医疗行业大数据应用
- 格式:doc
- 大小:33.50 KB
- 文档页数:5
大数据分析对医疗行业的应用一、背景随着科技的不断发展,大数据已成为各行各业的热门话题,对于医疗行业来说,大数据分析也成为了一种重要的应用方式。
利用大数据分析技术,可以挖掘出大量有价值的信息和知识,进而为医疗机构提供便利和支持,有利于提升医疗服务的质量和效率。
二、医疗行业的数据来源医疗行业的数据来源非常广泛,涉及到患者的基本信息、就诊记录、体检报告、医生诊断意见等内容,这些信息可以来自医疗机构的电子病历系统、医学影像系统、实验室信息管理系统等。
三、大数据分析在医疗行业的应用1. 疾病预测利用大数据分析技术,可以对大量的医疗数据进行深入挖掘,从而发现疾病的潜在规律和特点,预测出疾病的风险和发生概率,为患者提供更为精准的诊疗服务。
2. 个体化诊疗在医疗行业中,每个患者的病情、体质等都是不同的,因此医生需要根据患者的实际情况来制定个性化的诊疗方案。
利用大数据分析技术,可以根据每个患者的病历、实验室数据等,对其进行分析和比对,为医生提供有针对性的诊疗建议。
3. 医疗资源分配医疗资源有限,如何更加科学地分配医疗资源是医疗行业面临的一个难题。
利用大数据分析技术,可以根据患者的病情、治疗记录等信息,为医疗机构提供资源分配建议和优化方案,有利于提高资源的利用效率和患者的满意度。
4. 药品研发和生产药品研发和生产需要大量的时间和资源,利用大数据分析技术可以对已有的研究数据进行综合分析,发现药品的特点和效果,为药品研发提供指导和支持;同时,还可以利用大数据分析技术,对生产过程中的数据进行监测和分析,确保药品生产的质量和效率。
四、大数据分析在医疗行业中的案例1. 以色列的预防性医疗项目以色列的某家医疗机构,利用大数据分析技术对大量的医疗数据进行挖掘和分析,发现了不同疾病之间的联系和共性,进而提出了一种预防性医疗方案,以降低患者发生疾病的风险。
2. 德国杜塞尔多夫的药物预警系统德国杜塞尔多夫的医疗机构,开发了一个基于大数据分析技术的药物预警系统,可以对药品的安全性进行评估和预测,用于提醒医生和患者注意药品的安全问题,有利于提高药品使用的安全性和有效性。
医疗行业大数据应用的15个场景医疗行业是一个具有巨大数据量的领域,随着信息技术的快速发展和数据处理能力的增强,大数据在医疗行业的应用也越来越广泛。
下面是医疗行业大数据应用的15个场景:1.健康管理:通过搜集患者的个人健康数据,如体重、血压、心率等,结合大数据分析算法,为患者提供个性化的健康管理方案。
2.疾病预测:通过分析大量患者的病历数据、症状以及遗传信息等,建立疾病预测模型,提前发现患者可能患上的疾病,采取措施进行预防。
3.病历智能化:利用自然语言处理技术和机器学习算法,将医疗记录进行数字化处理,实现病历自动化、自动识别关键信息并提供辅助诊断。
4.临床决策支持:基于大量的临床数据和病例数据,建立临床决策支持系统,为医生提供诊断和治疗决策的参考,提高医疗水平和准确性。
5.药物研发:通过分析药物分子、基因组数据以及患者数据,加速药物研发的过程,提高研发的效率,降低研发成本。
6.用药安全监测:利用大数据分析药物使用的安全性和有效性,检测和预防药物不良反应和相互作用等问题,提高用药安全性。
7.医疗资源调配:通过分析大量的医院、科室和医生的就诊数据,调配医疗资源,优化医疗服务,提高医疗效率。
8.医疗诈骗检测:通过分析医疗数据,发现异常就诊模式、医生就诊行为等,帮助医疗机构及时发现和防范医疗欺诈行为。
9.健康风险评估:结合患者的个人信息、生活习惯以及遗传数据,通过大数据分析预测个体患病风险,提供个性化的健康风险评估报告。
