第7章X射线衍射
- 格式:ppt
- 大小:675.50 KB
- 文档页数:52
无机材料测试技术习题库第一章X射线物理学基础一、名词解释1、特征X射线2、连续X射线3、吸收限(λk)4、光电效应5、俄歇电子6、质量吸收系数7、相干散射8、非相干散射9、荧光X射线10、X射线强度11、AES二、填空1、产生X射线的基本条件、、。
2、X射线的强度是指内通过垂直于X射线方向的单位面积上的。
3、探测X射线的工具是:。
4、影响X射线强度的因素是:。
5、检测X射线的方法主要有:。
6、X射线谱是的关系。
7、吸收限的应用主要是、、。
8、当X射线的或吸收体的愈大时X射线愈容易被吸收。
9、一束X射线通过物质时,它的能量可分为三部分:、和。
10、X射线与物质相互作,产生两种散射现象,即和。
11、物质对X射线的吸收主要是由引起的。
三、判断1、入射X射线光子与外层电子或自由电子碰撞时产生相干散射。
2、由X射线产生X射线的过程叫做光电效应。
3、X射线与物质作用,有足够能量的X射线光子激发原子K层的电子,外层电子跃迁填补,多余的能量使L2、L3、M、N等层的电子逸出,这个过程叫做光电效应。
4、由X射线产生X射线的过程叫俄歇效应。
5、连续谱中,随V增大,短波极限值增大。
6、当X射线的波长愈短,或者穿过原子序数愈小的物质时,其吸收就愈大。
7、具有短波极限值的X射线强度最大。
8、具有短波极限值的X射线能量最大。
9、X射线成分分析的理论基础是同种原子发出相同波长的连续X射线。
10、当高速电子的能量全部转换为X射线光子的能量时产生λ0,此时强度最大,能量最高。
11、当高速电子的能量全部转换为X射线光子的能量时产生λ0,此时强度最大。
四、简答及计算:1、什么是莫赛莱定律,莫赛莱定律的物理意义是什么?2、简述特征X射线产生的机理。
3、简述衍射定性物相鉴定的程序。
4、X射线定量分析的基础是什么?5、X射线物相分析有哪些特点?6、试计算空气对CrKα辐射的质量吸收系数和线吸收系数。
假定空气中含有80%(重量)的氮和20%(重量)的氧,空气密度ρ=0.0013g/cm3。
2016级晶体X射线衍射部分考试复习提纲2016级晶体X射线衍射部分考试复习提纲第五章晶体学基础1.晶体结构与空间点阵晶体:是结构基元(原⼦、离⼦或分⼦等)在三维空间作有规则、周期性重复排列的固体,具有格⼦构造。
晶胞是晶体结构的基本重复单元。
空间点阵:从晶体结构抽象出来的,描述结构基元空间分布周期性的⼏何点,称为晶体的空间点阵(正点阵)。
⼏何点为阵点。
14种布拉菲点阵,7种晶系2.晶⾯、晶⾯指数、间距晶⾯:在点阵中由结点构成的平⾯。
晶⾯指数:国际上通⽤的是密勒(Miller)指数,即⽤h k l)表⽰待标晶⾯的晶⾯指数。
晶⾯间距:●⼀组平⾏晶⾯(hkl)中两个相邻平⾯间的垂直距离称为晶⾯间距,⽤dhkl表⽰。
●它与晶胞参数和晶⾯指标有关。
●晶⾯指数越⾼, ⾯间距越⼩, 晶⾯上粒⼦的密度(或阵点的密度)也越⼩.只有(hkl)⼩, d(hkl)⼤, 即阵点密度⼤的晶⾯(粒⼦间距离近, 作⽤能⼤,稳定)才能被保留下来。
3.晶⾯族:在同⼀晶体点阵中,有若⼲组晶⾯是可以通过⼀定的对称变化重复出现的等同晶⾯,它们的⾯间距与晶⾯上结点分布完全相同。
这些空间位向性质完全相同的晶⾯的集合,称为晶⾯族。
⽤{hkl}表⽰。
4.倒易点阵倒易点阵:是在晶体点阵的基础上按⼀定对应关系建⽴起来的空间⼏何图形,是晶体点阵的另⼀种表达形式。
为了区别有时把晶体点阵空间称为正空间。
倒易空间中的结点称为倒易点。
倒易⽮量:从倒易点阵原点向任⼀倒易阵点所连接的⽮量叫倒易⽮量,表⽰为: r* = ha* + kb* + lc*倒易阵点⽤它所代表的晶⾯指数标定。
