鸡兔同笼问题几种不同的解法培训讲学
- 格式:doc
- 大小:48.00 KB
- 文档页数:5
鸡兔同笼问题讲义例、笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?解法1 假设法假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。
解法2 公式法让每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。
实际上我们用了如下的公式。
脚数和÷2-头数和=兔子数。
典型例题例【1】鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?分析题目中给出了鸡、兔共45只。
如果假设这45只全都是兔子,那么就应该有180只脚。
而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。
为什么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。
如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34÷2=17(只)。
所以鸡有17只,兔子有28只。
当然,我们也可以把45只都假设成是鸡,把以上问题反过来考虑。
解法一假设全是兔子。
(4×45-146)÷(4-2)=17(只)——鸡45-17=28(只)——兔解法二假设全是鸡。
(146-2×45)÷(4-2)=28(只)——兔45-28=17(只)——鸡答:鸡有17只,兔子有28只。
小试身手:1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?例【2】盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。
鸡兔同笼类问题中的各种解法分析小总结————————————————————————————————作者:————————————————————————————————日期:鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解例1鸡兔同笼是我国古代的著名趣题。
大约在1500年前,《孙子算经》中就记载着“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”翻译成通俗易懂的内容如下:鸡兔共有35个头,94只脚,问鸡兔各有多少只?经梳理,对于这一类问题,总共有以下几种理解方法。
(1)站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)(2)松绑法由于兔子的脚比鸡的脚多出了2个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)(3)假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼问题的策略与解决思路鸡兔同笼问题是一个经典的数学问题,指的是在一个笼子里有若干只鸡和兔子,已知总数量和总腿数,需要求出鸡和兔子分别的数量。
这个问题虽然看似简单,但却是一个很好的练习逻辑思维和数学推理的题目。
下面将介绍几种常用的策略与解决思路。
1. 假设法:假设鸡兔的总数量为n,每只鸡有2条腿,每只兔子有4条腿,在总腿数为m的情况下,可以列出方程式2x + 4y = m,其中x表示鸡的数量,y表示兔子的数量。
根据方程式可以进行求解,找出满足鸡兔总数量的组合。
2. 枚举法:从数量较少的一方开始枚举,假设鸡的数量为0,那么兔子的数量就是总数量。
如果鸡的数量为1,那么兔子的数量就是总腿数减去鸡的腿数除以2。
以此类推,继续增加鸡的数量,直到找到满足条件的组合。
3. 二元一次方程组法:可以建立一个二元一次方程组,同时考虑鸡和兔子的数量。
假设鸡的数量为x,兔子的数量为y,鸡的腿数为2x,兔子的腿数为4y,根据总数量和总腿数可以得到方程组:x + y = n2x + 4y = m通过解这个方程组可以求得鸡和兔子的数量。
4. 矩阵方程法:将鸡的数量和兔子的数量视为未知数,可以将鸡兔同笼问题转化为矩阵方程。
令A为系数矩阵,X为未知数矩阵,B为常数矩阵,则可以得到AX = B的形式。
通过解这个矩阵方程即可求得鸡和兔子的数量。
以上是几种常用的解决鸡兔同笼问题的策略与思路。
对于练习逻辑思维和数学推理有很好的帮助。
在实际解决问题时,可以根据具体情况选择适合的方法,以快速准确地得到答案。
此外,对于鸡兔同笼问题的解决过程中,我们可以思考一些扩展的问题:1. 如何解决总数量和总腿数不为正整数的情况?在解决这种情况下的鸡兔同笼问题时,可以引入小数的概念。
将鸡和兔子的数量视为小数,并按照之前的策略和思路进行求解。
2. 如何解决鸡兔不限于只有两种动物的情况?在拓展为鸡兔不限于只有鸡和兔子的情况时,可以引入更多种动物,并考虑每种动物的腿数。
第一课鸡兔同笼一、知识点解答鸡兔同笼问题常用的方法是:先假设要求的两个或几个未知数相等,或假设要求的两个求知量是同一种量,然后按照题中的已知条件来推算,从而求出所要求的结果。
用假设法解答鸡兔同笼问题的关键是首先把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”。
二、例题讲解1、鸡兔同笼,头共100只,足共340,鸡兔各几只?题意分析:先假设它们全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚:2×100=200(只),这样得到的脚数与题中已知的脚数进行比较相差:340-200=140(只),每差2只脚就说明有1只兔,于是就可以计算出兔的只数。
兔的只数:(340-2×100)÷(4-2)=140÷2=70(只)鸡的只数:100-70=30(只)2、甲、乙两人进行射击比赛,约定每中一发记8分,脱靶一发扣3分,两人各打了10发,共得116分,其中甲比乙多22分。
问甲、乙两人各中几发?题意分析:先以乙为标准,假设甲、乙得分相同,乙得分:(116-22)÷2=47(分),甲得分:(116+22)÷2=69(分)再分别假设甲、乙两人10发全中:甲得分:8×10=80(分),比实际得分多:80-69=11(分),因每脱靶一发要少得分:3+8=11(分),所以甲脱靶:11÷11=1(发),甲射中:10-1=9(发)乙得分:8×10=80(分)比实际得分多,80-47=33(分),因每脱靶一发要少得分:3+8=11(分),所以乙脱靶:33÷11=3(发),乙射中:10-3=7(发)三、专题训练1、鸡兔同笼,共有头100个,脚316只,那么鸡有多少只?兔有多少只?2、小李爱好集邮,他用10元钱买了6角和8角的两种邮票,共15张,那么他买了6角邮票多少张?8角邮票多少张?3、有苹果和橘子共27盒,共计600个,苹果每盒20个,橘子每盒24个,则苹果有多少盒?