10.医疗质量评估:利用大量的医疗数据,如手术数据、病情转归等,分析医疗质量和效果,为医疗机构和患者提供参考。
11.医学图像分析:利用大数据分析方法,对医学图像进行自动分析和识别,帮助医生在疾病诊断和治疗中作出决策。
12.远程医疗:通过大数据分析、云计算和物联网技术,将医疗数据传输到远程医生,实现远程诊断和治疗,提高偏远地区的医疗服务水平。
13.个性化治疗:通过分析患者的基因组数据和临床数据,为个体患者提供个性化的治疗方案,提高治疗效果和患者生活质量。
大数据分析在医疗行业中的应用有哪些在当今数字化的时代,大数据分析已经成为各个行业创新和发展的重要驱动力,医疗行业也不例外。
随着医疗信息技术的快速发展,大量的医疗数据被生成和存储,包括患者的病历、诊断报告、治疗方案、医学影像等。
这些海量的数据蕴含着丰富的信息和潜在的价值,通过大数据分析技术的应用,能够为医疗行业带来诸多的变革和进步。
一、疾病预测与预防大数据分析可以帮助医疗机构提前预测疾病的发生和流行趋势。
通过整合和分析来自不同来源的数据,如电子病历、医疗保险数据、公共卫生监测数据等,能够发现疾病的潜在模式和风险因素。
例如,分析特定地区的人口特征、生活方式、环境因素与某种疾病发病率之间的关系,从而预测该疾病在该地区的可能爆发情况。
这有助于提前采取预防措施,如开展健康教育、加强疫苗接种、优化医疗资源配置等,降低疾病的发生率和危害。
此外,对于个体患者,大数据分析可以基于其基因数据、家族病史、生活习惯等信息,评估其患特定疾病的风险。
例如,通过基因检测和大数据分析,可以预测个体患某些遗传性疾病(如乳腺癌、心脏病等)的概率,并提供个性化的预防建议,如定期体检、调整饮食和运动习惯等。
二、医疗质量改进大数据分析有助于评估医疗服务的质量和效果。
通过分析患者的治疗过程和结局数据,可以评估不同医疗机构、医生和治疗方案的疗效和安全性。
例如,比较不同医院对于同一种疾病的治疗成功率、并发症发生率、住院时间等指标,找出最佳的治疗实践,并在行业内推广。
同时,大数据分析还可以发现医疗过程中的潜在风险和质量问题。
例如,监测药物不良反应的发生情况,及时发现异常信号,采取措施避免更多患者受到伤害。
分析手术并发症的相关因素,改进手术流程和操作规范,提高手术的安全性。
三、精准医疗精准医疗是根据患者的个体特征,包括基因、生理、病理、生活方式等,为其制定个性化的医疗方案。
大数据分析在精准医疗中发挥着关键作用。
通过对大规模的基因数据进行分析,可以发现与疾病相关的基因变异和标志物,为疾病的诊断和治疗提供新的靶点。
大数据在医疗行业中的应用与优势随着科技的不断发展,大数据已经成为了各个行业的热门话题。
在医疗行业中,大数据的应用也越来越广泛。
本文将探讨大数据在医疗行业中的应用与优势。
一、大数据在医疗行业中的应用1. 疾病预测与预防大数据分析可以通过对大量的医疗数据进行挖掘和分析,发现疾病的潜在风险因素和预测模式。
通过对患者的个人信息、病历数据、基因组数据等进行分析,可以提前预测某些疾病的发生概率,从而采取相应的预防措施,减少疾病的发生。
2. 个性化治疗大数据分析可以根据患者的个人信息和病历数据,为患者提供个性化的治疗方案。
通过对大量的病例数据进行分析,可以找到不同患者之间的共同特征和治疗效果,从而为患者提供更加精准的治疗方案,提高治疗效果。
3. 医疗资源优化大数据分析可以对医疗资源进行优化和分配。
通过对医院的就诊数据、医生的工作量数据等进行分析,可以了解医疗资源的利用情况和瓶颈所在,从而合理调配医疗资源,提高医疗效率。
4. 药物研发与监测大数据分析可以对药物的研发和监测提供支持。
