控制煤炭燃烧氮氧化物的排放成为了环保领域的一个重要研究方向。
I. 煤炭燃烧氮氧化物产生机理煤炭中含有氮元素,燃烧过程中,氮元素主要以两种形式存在:一种是有机氮,如蛋白质、脂肪等,另一种是无机氮,如氨、氰化物等。
由于煤样、燃烧条件等的不同,氮元素的存在形式也不同。
煤炭中的氮元素在燃烧过程中会与空气中的氧进行反应,产生一系列氮氧化物(NOx),包括一氧化氮(NO)和二氧化氮(NO2)。
主要反应式如下:N2 + O2 -> 2NO2NO + O2 -> 2NO2II. 煤炭燃烧氮氧化物的控制方法1. 预先措施a. 煤炭氮含量控制:通过调整煤炭的选取和使用,可以有效地控制氮氧化物的排放。
选择低氮煤炭或煤炭洗选去除煤炭中的氮元素是控制煤炭燃烧氮氧化物排放的首要措施。
b. 煤粉矫正:通过改变煤粉中氧气、水分和灰分的含量,调节煤粉的燃烧条件,降低氮氧化物的排放。
2. 燃烧后减排a. 排烟氮氧化物的后处理:在煤炭燃烧锅炉的尾部增加氮氧化物还原剂(如尿素等)来降低NOx的排放。
b. 气体循环系统:通过将锅炉废气中的氮氧化物送入高温区,利用高温分解和还原反应降低氮氧化物的排放。
c. 燃烧控制技术:通过优化煤粉的燃烧条件,如煤粉喷射速度、煤粉尺寸等,降低氮氧化物的排放。
d. SCR脱硝法:在煤炭燃烧工艺中加入一种氨水溶液,使其与废气中的NOx发生反应,生成氮气和水蒸气。
Conclusion总之,煤炭燃烧氮氧化物的排放对环境和人类健康具有严重危害。
因此,控制煤炭燃烧氮氧化物的排放成为了环保领域的一个重要研究方向。
本文介绍了煤炭燃烧氮氧化物的产生机理和控制方法,这些方法可以有效地降低煤炭燃烧氮氧化物的排放,从而达到环保的目的。
煤粉炉富氧燃烧氮氧化物的产生煤粉炉是一种燃煤设备,用于将煤粉燃烧成热能,产生蒸汽,从而驱动汽轮发电机发电。
然而,在燃煤过程中,一些氮氧化物会同时生成并排放到大气中,对环境和人体健康产生负面影响。
因此,煤粉炉中氮氧化物的产生成为燃煤行业面临的重要问题之一。
本文将介绍煤粉炉富氧燃烧氮氧化物的产生机理并提出相应的控制方法。
一、煤粉炉氮氧化物的产生机理(一)氮氧化物的形成在燃烧过程中,空气中的氮气和氧气会发生反应,生成氮氧化物。
在煤粉炉的燃烧过程中,煤粉和空气经过充分混合后着火点燃,煤粉中的碳、氢、硫等元素与氧气发生燃烧,同时空气中的氮气也会与氧气发生化合反应,生成氮氧化物。
具体反应方程式如下:2N2 + O2 → 2NON2 + 2O2 → 2NO2(二)氮氧化物的生成途径氮氧化物的生成主要有两种途径,一是在高温下,空气中的氮气和氧气直接发生反应生成氮氧化物;二是煤粉中的氮气和氧气发生反应生成氮氧化物。
在煤粉炉的燃烧过程中,由于温度较高,空气中的氮气和氧气在瞬间出现的高温状态下容易发生反应生成氮氧化物。
二、煤粉炉氮氧化物的控制方法为了减少煤粉炉氮氧化物的排放,可以采取以下控制方法:(一)优化燃烧工艺通过优化煤粉炉的燃烧工艺,控制燃烧温度和燃气速度,可以降低氮氧化物的生成。
在煤粉炉燃烧过程中,通过调节燃烧参数,合理分配空气和煤粉的混合比例,并控制燃烧温度和燃气速度,减少煤炭燃烧中产生的氮氧化物。
(二)脱硫脱硝技术脱硫脱硝技术是目前较为成熟的氮氧化物控制方法之一。
