人类对光本性的认识
- 格式:docx
- 大小:116.39 KB
- 文档页数:9
高考回归复习—光学选择之光电效应1.爱因斯坦对于光电效应的解释使人类对于光的本性的认识更加透彻,下列关于光电效应的说法中正确的是( )A .在光电效应中,光电子的最大初动能与入射光强度成正比B .入射光光子能量小于金属逸出功时也可能发生光电效应的C .对于某种金属,只要入射光强度足够大,照射时间足够长,就会发生光电效应D .用频率大于金属的极限频率的入射光照射金属时,光越强,饱和电流越大2.在某次实验中,用频率为ν的一束绿光照射极限频率(也称“截止频率”)为0ν金属时发生了光电效应现象,则下列说法正确的是( ) A .该金属的逸出功为W h ν=B .若改用红光来照射,则一定不能发生光电效应C .若把这束绿光遮住一半,则逸出的光电子最大初动能将减小一半D .在本实验中,调节反向电压可使光电流恰好为零,此电压大小()c 0hU eνν=- 3.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。
则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能4.如图所示,分别用频率为ν、2ν的光照射某光电管,对应的遏止电压之比为1:3,普朗克常量用h 表示,则( )A.用频率为13ν的光照射该光电管时有光电子逸出B.该光电管的逸出功为12 hνC.用2ν的光照射时逸出光电子的初动能一定大D.加正向电压时,用2ν的光照射时饱和光电流一定大5.关于光电效应,下列说法正确的是()A.光电子的动能越大,光电子形成的电流强度就越大B.光电子的最大初动能与入射光的频率成正比C.对于任何一种金属,都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应D.用不可见光照射金属一定比用可见光照射同种金属逸出的光电子的初动能大6.关于光电效应,下列说法正确的是()A.光电效应是原子核吸收光子向外释放电子的现象B.饱和光电流的强度与入射光的强度有关,且随入射光强度的增强而减弱C.金属的逸出功与入射光的频率成正比D.用不可见光照射某金属,不一定比用可见光照射同种金属产生的光电子的最大初动能大7.如图所示,是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转.则以下说法正确的是()A.将滑动变阻器滑动片向右移动,电流表的示数一定增大B.如果改用紫光照射该金属时,电流表无示数C.将K极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大D.将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑动片向右移动一些,电流表的读数可能不为零8.频率为ν的入射光照射某金属时发生光电效应现象。
第21卷 第5期 运城学院学报V ol.21 No.5 2003年10月 Journal of Yuncheng University Oct.2003对光本质认识不断深入的启示高润梅①(太原市教育学院物理系,山西太原030001) 摘 要:回顾光学发展的历程,不同时代对光本质的认识都有它的时代局限性。
从几何光学时代、波动展示光本质的不断深入的认识过程,从中获得有益的启示:敢于争论、善于挑战、勇于创新。
关键词:光本质;挑战;创新中图分类号:O431 文献标识码:A 文章编号:1008-8008(2003)05-0021-02 人类认识自然的历史经历了由简单到复杂,由低级到高级,由部分到全面的过程。
人们对光的认识过程同样如此。
从有人类文明到今天,人们对光不断观察、研究,由现象到本质。
光的本质越来越清楚。
其认识过程经历了以下几个时代。
而今,光学作为一门既古老又现代的学科,已经渗透到科学技术的方方面面。
回顾光学的发展史、对光本质的不断再认识,对今天的科学发展和科学教育会产生一些有益的启示。
1. 不同时代对光本质的认识1.1 前几何光学时代光学是一门古老的学科,早在我国春秋战国时期,《墨经》就记载了光影的形成和针孔成象、光的镜面反射等现象。
在希腊欧几里德所著的《光学》中,提出了光的反射定律。
从此开始了漫长的两千多年的光学萌芽时期,在这个阶段,人们逐渐认识到光的直线传播、反射和折射等现象,了解到光线来自于物体,光以球面形式从光源发出,发明了凸透镜,了解了凹面镜、凸面镜、凸透镜的成像规律,并发明了眼镜、幻灯、透镜和暗箱等光学元件。
这个阶段人们主要是通过直接观察和生活经验对光现象进行记录和应用。
1.2 几何光学时代这个时期大约是从16世纪到18世纪近300年,在这个时期人们建立了光的反射定律和折射定律发明了光学仪器,如望远镜、显微镜,费马在1657年发现了费马原理,即光在介质中传播时所走的光程取极值的原理。
笛卡儿在1630年给出了折射定律的正弦定律,这一时期关于光的本性的认识是以光的直线传播为基础的,但从17世纪开始,发现了与光的直线传播不符合的事实,如点光源下,直杆的影子要比假设光沿直线传播所应具有的宽度稍大一点,这就是后来认识到的衍射问题。