通过对大量的药物试验数据进行分析,可以找到药物的作用机制和副作用,从而指导药物的研发和使用。
同时,通过对患者的用药数据进行分析,可以监测药物的疗效和安全性,及时发现并解决药物的问题。
二、大数据在医疗行业中的优势1. 提高医疗效率大数据分析可以提高医疗效率。
通过对大量的医疗数据进行分析,可以找到医疗过程中的瓶颈和问题,从而优化医疗流程,提高医疗效率。
同时,大数据分析可以提供实时的医疗数据,帮助医生做出更加准确的诊断和治疗决策,提高医疗效果。
2. 降低医疗成本大数据分析可以降低医疗成本。
通过对医疗数据的分析,可以找到医疗资源的浪费和冗余,从而合理调配医疗资源,降低医疗成本。
同时,大数据分析可以提供患者的个人信息和病历数据,帮助医生做出更加准确的诊断和治疗决策,减少不必要的检查和治疗,降低医疗费用。
3. 提高医疗质量大数据分析可以提高医疗质量。
大数据在医疗行业的应用随着科技的不断发展,人们对于医疗行业的期望也在不断增加。
医疗行业的数据量也在不断增大,这就需要数据处理的能力和分析的能力。
大数据技术可以为医疗行业提供强大的支持,帮助医疗行业更加高效、精确地服务于社会。
本文主要探讨大数据在医疗行业的应用。
一、1. 诊断分析:大数据技术可以助力医生进行诊断分析,提供全面的病历数据以及病人相关信息,让医生更加准确地判断病情及其发展趋势,进而增强医生的治疗能力,提升治疗效果。
在医疗保健行业中,医生可以使用大数据技术对其所见的病例进行分析。
通过分析,医生可以及时发现潜在的问题,以便更好地解决患者的医疗问题。
2. 疾病预测:通过大数据技术可以分析出不同群体的健康数据,从而预测其健康状况。
在医疗保健行业中,医生可以细致分析来自不同病人的数据,从而准确预测出疾病的发生率。
这种预测能力可以让医生及早发现疾病,提前干预和治疗。
同时,还可以通过预测江阴不同人群的健康状况,制定更加合理、有效的疾病预防策略。
3. 医疗资源管理:大数据技术可以助力医院进行医疗资源管理。
通过对病人数据的分析,医院可以更好地掌握病人的床位、治疗、手术排班等情况,进而合理分配医疗资源。
作为医生,还可以使用大数据技术分析医学文献,帮助他们了解医学领域的最新变化,理解趋势并更好地做出决策。
4. 健康管理:大数据技术可以为医院提供高效的健康管理系统定制,使得患者可以随时随地访问其健康数据、获取医学建议、预约和取消医疗服务等等。
作为医生,还可以通过大数据技术收集更多数据,进一步了解病人情况,制定更好的健康管理方案。
5. 诊断工具开发:大数据技术可以提高医学研究的效率,使得病人不仅能够获得更快速的治疗,同时能够确保治疗的准确性。
通过采用大数据技术,医学研究者可以更全面地分析人员数据,深度了解其健康状况,并协助制定和完善相关的新型诊断工具和治疗方案。
二、大数据在医疗行业的应用现状大数据在医疗行业应用的前景挺好并且已经得到了广泛的认可。
大数据在医疗行业中的5种应用
大数据在医疗行业中的应用越来越广泛,为医生、患者和研究者提供了更好的数据支持和决策依据。
以下是五种大数据在医疗行业中的应用。
1. 疾病预测和预防:大数据可以分析庞大的医疗数据库和患者数据,建立精准的预测模型,帮助研究者预测和预防疾病的发生。
通过分析患者的基因数据和生活习惯,可以预测个体患上某种疾病的风险,并提前制定预防措施。
2. 个体化治疗:通过大数据分析,医生可以获取患者的详细疾病信息和医疗记录,了解疾病的病理特征和治疗效果。
基于这些信息,医生可以制定个体化的治疗方案,提高治疗效果并减少不必要的药物使用。
3. 医疗资源优化:大数据可以帮助医疗机构合理分配医疗资源,减轻医疗系统的负担。