通过在煤粉炉燃烧过程中引入脱硫脱硝装置,将燃烧产生的氮氧化物进行脱除,从而减少氮氧化物的排放。
目前,市场上已经有多种脱硫脱硝技术可供选择,可以根据具体情况选择合适的脱硫脱硝技术,进行氮氧化物的控制。
(三)利用富氧燃烧技术富氧燃烧技术是一种高效的氮氧化物控制方法。
通过在煤粉炉燃烧过程中引入富氧气体,可以降低燃烧温度,减少氮氧化物的生成。
富氧燃烧技术可以有效降低煤粉炉燃烧过程中氮氧化物的排放达到减排效果。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是一种常见的能源转换设备,它通过燃烧煤炭释放能量,并将其转化为电力。
锅炉燃烧煤炭过程中会产生大量的氮氧化物(NOx),这对环境和人体健康都带来了严重的影响。
本文将介绍燃煤电站锅炉氮氧化物的形成机理,并提出了一些防治措施。
燃煤电站锅炉氮氧化物主要由两种氮氧化物组成:一氧化氮(NO)和二氧化氮(NO2)。
它们的形成机理如下:1. 燃烧过程中的热力反应:燃煤电站锅炉中的燃烧过程会使空气中的氮气与煤炭中的氮元素发生反应,生成一氧化氮和二氧化氮。
这是氮氧化物形成的主要途径。
2. 脱氮反应:一氧化氮和二氧化氮在高温环境下会与燃烧产物中的还原剂(如CO、H2等)发生反应生成氮气。
这种反应被称为脱氮反应,通过这种反应可以减少一氧化氮和二氧化氮的排放。
为了减少燃煤电站锅炉氮氧化物的排放,可以采取以下防治措施:1. 技术措施:引入新的燃烧技术,如低氮燃烧技术、超临界燃烧技术等,可以降低锅炉燃烧过程中氮氧化物的产生量。
还可以采用烟气脱硝技术对烟气进行处理,将氮氧化物转化为无毒的氮气。
2. 设备改造:对燃煤电站锅炉进行改造,增加脱硝装置,以降低氮氧化物的排放。
目前常用的脱硝设备有选择性催化还原(SCR)和选择性非催化还原(SNCR)等。
3. 燃烧管理:通过优化燃烧工艺、燃烧控制系统和燃烧参数的调整,可以降低锅炉燃烧过程中氮氧化物的生成。
4. 排放控制:对烟气进行净化处理,通过除尘器、脱硫装置等设备去除大部分氮氧化物。
燃煤电站锅炉燃烧过程中产生的氮氧化物对环境和人体健康都具有潜在的危害。
为了减少其排放,需要采取一系列的技术措施、设备改造、燃烧管理、排放控制和燃料处理等防治措施。
这将有助于改善空气质量和保护人体健康。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站是目前我国主要的电力发电方式之一,它所发出的废气中含有大量的氮氧化物。
氮氧化物是一种对环境和人体健康都有害的污染物,因此如何有效地减少燃煤电站锅炉废气中的氮氧化物排放成为了当前环境保护领域中的一个重要问题。
本文将探讨燃煤电站锅炉氮氧化物的形成机理及防治措施,以期能够为相关领域的研究和应用提供一定的参考。
1. 燃料中的氮氧化合物:燃煤电站使用的煤炭中含有一定量的有机氮化合物,当这些有机氮化合物经过燃烧后会释放出氮氧化物。
燃煤中的灰分中也含有一定量的氮化合物,当这些灰分在燃烧过程中因高温产生重碳氢氮物质,也会导致氮的演化,产生氮氧化物。
2. 高温条件下的氮氧化物生成:在燃煤电站锅炉的燃烧过程中,高温条件下有利于氮氧化物的生成。
在燃料燃烧时,氮气和氧气在高温条件下会发生反应,生成一氧化氮和二氧化氮。