人类对光本性的认识
人类对光本性的认识,始于古希腊的有关光的思考。
他们认为光是航行太空中的一种能量。
后来苏格拉底等哲学家就光的性质建立了一套理论,并指出光会呈折射现象,这个命题在科学史上被认为是重要的一点。
由此,古希腊以及古罗马文化就给予了我们关于光本质的一些观点——光穿透空气,以弹射方式传播。
后来,16世纪的科学家对色彩的研究也对我们对光本质的认识有帮助。
红、黄和蓝为混合色,立马把光的三种波长特性提及出来,这是人类对于光的一个重要发展。
科学发展非常迅速,20世纪以来,主要由物理学家和光学家,以及电子技术的发展,加之现代的计算机技术的应用,现代的光学理论也在不断推进。
现代理论证明,光具有粒子和波之性质,是电磁波的特殊形式,在物理活动中发挥着重要作用。
因此,光已经成为科学研究中的重要内容之一。
许多领域,如激光、通信、精密测量等都建立在日益深入的人类对光本性的认识之上。
2019-2020年高中物理第2章第3、4节康普顿效应及其解释光的波粒二象性学案粤教版选修3-51.用X射线照射物体时,一部分散射出来的X射线的波长会变长,这个现象称为康普顿效应.2.按照经典电磁理论,散射前后光的频率不变,因而散射光的波长与入射光的波长相等,不应该出现波长变长的散射光.3.光子不仅具有能量,其表达式为ε=hν,还具有动量,其表达式为p=hλ.4.光的干涉和衍射实验表明,光是一种电磁波,具有波动性;光电效应和康普顿效应则表明,光在与物体相互作用时,必须看成是一颗颗光子的形式出现的,具有粒子性.5.双缝干涉中每次穿过双缝的只有一个光子,它不可能跟其他光子产生干涉.但光的干涉还是发生了.可见,波动性是每一个光子的属性.光既有粒子性,又有波动性,单独使用波或粒子都无法完整地描述光的所有性质.6.光既有波动性,又有粒子性,我们把光的这种性质叫做光的波粒二象性.7.干涉条纹是光子在感光片上各点的概率分布的反映.这种概率分布就好像波的强度的分布,称光波是一种概率波.基础达标1.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述不符合科学规律或历史事实的是(A)A.牛顿的“ 微粒说” 与爱因斯坦的“ 光子说” 本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C正确;光具有波动性与粒子性,称为光的波粒二象性,D正确.2.康普顿效应证实了光子不仅具有能量,也有动量,如图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向________运动,并且波长________(选填“ 不变” 、“ 变短” 或“ 变长” ).解析:根据动量守恒定律知,光子与静止电子碰撞前后动量守恒,相碰后合动量应沿2方向,所以碰后光子可能沿1方向运动,由于动量变小,故波长应变长.答案:1 变长3.(多选)下列有关光的说法正确的是(BD )A .光电效应表明在一定条件下,光子可以转化为电子B .大量光子易表现出波动性,少量光子易表现粒子性C .光有时是波,有时是粒子D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 4.下列实验中,能证实光具有粒子性的是(A ) A .光电效应实验 B .光的双缝干涉实验 C .光的圆孔衍射实验 D .泊松亮斑实验解析:光电效应证明光具有粒子性,A 正确.光的干涉和衍射可证明光具有波动性.B 、C 、D 错误.5.下列现象能说明光具有波粒二象性的是(D ) A .光的色散和光的干涉 B .光的干涉和光的衍射 C .光的反射和光电效应 D .泊松亮斑和光电效应解析:光的色散、光的反射可以从波动性和粒子性两方面分别予以理解,故A 、C 选项错误.光的干涉、衍射现象只说明光的波动性,B 选项错误.泊松亮斑能说明光具有波动性,光电效应说明光具有粒子性,故D 选项正确.能力提升6.下列关于光的波粒二象性的理解,正确的是(D )A .大量的光子中有些光子表现出波动性,有些光子表现出粒子性B .光在传播时是波,而与物质相互作用时就转变成粒子C .高频光是粒子,低频光是波D .波粒二象性是光的属性,有时它的波动性显著,有时它的粒子性显著 解析:光的波粒二象性是光的属性,不论其频率的高低还是光在传播或者是与物质相互作用,光都具有波粒二象性,大量光子的行为易呈现出波动性,个别光子的行为易表现出粒子性,光的频率越高,粒子性越强,光的频率越低,波动性越强,故A 、B 、C 错误,D 正确.7.(多选)下列各种波是概率波的是(CD ) A .声波 B .无线电波 C .光波 D .物质波解析:声波是机械波,A 错.电磁波是一种能量波,B 错.由概率波的概念和光波以及物质波的特点分析可以得知光波和物质波均为概率波,故C 、D 正确.8.根据爱因斯坦的“光子说”可知(B ) A .“光子说”的本质就是牛顿的“微粒说” B .光的波长越长,光子的能量越小 C .一束单色光的能量可以连续变化 D .只有光子数很多时,光才具有粒子性解析:爱因斯坦的“光子说”认为光是一份一份的,是不连续的,它并不否定光的波动性,而牛顿的“微粒说”与波动说是对立的,因此A 错误.