通过分析患者的就诊记录和病情,可以预测患病人数的变化趋势,并合理调整医生、护士和床位的分配,提高医疗资源的利用率。
4. 临床研究和药物研发:大数据可以用于临床研究和药物研发,提高研究的效率和精确性。
通过分析大量的临床试验数据和病人记录,可以发现新的疾病模式、治疗方法和药物靶点,加速药物研发过程。
5. 医疗政策制定和管理:大数据可以提供医疗决策支持,帮助政府制定和管理医疗政策。
通过分析全国范围内的医疗数据,可以了解不同地区的疾病分布和就诊情况,及时调整医疗资源的分配,优化医疗服务和健康保障体系。
总结一下,大数据在医疗行业中有许多应用,能够提高疾病预测和预防能力,个体化治疗方案,优化医疗资源分配,加快药物研发过程,并支持医疗政策制定与管理。
随着技术的进步和数据的积累,大数据在医疗领域的价值和应用前景将进一步扩大。
大数据在健康医疗行业中的应用随着技术的进步和互联网的普及,大数据逐渐在各个领域中得到应用。
健康医疗行业也不例外,大数据在这个行业中起到了越来越重要的作用。
一、大数据在健康医疗行业中的应用1.基因测序在基因测序领域,大数据的应用非常广泛。
利用大数据分析技术,可以为医疗机构和医生提供更为精准的基因诊断服务,同时也可以帮助药厂更好地开发新的治疗方式和药物方案。
2. 医疗保险医疗保险是大数据在健康医疗行业中应用的重要领域之一。
大数据分析技术可以帮助医疗机构更好地评估保险风险和理赔计划,同时也可以降低医疗保险欺诈行为的发生。
3. 科研数据分析大数据在医学研究中也扮演了重要的角色。
大规模的数据分析可以帮助医学专家探索未知的疾病机理和治疗方式,促进医学科研的进步。
4. 医疗管理医疗管理领域也是大数据的重要应用场景。
利用大数据分析技术,医疗机构可以更好地管理医疗资源和病人信息,提高医疗服务的效率和质量。
5. 健康监测大数据分析技术还可以为健康监测提供支持。
通过收集大量的健康数据,可以对人群的健康状况进行分析和预测,提供个性化的健康管理和监测服务。
二、大数据在健康医疗行业中的优势1. 提高医疗效率和效益通过大数据分析技术,医疗机构可以更好地管理医疗资源和病人信息,提高医疗服务的效率和质量。
同时,大数据还可以提供更为精准的基因诊断服务和治疗方案,提高治疗效果和降低医疗成本。
2. 实现个性化医疗服务利用大数据分析技术,医疗机构可以为每位患者提供个性化的医疗服务,根据病人的个体差异和历史数据提供更为精准的诊断、预防和治疗方案。
3. 抗击全球疫情近年来,全球疫情频繁,大数据分析技术可以为公共卫生事件提供及时的预警和预测,有效遏制疫情的扩散,为全球疫情防控作出贡献。
4. 促进医疗科技的进步大数据在医学研究中也扮演了重要的角色。
大规模的数据分析可以帮助医学专家探索未知的疾病机理和治疗方式,促进医学科研的进步。
三、大数据在健康医疗行业中的挑战与应对1. 数据安全问题在大数据分析过程中,隐私泄露和安全问题犯罪问题可能会威胁到病人和医疗机构的隐私和安全。
大数据在医疗领域的应用大数据技术在医疗领域的应用不仅有助于精准诊断和治疗,还可以改善医疗资源的分配和管理,提升医疗服务的质量和效率。
以下是一些关于大数据在医疗领域的应用案例:1.疾病预测和预防:大数据可以收集和分析大量的医疗数据,包括病人的病历、遗传信息、临床试验数据等,从而预测和识别患病风险。
例如,利用大数据可以分析患者的遗传信息和生活习惯,预测一些慢性疾病(如糖尿病、心血管疾病等)的患病风险,从而采取相应的预防措施。
2.药物研发和创新:大数据可以帮助医药公司加速药物研发进程,降低研发成本。
通过收集和分析大量的患者数据和基因信息,可以更准确地了解药物的作用机制和疗效,从而优化药物设计和临床试验方案。