3. 氮氧化物的再循环:在锅炉内,废气中的氮氧化物会被混合气流再循环,使得氮氧化物的生成更加复杂和混乱,增加了排放控制的难度。
1. 燃料优化选择:选择低氮燃烧技术,采用低氮燃料,如低氮煤或添加脱硫脱氮剂等,减少氮氧化物在燃料中的来源,有效降低氮氧化物的排放。
2. 燃烧优化控制:通过优化燃烧参数,如控制氧浓度、延迟燃烧等方式来控制燃烧温度,减少氮氧化物的形成。
3. 烟气脱硝技术:利用烟气脱硝技术,将烟气中的氮氧化物转化为无害物质,如通过选择性催化还原(SCR)、非选择性催化还原(SNCR)等技术来降低氮氧化物的排放。
4. 燃烧过程的设备改进:通过修改锅炉的结构,如安装再循环系统、改善燃烧室结构等方式来减少氮氧化物的生成。
5. 废气处理技术:在燃煤电站锅炉的废气排放口设置脱硫脱硝装置,进一步减少氮氧化物的排放。
总结:燃煤电站锅炉氮氧化物的产生问题是一个全球性的环境保护难题,在我国也备受重视。
在当前环保政策的引导下,各个燃煤电站都要积极采取有效的措施来减少氮氧化物的排放。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是一种常见的发电设备,但使用煤炭燃烧会产生大量的氮氧化物(NOx),它是造成大气环境污染的主要来源之一。
为了降低煤炭燃烧带来的氮氧化物排放,需要了解它们的形成机理,并采取相应的防治措施。
氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2)。
它们的形成主要是通过两个步骤实现的:氮氧化物的生成和氮氧化物的转化。
氮氧化物的生成是由于燃烧过程中的高温条件下空气中的氮气(N2)与氧气(O2)反应生成一氧化氮(NO)。
然后,一氧化氮进一步氧化生成二氧化氮(NO2)。
而氮氧化物的转化是指NO和NO2之间的相互转化。
在高温条件下,NO和O2可以反应生成NO2,这个过程被称为氧化反应。
而在低温条件下,NO2可以分解生成NO,这个过程被称为还原反应。
为了控制燃煤电站锅炉产生的氮氧化物排放,可以采取以下防治措施:1. 燃烧控制:优化燃烧过程,提高燃烧的充分性和均匀性,降低燃烧温度,减少氮氧化物的生成。
2. 燃烧改进:采用低氮燃烧技术,如燃烧对分布、煤粉喷嘴调整、燃料预处理等措施,可以减少高温燃烧区域的形成,从而降低氮氧化物的生成。
3. 燃烧调整:合理调整供氧量和燃料分配,维持适宜的燃料-氧化剂比,以减少高温区域内氮氧化物的生成。
4. 锅炉改造:安装氮氧化物减排设备,如选择性催化还原(SCR)和选择性非催化还原(SNCR)等技术来降低氮氧化物的排放。
5. 烟气脱硝:采用湿法或干法的烟气脱硝技术,通过在烟气中喷射还原剂或氨水等药剂来减少氮氧化物的排放。
6. 设备运维管理:加强设备的运维管理,定期进行设备的清洗和维护,确保设备的正常运行和效率。
燃煤电站锅炉氮氧化物形成机理复杂,但采取相应的防治措施可以降低氮氧化物的排放。
这对于保护大气环境和改善空气质量至关重要。
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是大气污染的重要来源之一,其中氮氧化物(NOx)是主要的污染物之一。
本文将详细介绍燃煤电站锅炉中NOx的形成机理以及防治措施。