在爱因斯坦的“光子说”中光子的能量ε=h ν=hcλ;可知波长越长,光子的能量越小,因此B 正确.某一单色光,波长恒定,光子的能量也是恒定的,因此C 错误.大量光子表现为波动性,而少数光子才表现为粒子性,因此D 错误.9.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b 处,则b 处是(A )A .亮纹B .暗纹C .既有可能是亮纹也有可能是暗纹D .以上各种情况均有可能解析:由光子按波的概率分布的特点去判断,由于大部分光子都落在b 点,故b 处一定是亮纹,选项A 正确.10.在康普顿效应实验中,X 射线光子的动量为h νc,一个静止的C 原子吸收了一个X 射线光子后将(B )A .仍然静止B .沿着光子原来运动的方向运动C .沿光子运动的相反方向运动D .可能向任何方向运动解析:由动量守恒定律知,吸收了X 射线光子的原子与光子原来运动方向相同,故正确选项为B.2019-2020年高中物理 第2章 第3节 欧姆定律教案 新人教版选修3-1三维目标 知识与技能1.理解电阻的概念,明确导体的电阻是由导体本身的特性所决定; 2.理解欧姆定律,并能用来解决有关电路的问题;3.知道导体的伏安特性曲线,知道什么是线性元件和非线性元件。
高中物理光学实验知识点研究方法光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.小编在这里整理了相关资料,希望能帮助到您。
高中物理光学实验知识点研究方法一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的直线传播规律先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(4)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(5)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
3.常用光学器件及其光学特性(1)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
人类对光的认识过程人类对光的本性认识经历了一个非常曲折、漫长的过程,这其中不仅仅使我们获得了很多知识,更重要的是对科学精神和科学发现的理解更深刻了。
光的本性认识历史--摘自《重要物理概念规律的形成与发展》乔际平刘甲珉编著人们对光的本性的认识经历了漫长的岁月,大约在十七世纪形成了两种对立的学说,即光的波动说与微粒说,但在以后很长一段时期内,微粒说占据统治地位,而波动说几乎消声匿迹.历史发展到十九世纪初,由于一连串的发现和众多科学家的努力使光的波动说再次复兴,并压倒了微粒说.二十世纪初,爱因斯坦提出了光的量子说,康普顿证实了光的粒子性,使人们对光的本性又有全新的认识,乃至到今天,人们认识到光具有波粒二象性.人们对光的本性的认识过程可概括为:光的波动说→光的微粒说→光的波动说→光的量子说→光的粒子说→光的波粒二象性.一、光的波动说的形成十七世纪形成了关于光的本性的两种学说,历史上主张光的波动说有笛卡儿、胡克、惠更斯等人.1.笛卡儿借助于以太来说明光的传播过程十七世纪上半叶,法国物理学家笛卡儿(1596-1650)曾用他提出的"以太"假说来说明光的本性.他用以太中的压力来说明光的传播过程.如果一物体被加热并发光,这意味着,物体的粒子处于运动状态并给予这一媒质的粒子以压力.这一媒质被称为以太,它充满了整个空间.压力向四面八方传播,在达到人眼后引起人的感觉,他把人们对物体的视觉比喻为盲人用手杖来感知物体的存在,他把光的颜色设想为起源于以太粒子的不同的转动速度,转得快的引起红色的感觉,转得慢的对应于黄色,最慢的是绿色和蓝色.他的主张是强调媒质的影响,以"作用"的传播为出发点,特别是以接触作用或近距作用为出发点,把光看作压力或者脉动运动的传播,因而笛卡儿被认为是光的波动说的创始人.2.胡克把光波与水波类比指出光的波动性胡克在1665年出版的《显微术》一书,明确提出光是一种振动.他以钻石受到摩擦、打击或加热时在黑暗中发光的现象为例,认为发光体的一部分处在或多或少的运动中,又因金刚石很硬,肯定它是一种很短的振动.在分析光的传播时,胡克提到了光速的大小是有限的,并认为"在一种均匀媒介中,这一运动在各个方向都以相等的速度传播",因此发光体的每一个振动形成一个球面向四周扩展,犹如石子投入水中所形成的波那样,而射线和波面交成直角.胡克还把波面的思想用于对光的折射现象的研究,提出了薄膜颜色的成因是由于两个界面反射、折射后所形成的强弱不同、超前落后不一致的两束光的叠合.这里已包含着波阵面、干涉等不少波动说的基本概念.3.惠更斯把光波与声波类比提出惠更斯原理,发展了光的波动学说荷兰物理学家惠更斯(1629-1695)在十七世纪七十年代,从事光的波动论的研究,1690年出版了他的著名著作《论光》.惠更斯从光的产生和它所引起的作用两方面来说明光是一种运动.他的研究发现:"光线向各个方面以极高的速度传播,并且光线从不同的地点出发时,光线在传播中相互穿过而互不影响.