此外,大数据还可以帮助筛选潜在的新药目标和预测药物的副作用。
3.医疗资源优化:大数据可以分析医疗资源的使用情况,优化医疗资源的分配和管理。
通过收集和分析患者的就诊记录、病历和医疗影像数据,可以预测和优化医院的资源需求,提供更合理和有效的医疗服务。
例如,大数据可以帮助医院预测手术的风险和复发率,从而决定是否需要进行手术,合理安排手术时间和资源,提高手术的成功率和患者的生存率。
4.病人管理和自我监测:大数据可以帮助患者管理和监测自身的健康状况。
通过患者的移动设备、健康监测器等收集的数据,可以及时分析患者的生理参数和病情变化,提供个性化的健康管理建议。
例如,大数据可以通过分析患者的生活习惯和疾病风险,提供个性化的膳食和运动方案,促进患者的康复和健康。
5.疫情监测和控制:大数据可以帮助监测和控制传染病的爆发和传播。
通过分析病例报告、医疗设备数据和社交媒体数据,可以实时追踪传染病的发展趋势和传播路径,提前预警和采取相应的防控措施。
例如,利用大数据可以实时监测流感的病例报告和医疗资源的使用情况,及时调配医疗资源,有效控制流感的传播和扩散。
总之,大数据技术在医疗领域的应用有助于提高医疗服务的质量和效率,降低医疗成本,改善医疗资源的分配和管理。
大数据在医疗行业应用在当今数字化时代,大数据正以前所未有的速度和规模渗透到各个行业,医疗行业也不例外。
大数据的应用为医疗领域带来了革命性的变化,从医疗服务的提供到疾病的预防和治疗,都产生了深远的影响。
首先,大数据在医疗行业的一个重要应用是疾病预测和预防。
通过收集和分析大量的医疗数据,包括患者的病历、家族病史、生活方式、环境因素等,医疗机构可以更准确地预测疾病的发生风险。
例如,对于心血管疾病、糖尿病等常见慢性病,大数据分析能够识别出潜在的高危人群,并提前采取干预措施,如健康教育、饮食调整、运动指导等,从而降低疾病的发生率。
其次,大数据有助于优化医疗资源的分配。
在医疗系统中,资源的合理配置一直是一个挑战。
利用大数据,能够对医疗服务的需求进行精准预测。
比如,根据不同地区的人口结构、疾病谱、季节变化等因素,合理安排医疗机构的床位、医护人员的数量和设备的配置。
这不仅可以提高医疗资源的利用效率,还能减少患者等待时间,提高医疗服务的质量。
在医疗诊断方面,大数据也发挥着关键作用。
传统的诊断方法往往依赖于医生的经验和有限的检查结果。
而大数据技术可以整合来自不同医疗机构、不同患者的海量诊断数据,为医生提供更全面、更准确的参考。
例如,在影像诊断中,通过对大量的 X 光、CT、MRI 等图像数据进行深度学习和分析,计算机辅助诊断系统能够帮助医生更快速、更准确地发现病变。
大数据还促进了个性化医疗的发展。
每个人的基因、生理特征和疾病反应都有所不同。
通过对个体的基因数据、蛋白质组学数据以及临床数据进行综合分析,医生可以为患者制定个性化的治疗方案。
比如,根据患者的基因变异情况选择最合适的药物和剂量,从而提高治疗效果,减少药物副作用。
在医疗科研领域,大数据更是不可或缺的工具。
大规模的临床数据和生物样本数据为研究疾病的发病机制、药物的疗效和安全性提供了丰富的资源。
科研人员可以利用这些数据开展大规模的队列研究、临床试验和真实世界研究,加速新药物和新治疗方法的研发进程。
大和种类之多令人难以置信。
比如:一个CT图像含有大约150MB的数据,而一个基因组序列文件大小约为750MB,一个标准的病理图则大得多,接近5 GB。
如果将这些数据量乘以人口数量和平均寿命,仅一个社区医院或一个中等规模制药企业就可以生成和累积达数个TB甚至数个PB级的结构化和非结构化数据。