燃煤电站锅炉中NOx的形成主要有两个途径:热反应途径和燃料反应途径。
热反应途径:在燃烧过程中,煤炭中的氮在高温下与氧发生反应,生成一氧化氮(NO)。
烟气中的一氧化氮进一步在高温下与大量的氧气反应,生成二氧化氮(NO2),这是最主要的NOx形成途径。
这种热反应途径占据了NOx总排放量的60%至80%。
燃料反应途径:煤炭中的有机氮化合物如胺、腈、蛋白质等在燃烧过程中氧化生成一氧化氮。
煤炭中的含硫化合物如硫酸铵、硫化氢等也会增加NOx的形成。
这种燃料反应途径占据了NOx总排放量的20%至40%。
燃煤电站锅炉中NOx的防治措施主要包括以下几个方面:1. 燃烧调整技术:通过调整燃烧条件,可以减少燃烧温度和氧浓度,从而降低煤炭中氮的氧化率。
采用低氮燃烧技术、燃烧再循环技术、燃烧扩散焚烧技术等可以有效降低NOx的生成。
2. 烟气脱硝技术:烟气脱硝技术是目前最常用的NOx排放控制技术之一。
常见的烟气脱硝技术包括选择性催化还原(SCR)、选择性非催化还原(SNCR)等。
SCR技术通过在烟气中注入还原剂,利用催化剂促进NOx的还原反应,将NOx转化为无害的氮气和水。
SNCR技术则是在烟气中喷射还原剂,使其与燃烧产物中的一氧化氮发生还原反应。
3. 燃料改进:改变煤炭的燃料成分,减少煤中的氮含量,可以有效减少NOx的生成。
采用低氮煤、低氮煤粉等可以降低NOx的排放。
4. 其他技术措施:燃烧过程中的过量空气的控制、燃烧器的优化设计、断续燃烧技术等也可以减少NOx的生成。
对煤炭冲洗和脱硫也能减少NOx的排放。
燃煤电站锅炉中NOx的形成机理复杂,但通过燃烧调整、烟气脱硝、燃料改进等技术措施可以有效防治NOx的排放,降低燃煤电站对大气环境的污染。
燃煤电站锅炉氮氧化物形成机理及防治措施【摘要】本文对燃煤电站锅炉氮氧化物形成机理及防治措施进行了综述。
首先分析了燃煤电站锅炉中氮氧化物的形成机理,然后探讨了氮氧化物的排放对环境的影响。
接着介绍了氮氧化物的控制技术和燃煤电站锅炉氮氧化物减排措施,同时展望了氮氧化物治理的发展趋势。
结论部分强调了燃煤电站锅炉氮氧化物治理的重要性,并提出了可持续发展与环保之间的平衡。
燃煤电站锅炉氮氧化物的形成机理及防治技术是当前环保工作中的重要课题,应该积极采取措施加以应对,以保护环境,促进可持续发展。
【关键词】关键词:燃煤电站锅炉、氮氧化物、形成机理、环境影响、控制技术、减排措施、治理发展趋势、可持续发展、环保。
1. 引言1.1 燃煤电站锅炉氮氧化物形成机理及防治措施概述燃煤电站锅炉是常见的工业锅炉,其燃烧过程会产生氮氧化物(NOx),这些有害气体对环境和人体健康造成了严重危害。
燃煤电站锅炉氮氧化物的形成机理及防治措施成为了重要课题。
燃煤电站锅炉中的氮氧化物主要来源于煤炭中的氮气和空气中的氧气,在高温燃烧过程中发生氧化反应而生成。
燃煤电站锅炉的燃烧温度、燃烧时间、燃烧空气过量系数等因素都会影响氮氧化物的生成量。
氮氧化物的排放会导致大气污染,形成酸雨、臭氧等有害气体,对环境和生态造成破坏。
为了减少氮氧化物的排放,燃煤电站锅炉需要采取控制技术,如燃烧控制技术、脱硝技术、烟气再循环技术等。
随着环保意识的增强,燃煤电站锅炉氮氧化物的减排措施越来越受到重视。