当我们看到发光的物体时,决不会是由于该物体有任何物质传输到我们这里,好象一粒子弹或一只箭穿过空气那样".从这里可看出,惠更斯从光束在传播中相互交叉时并不彼此妨碍的事实得出上述结论的.他把光的传播方式和声音在空气中的传播作比较,明确地指出了光是一种波动的思想.他又根据光速的有限性论证了光是从媒质的一部分依次向其他部分传播的一种运动,他认为光和声波、水波一样是一种球面波.惠更斯不但从现象上解释各种光的波动现象,而且试图从理论的高度总结出普遍的规律,他提出了著名的惠更斯原理.他叙述说:"关于这些波的形成过程还必须指出,当光在物质中传播时,物质的每一个粒子都应当把它的运动不仅传递给位于它与发光点的连线上近旁的粒子,它也必然把运动传递给所有与它接触并阻碍它运动的其它粒子.因此,在粒子的周围就应当形成波,而该粒子则是波的中心".运用这个次波原理,惠更斯不但成功地解释了反射和折射定律,而且还解释了方解石的双折射现象.惠更斯没有给波动过程以严密的数学描述.没有提到波长的概念,他的次波包络面也没有从一定位相的迭加所造成的强度分布来考虑,只不过是光传播的一种几何的定性说明,故仍旧停留在几何光学的观念范围内.由于他认为光波和声波一样是一种纵波,因此他无法解释光的偏振现象;而且惠更斯所谓的波动实际上只是一种脉冲而不是一个波列,也没有建立起波动过程的周期性概念,因此,用他的理论无法解释颜色的起源,也不能说明干涉、衍射等有关光的本质的现象.总之,十七世纪,由笛卡儿、胡克、惠更斯等人所建立起的光的波动学说还是很不成熟的.二、光的微粒说的形成在光的波动学说形成过程中,关于光的本性另一种对立学说--光的微粒说也逐步建立起来了。
人类对光的认识过程光的本性认识历史--摘自《重要物理概念规律的形成与发展》乔际平刘甲珉编著人们对光的本性的认识经历了漫长的岁月,大约在十七世纪形成了两种对立的学说,即光的波动说与微粒说,但在以后很长一段时期内,微粒说占据统治地位,而波动说几乎消声匿迹.历史发展到十九世纪初,由于一连串的发现和众多科学家的努力使光的波动说再次复兴,并压倒了微粒说.二十世纪初,爱因斯坦提出了光的量子说,康普顿证实了光的粒子性,使人们对光的本性又有全新的认识,乃至到今天,人们认识到光具有波粒二象性.人们对光的本性的认识过程可概括为:光的波动说→光的微粒说→光的波动说→光的量子说→光的粒子说→光的波粒二象性.一、光的波动说的形成十七世纪形成了关于光的本性的两种学说,历史上主张光的波动说有笛卡儿、胡克、惠更斯等人.1.笛卡儿借助于以太来说明光的传播过程十七世纪上半叶,法国物理学家笛卡儿(1596-1650)曾用他提出的"以太"假说来说明光的本性.他用以太中的压力来说明光的传播过程.如果一物体被加热并发光,这意味着,物体的粒子处于运动状态并给予这一媒质的粒子以压力.这一媒质被称为以太,它充满了整个空间.压力向四面八方传播,在达到人眼后引起人的感觉,他把人们对物体的视觉比喻为盲人用手杖来感知物体的存在,他把光的颜色设想为起源于以太粒子的不同的转动速度,转得快的引起红色的感觉,转得慢的对应于黄色,最慢的是绿色和蓝色.他的主张是强调媒质的影响,以"作用"的传播为出发点,特别是以接触作用或近距作用为出发点,把光看作压力或者脉动运动的传播,因而笛卡儿被认为是光的波动说的创始人.2.胡克把光波与水波类比指出光的波动性胡克在1665年出版的《显微术》一书,明确提出光是一种振动.他以钻石受到摩擦、打击或加热时在黑暗中发光的现象为例,认为发光体的一部分处在或多或少的运动中,又因金刚石很硬,肯定它是一种很短的振动.在分析光的传播时,胡克提到了光速的大小是有限的,并认为"在一种均匀媒介中,这一运动在各个方向都以相等的速度传播",因此发光体的每一个振动形成一个球面向四周扩展,犹如石子投入水中所形成的波那样,而射线和波面交成直角.胡克还把波面的思想用于对光的折射现象的研究,提出了薄膜颜色的成因是由于两个界面反射、折射后所形成的强弱不同、超前落后不一致的两束光的叠合.这里已包含着波阵面、干涉等不少波动说的基本概念.3.惠更斯把光波与声波类比提出惠更斯原理,发展了光的波动学说荷兰物理学家惠更斯(1629-1695)在十七世纪七十年代,从事光的波动论的研究,1690年出版了他的著名著作《论光》.惠更斯从光的产生和它所引起的作用两方面来说明光是一种运动.他的研究发现:"光线向各个方面以极高的速度传播,并且光线从不同的地点出发时,光线在传播中相互穿过而互不影响.当我们看到发光的物体时,决不会是由于该物体有任何物质传输到我们这里,好象一粒子弹或一只箭穿过空气那样".从这里可看出,惠更斯从光束在传播中相互交叉时并不彼此妨碍的事实得出上述结论的.他把光的传播方式和声音在空气中的传播作比较,明确地指出了光是一种波动的思想.他又根据光速的有限性论证了光是从媒质的一部分依次向其他部分传播的一种运动,他认为光和声波、水波一样是一种球面波.惠更斯不但从现象上解释各种光的波动现象,而且试图从理论的高度总结出普遍的规律,他提出了著名的惠更斯原理.他叙述说:"关于这些波的形成过程还必须指出,当光在物质中传播时,物质的每一个粒子都应当把它的运动不仅传递给位于它与发光点的连线上近旁的粒子,它也必然把运动传递给所有与它接触并阻碍它运动的其它粒子.