在中国,2010年,国家公布的“十二五”规划中指出要重点建设国家级、省级和地市级三级卫生信息平台,建设电子档案和电子病历两个基础数据库等诸项目标,也就是推进医疗信息化的“3521”工程。
过去由于缺少统一的电子病历系统(EMR)标准,中国的电子病历系统发展比较缓慢,医院之间不能实现共享病患信息共享,医疗服务水平也因此受到影响。
为改善这一现状,国家会逐渐加大对电子病历的投入,适应这一趋势,各级医院也将加大在数据中心,IT外包等领域的投入。
而随着医疗信息数据的几何倍数增长,医院信息存储将越来越受到重视,医疗信息中心的关注点也将由传统“计算”领域转移到“存储”领域上来。
有“弊”就有“利”
对于许多医疗和生命科学机构而言,努力控制大数据造成的呈螺旋上涨的成本、复杂性和风险已经成为一个至关重要的问题。
然而,从另一个角度来看,医疗大数据能够带来的收益要远远超出管理它们的成本,如开放新的具有医疗价值的信息源、提高诊断准确性和速度、预测疾病和健康形态,以及取得生命科学创新的不同见解。
美国管理咨询公司麦肯锡全球研究院(MGI)预测,如果美国的医疗行业能够有效利用不断增长的大数据来提高效率和质量,那么每年可创造超过
3000亿美元的额外价值。
而且,在欧洲的发达国家中,仅在提高运行效率一项上,政府行政管理部门就可以利用大数据节省1000亿欧元以上的费用。
对于大多数成功的医疗机构来说,利用大数据已经成为提高生产力、改进护理水平、增强竞争力、加快增长和创新的关键策略。
那么,我们该如何在两方面进行平衡,实现可观的效果和利润呢?
答案存在于数据经济学中,即如何使从数据中获取价值的成本低于数据能产生的效益?如果我们能够有效地将数据存储、处理和保护成本降至最低,然后利用尖端技术将数据转化成支持临床需要与业务增长的可执行信息,我们就能实现最高的数据经济效益。
医疗大数据的挑战
然而,如何有效地将大数据存储成本降至最低,是企业和IT领导者,尤其是内容驱动的医疗和生命科学企业面临的根本性挑战。
因为除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。
患者的病历可能需要保存70或80年,甚至更长。
许多情况下,病历还必须以原始格式永久保存,以满足法规遵从的要求。
同样,生命科学研究机构有选择性的选择价值足以保留和维护数十年的数据,以期为新研究提供依据。
另外,许多医疗与生命科学研究机构在竭力应对资源紧张、持续的业务增长和新医疗技术带来的挑战。
事实上,存储消费速度加快,存储资产未得到充分利用,对空间的持续需求以及动力和冷却成本的增加,都推动了总体拥有成本的不断攀升。
而且,一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临更严重的局面。
对于研究机构来说,数据存取是创新和竞争力的核心。
这样看来,
文件数据不断增长导致的管理成本提升被认为是当今全球5000强公司面临的五大难题之一,这种结论就不足为奇了。
医疗行业应对大数据的理想基础架构
要实现最高数据经济效益,关键是能够对包括结构性数据和非结构性数据在内的所有医疗大数据进行集成,实现集中管理和更好的资源配置。
为了整合医院不同部门或不同生命科学系统的大数据,实现最充分的信息搜索和共享,理想的存储架构必须是一个适用块数据、文件和内容的集成系统,并且拥有强大的容量、性能和吞吐量,在处理、移动和访问多个大型数据集和大量数据(数量常常达到数个TB甚至是PB)时能够保持运行的一致性。
为了尽量降低存储成本并满足临床业务需要,理想的存储架构还必须支持临床创新的数据互操作性,必须能够智能分层,根据访问频率、临床价值和实际存储成本自动完成数据分布。