未来,燃煤电站锅炉氮氧化物治理的发展趋势将会朝着更加环保、持续发展的方向发展,以实现环境保护和经济效益的平衡。
2. 正文2.1 燃煤电站锅炉中氮氧化物形成机理分析燃煤电站锅炉燃烧过程中产生的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2),这些氮氧化物主要来源于煤中的有机氮和无机氮在高温燃烧条件下的氧化反应。
氮氧化物的生成主要分为两个阶段:第一阶段是燃料中的氮在燃烧室中被氧化生成一氧化氮;第二阶段是一氧化氮在高温下与空气中的氧继续反应生成二氧化氮。
建材发展导向2018年第09期61 氮氧化物的危害氮氧化物(NOx)是导致光化学烟雾的关键因素,可以直接造成大气层中臭氧含量降低、形成硝酸雨,使人感染肺水肿、气喘病、鼻炎等疾病。
根据相关研究,每吨煤燃烧后都要产生5-30kg 的氮氧化物。
然而在我国能源结构中大约有70%-80%的能源比例是由煤燃烧来产生,煤炭燃烧已经成为我国氮氧化物排放的主要来源。
2 煤燃烧过程中NO X 的生成机理煤燃烧生成NO X 的机理要比SO 2复杂得多,而且烟气中的NO X 浓度也不像SO 2那样能够通过计算煤的含硫量得出,其生成量和燃烧方式尤其是燃烧温度与过剩空气系数之间密切相关。
加强煤燃烧过程中的NO X 生成机理研究有利于尽快发现有效抑制其产生的科学方法。
煤燃烧过程中的NO X 生成主要有下面3种途径:(1)燃料型NO X 。
燃料中的氮化合物在燃烧时先热分解,随后又被氧化而生成NO X ,生成NO X 的比例60%~80%以上。
(2)快速型NO X 。
在燃烧时,空气中的氮与燃料中的碳氢离子团发生化学反应生成NO X 。
(3)热力型NO X 。
空气中的N 2在高温条件下被氧化生成NO X ,生产的NO X 可占20%左右。
2.1 燃料型NO X 生成机理燃料型NO X 的生成机理十分复杂,在常规燃烧条件下,燃料中的含氮化合物会首先热分解为氰化氢(HCN)、氨(NH 3)以及CN 等中间产物,它们从燃料中随挥发分N 一起析出。
挥发分N 析出后,仍然大量残留于焦碳中的氮化合物被称为焦碳N。
在一般的燃烧温度下,燃料型NO X 的60~80%来自挥发分N ;焦碳N 生成的NO X 只占到20%~40%。
燃料型NOx 的转化率。
将燃烧时产生的NO 浓度与燃料中完全转化NO 时的浓度比定义为燃料型NO 的转化率CR。
日本丰桥大学有学者曾对煤炭进行相关试验研究,总结出了NO 转化率与煤的挥发分、含氮量、燃烧时的最高温度、过剩空气系数以及氧浓度间的经验公式:CR=0.407-0.128N ad +3.34X10-4 V ad 2(a-1)+5.55×10-4T max +3.50×10-3C o22.2 热力型NO X 生成机理热力型NO X 的生成机理由捷里多维奇(Zeldovich)提出,按照该生成机理,空气中的N 2在高温条件下被氧化,发生的就是捷里多维奇(Zeldovich)的不分支链锁反应:O 2+M →2O+M O+N 2→NO+N N+O 2→NO+O2.3 快速型NO X 生成机理快速型NO 是由费尼莫尔(Fenimore)在1971年发现的,即碳氢化燃料在燃烧时,反应区域会迅速生成NO。