因此,在粒子的周围就应当形成波,而该粒子则是波的中心".运用这个次波原理,惠更斯不但成功地解释了反射和折射定律,而且还解释了方解石的双折射现象.惠更斯没有给波动过程以严密的数学描述.没有提到波长的概念,他的次波包络面也没有从一定位相的迭加所造成的强度分布来考虑,只不过是光传播的一种几何的定性说明,故仍旧停留在几何光学的观念范围内.由于他认为光波和声波一样是一种纵波,因此他无法解释光的偏振现象;而且惠更斯所谓的波动实际上只是一种脉冲而不是一个波列,也没有建立起波动过程的周期性概念,因此,用他的理论无法解释颜色的起源,也不能说明干涉、衍射等有关光的本质的现象.总之,十七世纪,由笛卡儿、胡克、惠更斯等人所建立起的光的波动学说还是很不成熟的.二、光的微粒说的形成在光的波动学说形成过程中,关于光的本性另一种对立学说--光的微粒说也逐步建立起来了。
光的波粒二象性知识点【篇一:光的波粒二象性知识点】光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究.到了17世纪,人类对光的本性的认识逐渐形成了两种学说.(一)光的微粒说一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的.在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论.说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行.一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了.(二)光的波动说关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.惠更斯用波动说还解释了光的反射和折射.但他在解释光自光疏介质射向光密介质的近法线折射时,需假设光在光密介质中的传播速度较小.现代光速的测定表明,波动说在解释折射时依据的假设是正确的:光在光密介质中传播时光速较小.但在17世纪时,光速的测量尚在起步阶段,谁是谁非,没有定论.当然,光的波动说在解释光的直进性和何以能在传播时,会在不透明物体后留下清晰的影子等问题也遇到困难.可见,光的微粒说和波动说在解释光学现象时,都各有成功的一面,但都不能完满地解释当时所了解的各种光学现象.在其后的100多年中,主要由于牛顿的崇高地位及声望,因而微粒说一直占主导地位,波动说发展很缓慢.人类对光本性的认识,还期待新的现象的发现.直到19世纪初,人们发现了光的干涉现象,进一步研究了光的衍射现象.干涉和衍射是波动的重要特征,从而光的波动说得到迅速发展.人类对光的本性的认识达到一个新的阶段.(三)牛顿理论中的波动性思想作为一代物理学大师的牛顿,是提倡了微粒说,但他却并不排斥波动说.他根据他所做过的大量实验和缜密的思考,提出了不少卓越的、富有启发性的思想.在关于颜色的见解上,他提出“不同种类的光线,是否引起不同大小的振动,并按其大小而激起不同的颜色感觉,正像空气的振动按其大小而激起不同的声音感觉一样?而且是否特别是那些最易折射的光线激起最短的振动以造成深紫色的感觉,最不易折射的光线激起最长的振动,以造成深红色的感觉,而介于两者之间的各种光线激起各种中间大小的振动而造成中间颜色的感觉?”他同时还提出:“扔一块石头到平静的水面中,由此激起的水波将在石头落水的地方持续一段时间,并从这里以同心圆的形式在水面上向远处传播.空气用力撞击所激起的振动和颤动也将持续少许时间,并从撞击处以同心球的形式传播到远方,与此相似,当光线射到任何透明体的表面并在那里折射或反射时,是不是因此就要在反射或折射介质中入射点的地方,激起振动和颤动的波,而且这种振动总能在那里发生并从那里传播出去.”在解释光现象中,牛顿还多次提出了周期性的概念.而具有周期性,也是波动的一个重要特征.提出波动说的惠更斯却否认振动或波动的周期性.因此,对牛顿来说,在他的微粒说理论中包含有波动说的合理因素.究竟谁是谁非,牛顿认为“我只是对尚待发现的光和它对自然结构的那些效果开始作了一些分析,对它作了几点提示,而把这些提示留待那些好奇的人们进一步去用实验和观察来加以证明和改进.”牛顿的严谨,兼收并蓄的科学态度是值得我们学习的,恐怕这也是他成为物理学大师的原因之一.(四)理解光的波粒二象性1、动画(参考媒体资料中的动画“光的波粒二象性”):当我们用很弱的光做双缝干涉实验时,将感光胶片放在屏的位置上,会看到什么样的照片呢?为什么会有这种现象?分析图片:结论:1、上面图片清晰的显示了光的粒子性.2、光子落在某些条形区域内的可能性较大(对于波的干涉即为干涉加强区),说明光子在空间各点出现的可能性的大小可以用波动规律进行解释.得出:光波是一种概率波,概率表征某一事物出现的可能性.高考物理账号id:gkwl100高中物理知识点汇总与答题技巧宝典,还有题型精练、答题模版,只要你需要的这里都有!献花(0)+1【篇二:光的波粒二象性知识点】波粒二象性知识点总结一:黑体与黑体辐射1.热辐射(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。