倒易⽮量的基本性质:如果正点阵与倒易点阵具有同⼀坐标原点,则正点阵中的⼀个晶⾯在倒易点阵中就变成了⼀个阵点(倒易点)。
正点阵中晶⾯取向和⾯间距只须倒易⽮量⼀个参量就能表⽰。
练习题:作业题:在⼀正交晶系坐标中,画出(110)、(ī 05)、(ī ī 1)晶⾯。
推算出⽴⽅晶系晶⾯(hkl)的⾯间距公式。
X射线衍射是一种利用物质对X射线的散射和干涉现象来研究晶体结构的技术。
其工作原理可以描述如下:
1.X射线源:首先需要一个产生高能X射线的源,通常使用X射线管或放射性同位素。
这
些X射线源会产生一束高能X射线。
2.射线入射:产生的X射线束被定向照射到待测物质(通常是晶体)上。
X射线的波长与
晶格间距的数量级相当,所以它们可以与晶体中的原子发生散射现象。
3.散射过程:当X射线束穿过晶体时,它们会与晶体中的原子发生散射。
根据布拉格法则,
当入射X射线的波长与晶格间距匹配时,会发生构造性干涉,形成衍射图样。
4.衍射图样:被散射的X射线会以不同的角度和强度散射出去,形成特定的衍射图样,可
以通过探测器捕捉到。
5.分析和解读:通过分析衍射图样,可以确定晶体中的原子排列和晶格结构。
根据衍射图
样中出现的衍射点的位置和强度,使用数学方法进行解析,推断晶体的结构和晶胞参数。
总之,X射线衍射利用X射线与晶体中原子的相互作用,通过测量和分析产生的衍射图样来研究晶体的结构。
这种技术在材料科学、固态物理、化学等领域有广泛应用,并为了解晶体的性质和结构提供了重要手段。
第七章:固体X射线衍射7.1基础知识7.1.1 晶体结构和Bravais晶体晶体中的原子是周期性排列的。
为了描述这种高度的有序结构,总可以选取适当的结构单元,整个晶体结构可以看成是由结构单元在空间中的周期性重复排列而成,相互间既无空隙有无交叠。
这种结构单元称为基元。
基元可以是一个原子,分子或原子团。
为了描述晶体结构的几何规律,可以把基元用一个几何点表示。
这些点的无限集合形成空间点阵,可以看成是空间格子,称为晶格。
显然,这些点在空间是周期性排列的,并且与晶体的周期性相同。
这种由基元代表点在空间周期性排列所形成的晶格成为Bravais晶格。
这样,晶体的结构就是将基元放在Bravais晶格中每一个格点上构成的。
图1-1为NaCl晶体的晶胞,如果将一个Na离子和一个Cl离子看成一个基元,其Bravais晶格变成如图1-2所示的结构,称为面心立方结构。
图1-1 NaCl晶体的晶胞结构图1-2 NaCl的Bravais晶格的晶胞结构,Na, ClBravais晶格的格点都是周期性排列的,所有格点可以用数学公式来统一表示。
如图1-3所示,以任一格点为原点,沿三个不共面的方向连接最近邻的格点作为基矢a1、a2、a3,矢量的长度为该方向的格点周期。
则任一格点的位置矢量R都可以表示为:图1-3,Bravais晶格R=n1a1+n2a2+n3a3(1-1) 其中n1, n2, n3为整数根据点群的旋转对称操作,所有Bravais晶格可分为7大类,称作7大晶系:三斜晶系,单斜晶系,正交晶系,四方晶系,三方晶系,六方晶系和立方晶系。
立方的对称性最高。
反映每一晶系对称性特点的晶胞形状也不相同,每个晶系按其晶胞在面心或体心是否有格点又可分为几种不同的形式。
这样,7个晶系共有14种类型的Bravais晶胞,如图1-4所示。
图1-4,十四种Bravais晶格(1)简单三斜,(2)简单单斜,(3)底心单斜,(4)简单正交,(5)底心正交,(6)体心正交,(7)面心正交,(8)简单四方,(9)体心四方,(10)六方,(11)三方,(12)简单立方,(13)体心立方,(14)面心立方。