这种动态分层功能有助于进一步提高容量利用和资源配置水平,从而全面优化存储资源的成本效率。
HDS文件和内容解决方案
HDS文件和内容解决方案由Hitachi Content Platform、Hitachi NAS Platform,、Hitachi Data Discovery Suite 以及Hitachi Data Ingestor组成,可以满足在医疗和生命科学研究领域中存储、管理、保护和搜索各类数据最严苛的要求,无论这些数据是pdf文件、医学影像还是病患人口数据。
另外,Hitachi Clinical Repository(HCR)为管理业务和健康数据、固定内容和图像,应对DICOM/HL7数据读取、数据整合、数据挖掘和数据分布这些独特挑战而设计的。
它由Hitachi Content Platform(HCP)和DICOM/HL7网关组
成,可基于HDS平台、客户解决方案或合作伙伴的应用平台使用。
这些解决方案所具有的独特功能包括:
集成存储–文件、内容和块服务在单一管理界面中融合。
通过跨平台创建存储池和利用虚拟化,客户可以简化管理,提高利用水平,并恢复或延长现有资产的使用寿命。
智能分层–动态分层存储架构通过预定义存储层、数据索引和制定自动将数据迁移到对应层的策略管理基于文件的数据(如pdf文件或医学影像)。
通过自动将活跃数据迁移到适当的平台,你可以优化磁盘要求【例如:在低成本的SATA 硬盘里存储更多数据,同时减少在费用高昂的光纤通道、SAS或固态硬盘(SSD)上存储数据】。
这一策略根据精确的业务运行需求管理内容,不仅使文件和内容存储更有效更加智能化,还提高了整个存储系统的成本效率。
存储优化–动态分层使闲置容量可以轻松得到再利用,重新确定现有资产用途以延长使用寿命,并自动将非活跃数据迁移到具有复制功能的内容仓库。
这使容量效率和利用率达到最大化,同时可以减少备份卷,并且能够优化存储资产的投资回报率。
内容感知搜索–本地自动感知能力可以识别所存储数据的相关性。
对使用单一接口的多种资源还可以进行联合查询,以便搜索数据并提供索引。
内容感知搜索实现了文件和内容服务的真正同化,以满足法律监管和企业要求,并可以管理内容引发的迁移和其他整体数据活动。
低成本存储–通过集中建立存储池、跨系统智能扩展和利用动态分层自动完成数据迁移,减少了管理节点,提高了存储资产的使用经济效率,也降低了对硬件的要求。
管理、备份、容量规划、动力和冷却成本随之降低,这些使固定资本
(CAPEX)和运营成本(OPEX)都大大降低。
事实上,已经有数据证明HDS 文件和内容解决方案最高可节省25%的管理成本和60%的备份成本。
边缘到核心存储- 中心医院还可以选择为偏远的医疗中心提供无缝的边缘到核心的数据访问支持,增强临床医师间的协作,通过进行有效控制来实现免备份存储,。
HDS文件和内容解决方案旨在帮助相关机构管控好大数据环境,利用统一、可扩展的管理平台简化大数据存储复杂性、整合资源促进利用,调动数据以满足业务需求,改进数据保护以提高合规性水平并降低风险。
目前,包括江苏省人民医院、武汉市普爱医院、无锡第二医院、中山大学附属第一医院、郑州大学附属第一医院以及南京东南大学附属中大医院等在内的国内众多医疗机构均已采用了HDS的相关解决方案。
这些解决方案的目的是通过将可丰富企业价值、提高效率和竞争力的数据转化为可执行的信息,最终从根本上使医疗与生命科学机构能够实现最佳的数据经济效益。
附:IDC Health Insights最新调查显示,亚太地区69%的医疗行业IT决策人员编制预算投入到云计算领域中。
其中,50%以上表示将继续加大投入,而没有机构会缩减预算。
更多资料请浏览。