人类对光的认识人类从黑暗中走出来,是人类对光的认识,而认识光本身却经历了一个非常曲折、漫长的过程。
光的发展史可追溯到2000多年前,中国早在公元前400多年(先秦时代) 的《墨经》中就有对光的记载,这是世界上最早的记载人类对光的认识。
而总结人们对光的本性的认识过程可概括为:光的波动说→光的微粒说→光的波动说→光的量子说→光的粒子说→光的波粒二象性。
一、光的波动说的形成十七世纪,法国物理学家笛卡儿用他提出的“以太”假说来说明光的本性。
他的主张是强调媒质的影响,以“作用”的传播为出发点,特别是以接触作用或近距作用为出发点,把光看作压力或者脉动运动的传播。
因而笛卡儿被认为是光的波动说的创始人。
而胡克在其出版的《显微术》一书,明确提出光是一种振动。
在分析光的传播时,胡克提到了光速的大小是有限的,并认为“在一种均匀媒介中,这一运动在各个方向都以相等的速度传播。
”这里已包含着波阵面、干涉等不少波动说的基本概念。
到了惠更斯,则从光的产生和它所引起的作用两方面来说明光是一种运动。
他明确地指出了光是一种波动的思想。
他提出了著名的惠更斯原理,运用这个原理,惠更斯不但成功地解释了反射和折射定律,而且还解释了双折射现象。
但是十七世纪,由笛卡儿、胡克、惠更斯等人所建立起的光的波动学说还是很不成熟的,而人类对光的认识也仅仅是个开端。
二、光的微粒说的形成一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”。
用这样的观点,解释光的直进性、影的形成等现象是十分方便的,在解释光的反射和折射现象时,同样十分简便。
当光射到两种介质的界面时,要发生反射和折射。
虽然说这样的解释并不理想,但在当时来说已经足以说明光的本性了。
三、光的波动说的复兴在十八世纪由于光的微粒说占统治地位,使光的波动理论实际上没有什么进展。
十九世纪初由于一大批物理学家的共同努力,使光的波动学说再度复兴,并取得了极大的成功。
第一章辐射理论第一节辐射理论基本概念一、光的本性——波粒二象性1.人类对光本性的认识过程粒子性:光的反射→光电效应波动性:光的衍射、折射P8 图1.1.4 杨氏双缝干涉描述粒子特性的物理量 E, P描述波动特性的物理量ν,λE=hν,P=h/λ二、能级分布(玻尔兹曼分布)原子有多个能级,每个能级上存在能量相同的多个态,即简并度。
玻尔兹曼分布:KT E E e f f n n 121212--=式中f 1,f 2分别是E 1,E2的统计权重 玻尔兹曼分布的意义三、黑体辐射1. 绝对黑体(黑体):能够吸收任何波长的电磁辐射的物体2. 热辐射或温度辐射3. 黑体辐射或平衡辐射温度T 恒定的黑体存在确定的辐射场黑体辐射是黑体温度T 和辐射场ν的函数,用单色能量密度ρν描述。
ρν定义为:在单位体积内,频率处于附近单位频率间隔中的电磁辐射能量黑体辐射的普朗克公式为:11833-=kT hv v e Chv πρ 四、受激辐射和自发辐射两能级系统 hv E E =-121.自发辐射处于高能级E2的原子自发的向低能级E1跃迁,并发射一个能量为hν的光子,这种过程称为自发跃迁。
由原子自发跃迁发出的光波称为自发辐射。
自发跃迁几率A21定义:单位时间内n2个高能态原子中自发跃迁的原子数与n2的比值。
221211)(ndtdnASP=可以证明:sAτ/121=,sτ是原子在能级E2的平均寿命。
A21也称自发跃迁爱因斯坦系数。
只与原子本身特性有关,与辐射场无关。
2.受激吸收处于低能级E1的原子,在频率为ν的辐射场作用下,吸收一个能量为hν的光子,并向高能级E1跃迁,这种过程称为受激吸收跃迁。
受激吸收跃迁几率(定义):112121)(ndtdnWst=W12也称受激吸收跃迁爱因斯坦系数。
不仅与原子本身特性有关,而且与辐射场有关。
vBWρ1212=B12称受激吸收跃迁爱因斯坦系数。
3.受激辐射高能级E2的原子在频率ν的辐射场作用下,向低能级E1跃迁,并发射能量hν的光子。
光的本性学习目的:1、理解光的干涉现象,理解产生明暗纹的条件,了解光的干涉现象的应用2、了解光的衍射现象和产生明显衍射的条件3、了解光是一种电磁波;了解无线电波、红外线、可见光、紫外线、伦琴射线等都是波长不同的电磁波4、了解光谱和光谱分析的初步知识5.了解光电效应规律6.了解光子说主要内容:光的波动性1.人类对光的本性的两种认识人类对光的本性的认识经历了一个辩证发展的过程,到十七世纪,在人类已经积累了许多几何光学知识的基础上,形成了对光的本性的两种认识——微粒说和波动说(1)微粒说:牛顿认为光是从光源发出的一种物质微粒,在均匀介质中以一定的速度传播(2)波动说:惠更斯认为光是一种振动,以能的形式向四周传播以上两种理论对光的本性认识的矛盾,是推动人类认识光的本性的内在动力。
根据事实建立新的学说,发展学说或者决定学说的取舍,发现新的事实,再建立新的学说,这是人类认识自然的基本规律。
2.光的干涉(1)双缝干涉英国物理学家托马斯·杨采用“一分为二”的方法获得了相干光源,在用单色光做双缝干涉实验时,在光屏上距双缝的路程差为光波波长的整数倍的地方出现明条纹;光屏上距双缝的路程差为光波半波长的奇数倍的地方出现暗条纹。
两列波的路程差d=r2-r1= x,d=kλ时,x=k λ,屏上出现亮条纹,d=(2k+1) 时,x=(2k+1) ·,屏上出现暗条纹,k=0,±1,±2……相邻两条亮(暗)条纹间距:△x= λ利用此规律可以用来测定光波的波长。
理论和实验都证明,干涉条纹间距(相邻两条明条纹中心或相邻两条暗条纹中心的间距)跟波长成正比。
所以从红光到紫光的干涉条纹间距越来越小,在用白光做双缝干涉实验时,除中央亮条纹为白色外,两侧均为彩色的干涉条纹。
(2)薄膜干涉当光照射到薄膜上时,被膜的前、后表面反射的两列光形成两列相干光,相叠加,也可发生干涉现象。
若入射光为单色光,可形成明暗相间的干涉条纹;若入射光为白光,可形成彩色的干涉条纹。
光的本性认识的发展光的本住问题是贯穿在光学发展中的一个根本问题。
正是这种对光的本性的探讨有力地推动了光学以及整个物理学的发展。
人们对光的本性的认识,从光是“物质的微粒流”,经历了光是“以太的振动”,光是电磁波到光是波粒二象性的统一等各个认识阶一段。
这一认识历程从牛顿和惠更斯之争算起到现在其间经历了三百多年。
人们遵循实验——假设——理论——实验这条途径,逐步达到了对光的本性的认识,这一认识揭示了物质世界光和电磁的统一,光的波动性和微粒性的统一。
德国物理学家劳厄在谈到这一认识的重大意义时指出:“在这以前还是完全互不相依的光的理论和电动力学理论的这种自然的结合发展是作为物理知识的真理一性证明的一个最伟大的事件”。
他在《物理学史》的导言中着重指出了研究两类不同的物理思想“它们不期而遇并且自然地相结合”的意义。
他说:“凡是经历了这种令人极为惊奇的事件的人,即使是在很远的距离经历的,或者至少能在事后加以回顾的,都不会怀疑:这些相互结合的理论,即使不包含完全的真理,终究也包含了与人类的附加因素无关的客观真理的一种重要的内核。
否则,它们的结合只能理解为奇迹。
物理学史的理想必须是把这样的事件尽可能明晰地刻画出来”。
下面我们就来叙述人类对光的本性认识的发展过程。
(一)微粒说与波动说的思想渊源关于对光的本性这一古老之谜的认识要追索到古希腊时代。
古希腊杰出的原子论者德漠克利特(Democritus,公元前460~前370)最早提出光是物质微粒的观点。
他认为视觉是由物体射出的微粒进入眼睛而引起的。
古希腊的男一个原子论者伊壁鸠鲁(Epicurus,公元前341~前270)和古罗马的原子论者卢克来修(Lucretius,公元前99一前55)坚持这一学说。
卢克来修说:“从任何我们看见的东西,必定永远有许多原初物体流出来,被发放出来;被散布到四周各处,这些物体撞击眼睛,引起了视觉。
”量子论者的这一观点是后来把光看作某种物质实体的粒子说的萌芽。
第五章光5-1人類對光的認識學習單1.牛頓認為光是由光源發出的一連串粒子所組成,稱為光的粒子說。
這些粒子以直線前進,稱為光線。
2.必須用光的粒子說才能解釋的效應有(1)效應(2)效應。
3.光的干射與繞射現象,只能用光是一來解釋。
4.認為光為一種波動的科學家有:1. 2. 3.4. 。
5.愛因斯坦主張光波的能量集中在「光量子」上,簡稱光子。
光子具有,其所含能量與其成比。
6.5-21.波長約在公尺左右的電磁波,能讓人眼引起視覺,稱為。
(即波長在3800埃~7700埃或;1奈米=10埃)2.光是一種電磁波,通常將電磁波譜中、與所涵蓋的電磁波譜,合稱為光譜。
3.一般液體與固體物質的溫度超過500~550℃時,藉可發出紅色可見光,溫度越高的物體,所發的光越接近光。
4.物體發光時,溫度一定都很高嗎?,像氣體放電、螢光、磷光、螢火蟲,都不是靠高溫才發光。
5.下列有那些是電磁波?(1)超音波(2)雷達波(3)X射線(4)α射線(5)β射線(6)γ射線(7)微波(8)UHF(9)黃光(10)FM(11)紅外線(12)紫外線6.所有的電磁波速度均為萬公里/秒,即m/s。
7.-75-3光波的傳播學習單1.由影子的存在可知光的傳播是以的。
2.下列那些現象可說明光的直進說(A)影子的形成(B)日蝕(C)月蝕(D)針孔成像(E)光的反射(F)光的折射。
A:3.1.太陽光是以的形式,經過真空傳播到地球表面來的。
電磁波的傳播不需要靠介質。
2.可見光(是電磁波的一種)在真空中的波速為30萬公里/秒,即3×108m/s。
3.所有的電磁波在真空中的波速均為萬公里/秒,即。
4.光的反射定律:(1)入射線、法線、反射線會在同一平面(2)入射光束與法線的交角=反射光束與法線的交角5.反射的種類:(1)鏡面反射:反射面光滑。
(2)漫射:反射面凹凸不平。
6.平面鏡是利用光的反射成像,所成的像為、的虛像。
7.平面鏡的成像:像與物的連線必垂直鏡面,像長=物長,像距=物距。
人类对光本性的认识
摘要:光给我们带来了五彩世界的美丽,“光的本性是什么?”一直以来人们对此曾有过各种猜测和争论。
从人们最初认为的光是一种“很小的微粒”,到光是一种电磁波,最后到人们对光的
认识既具有粒子性又具有波动性,经历了几个世纪的争论。
本文将重温历史上那些物理学家的经典实验,结合理论公式推导,带你走进“光的世界”!
关键词:光的粒子性、光的波动性、波粒二象性
1、前言:光到底是什么?
17世纪,牛顿认为光是一股微粒流,沿直线传播,由此形
成了几何光学,他以光的折射、反射定律为基础,研究光的直线传播和成像的规律。
由于当时的实验条件和牛顿的威信,人们普遍接承认“光的微粒学说”。
可是到了19世纪初人们观测到了许多光的干涉、衍射、和偏振现象,这些事实不禁让人们对光产生了新的认识……
2、第一部分:光的波动性
1801年,英国物理学家托马斯·杨成功地实现了光的干涉实验,首次有力地证明了光是一种波动。
下面介绍一下这个有名
的杨氏双缝干涉实验。
实验装置如图所示:
为什么我们会观察到屏上的干涉条纹?下面我对屏上的条纹位置作定量分析:
S为线光源,其后是一个遮光屏,其上有两条与S平行的狭缝S1、S2,且与S等距离,因此S1、S2是相干光源,且相位相同;S1、S2之间的距离是d ,到屏的距离是D。
P为屏上任意一点,P到S1、S2的距离分别为r1、r2,在屏上取坐标轴O x,向上为正,坐标原点位于关于双缝的对称中心。
P到屏中心O点的距离为x,在D>>d、x,则从S1和S2发出的相干光到达P点的光程差为
δ=r2+r1
由图可见
r12 =D2+(x−d
2
)2 ,r22 =D2+(x+
d
2
)2
两式相减,得
r22−r12=2dx
由于D>>d、x,所以r2+r1≈2D,由此得
δ=dx
D
故当光程差为半波长的偶数倍时,相位差就是π的偶数倍,两束光相干加强,P点为明纹;而当光程差为半波长的奇数倍时,相位差就为π的奇数倍,两束光相干减弱,P点为暗纹。
此外,光的衍射和偏振现象都对“光的波动学说”提供了重要的实验证据。
到了19世纪60年代,麦克斯韦建立的电磁场理论又赋予光以电磁波的本质。
在这样的背景下,人们更加倾向于将光看做是一种电磁波。
难道光真的只是电磁波么?探索其实并没有停止……
3、第二部分:光的粒子性
随着光学向微观领域里的渗透,人们逐渐发现用经典的波动理论无法解释光与物质的相互作用。
从19世纪末到20世纪初,随着对光电效应和康普顿效应等实验规律的研究,人们又发现了光的一些新性质。
光电效应最早是由德国物理学家赫兹在做实验时发现的。
1887年,他发现,当紫外线照射在金属上时,能使金属发射带电粒子。
光电效应的实验简图如图所示:
这个实验最终得到了如下4个重要的实验规律:
(1)饱和光电流。
饱和光电流I M与入射光强I成正比, 即单位时间内从K极逸出的光电子数目N与入射光强I 成正比。
(2)截止电压。
U C:光电流为0时, 反向电势差的绝对值叫截止电压。
由能量关系可得出,截止电压UC与光电子的最大初动能之间有如下关系
1
mV m2=eU c
2
式中m和e分别是电子的质量和电量,V M是光电子逸出金属表面的最大速度。
并从上式看出光电子最大初动能等于电子的电量和截止电势差的乘积,与入射光强无关。
(3)截止频率。
实验发现,当入射光的频率ν增大时,截止电压U C将随之线性增大,即
U C=kv−U0
其中,k是与阴极金属材料性质无关的普适常量,而U0是与金属材料有关的量。
结合(2)中的公式可得
12
mV M 2=ekv −eU 0 即光电子最大初动能与入射光频率成线性关系; 当入射光频率ν >ν0时, 才会产生光电效应。
(4)弛豫时间。
实验发现光电效应具有瞬时性,弛豫时间不超过10-9s 。
然而这个实验却给人们带来了巨大的困惑,因为光的经典波动理论无法解释光电效应的实验结果。
按照经典波动理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。
也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应的瞬时性在经典波动理论上也被看做是不可能的。
经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
直到1905年,为了解释光电效应,爱因斯坦提出了光量子的概念。
他认为:频率为ν 的光是由大量能量为 ε =h ν 光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。
光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。
由此得到的光电效应方程
A h m -=νυ22
1 便合理的解释了光电效应的全部试验规律。
光的量子化是人们认识到光的粒子性的以重大进步。
而康普顿效应则又为光具有粒子
性提供了重要实验依据。
1923年,美国物理学家康普顿在观察X 射线被石墨等物质散射时,发现有波长改变的散射现象。
实验装置如下图所示:
实验结果表明:波长的偏移只与散射角ϕ 有关,与散射物质的性质无关,他们的关系是
0λλλ-∆= )cos 1(ϕλ-=c
这按照经典波动理论,波长改变的现象时无法解释的。
而根据光子理论,康普顿将这种散射看成是X 射线光子与静止的自由电子之间的弹性碰撞,并假设在碰撞过程中能量和动量守恒,有如下推导:
设碰前入射光子的频率为0ν,其能量为0νh ,动量为00ˆn c
h ν;静止的自由电子能量为20c m ,动量为0。
碰撞后反冲电子的能量为2mc 其动量为v v 220
/1c m -;散射光子的能量为νh ,其动量为n c
h ˆν。
有能量和动量守恒定律可列出方程:
2200mc h c m h +=+νν
v m n c
h n c h +=ˆˆ00νν 其中第二个式子为矢量式,可写成两个分量式
ϕθννvcos m c
h c h +=cos 0 ϕθνsin mv c
h =sin 消去变量φ解得波长偏移量与散射角θ的关系为
2
sin 2)cos 1(Δ2c 00θλθλλλ=--==c m h 由此,可以看到康普顿散射的理论推导和实验结果完全一致,有力的证明了爱因斯坦光量子理论的正确性,同时也验证了在微观粒子的相互作用过程中,能量和动量守恒定律是严格成立的。
人们也普遍接受了光的粒子性。
4、第三部分:光的波粒二象性
通过光的干涉等实验,人们认识到光具有波动性;而通过光电效应和康普顿效应等,人们有认识到广海具有粒子性。
由此得到了关于光的本性的全面认识因该是:光具有波粒二象性。
根据光子理论,一个光子的能量为
ε=hυ
由质能方程进一步求的光子的质量为
m=ℎcλ
动量为
p=ℎυ
c
=
ℎ
λ
在这三个方程中,光的粒子性由能量、质量、动量描述出来,而波动性由频率和波长描述。
而光的波动性和粒子性通过普朗克常数h联系在一起。
至此为止,人们较为全面的认识了光的本性。
5、结语:一切还没有结束
量子世界的大门才刚刚为我们敞开,对于光的本性的探索也并不会到此为止。
随着时代的发展与科技的进步,我相信人类对于光的本性认识会变得更加和谐统一。
而我们这些大学生,也更应该好好学习,也许将来就会有我们改变!
2012年12月参考文献:
[1]芶秉聪胡云海,《大学物理上册》,国防工业出版社,第二版
[2]芶秉聪胡云海,《大学物理下册》,国防工业出版社,第二版
[3]郑少波,《大学物理讲义》,2012。