橘子有多少盒?4、学校举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题倒扣3分,刘明得了60分,则他做对了几题?5、30枚硬币由2分和5分组成,共值9角9分,两种硬币各多少枚?6、在一个停车场上,现有的车辆数恰好是24辆,其中汽车是4个轮子,摩托车3个轮子,这些车共有86个轮子,那么三轮摩托车有多少辆?7小红花了4元钱买甲乙两种明信片,共14张,已知甲种明信片每张3角5分,乙种明信片2角5分.求小红买了多少张甲种明信片,多少张乙种明信片?8.圆玄小学有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人?9.一辆卡车运沙石,睛天每天可运16次,雨天每天只能运11次.一共运了17天,共运了222次.求这些天中有几个雨天?10.学校举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分,刘明得了60分,则他做对了几题?11.小明和小强两人参加数学竞赛,每做对一题得10分,每错一题倒扣5分,两人各做了10题,共得110分,其中小明比小强多30分,问小明.小强两人各做对了几题?12.工人运花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少个?13.有三筐梨共108个,甲筐比乙筐多4个,乙筐比丙筐多1个,求甲.乙.丙筐各有多14.买4角与8角的邮票共花68元,已知8角的邮票比4角的多40张,那么8角的邮票有多少张?15.学校组织197名学生分乘3辆车去郊游,第二辆比第一辆车多坐3人,第三辆车比第二辆少坐10人,求三辆车各坐多少人?16.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天?17.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有多少只?鸡有多少只?18.小宝参加数学竞赛,共做25道题,得78分,已知做对一道得4分,不做得0分,错题扣1分,问小宝做对几道题?19.※、一辆公共汽车载客50人,其中一部分在中途下车,每张票价0.6元;另一部分到终点下车,每张票价0.9元。
《鸡兔同笼》解题方式技巧(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例题:“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解法一:(100-2×36)÷(4-2)=14(只)……兔36-14=22(只)……鸡。
解法二:(4×36-100)÷(4-2)=22(只)……鸡36-22=14(只)……兔(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:[(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;[(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)……兔。
鸡兔同笼问题的几种解法鸡兔同笼问题是我国古代著名趣题之一。
通过学习解鸡兔同笼问题,可以提高我们的分析问题、解决问题的能力。
下面我来介绍几种解鸡兔同笼问题的方法:大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道数学趣题,这就是著名的“鸡兔同笼”问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?解法一:列表法列表法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。
详细过程见下表:解法二:抬腿法这是古人解题的方法,也就是《孙子算经》中采用的方法。
1、抬腿,即鸡“金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。
94÷2=47只脚。
2、现在鸡有一只脚,兔有两只脚。
笼子里只要有一只兔子,脚数就比头数多1。
3、那么脚数与头数的差47-35=12就是兔子的只数。
4、最后用头数减去兔的只数35-12=23就得出鸡的只数。
所以,我们可以总结出这样的公式:兔子的只数=总腿数÷2-总只数。
解法三:假设法假设法是鸡兔同笼类问题最常用的方法之一。
假设这35个头都是兔子,那么腿数就应该是35×4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。
我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。
我们可以列式为:鸡的只数=(35×4-94)÷(4-2)。
总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
当然我们也可以把这35个头都看成鸡的,那么腿数应该是35×2=70,就比94还少,相信不说你也明白为什么少了?对,因为我们把4条腿的兔子看成了2条腿的鸡,那么每少两条腿就有1只兔子。
“鸡兔同笼”问题的几种解法.doc 解法一:假设法
假设14只全部是鸡,14×2=28条,差38-28=10条。
而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿。
所以有5只兔子,14-5=9只鸡。
解法二:抬腿法
让每只鸡都一只脚站立着,每只兔都用两只后脚站立着。
那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
解法三:砍足法
假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由38只变成了19只;
如果笼子里有一只兔子,则脚的总数就比头的总数多1。
因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。
所以,鸡的只数就是14-5=9(只)了。
鸡兔同笼问题4种解题方法鸡兔同笼解题方法:1,假设法设全是鸡,则兔的只数为:(总头数×2--总脚数)÷2设全是兔,则鸡的只数为:(总头数x4--总脚数)÷2总只数--鸡只数=兔只数基本原理:总头数x2如果=总脚数,说明全是鸡,如果<总脚数,说明其中有兔,每少2只脚就有1只兔。
总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。
2,公式法:总脚数÷2--总头数=兔只数总只数--兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。
用脚总数÷2是按全是鸡来计算的,如果商=总头数,说明全是鸡,如果商>总头数,说明其中有兔。
每多1个头就是1只兔。
因为1只兔有4只脚,前面÷的是2,1只兔就变成2个头,也就多了1个头,所以总脚数÷2--总头数的差是多少就有多少只兔。
3,排除法:(脚总量--总头数x2)÷2=兔只数:总只数--兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。
前面抬起2只脚,现在每只兔还剩下2只脚。
所以用总脚数--总头数×2的差再÷2就是兔的只数。
4,分组法(1)鸡兔共有100只,鸡脚比兔脚多20只,问鸡兔各有多少只?20÷2=10只100--10=90只兔:90÷(1+2)=30只100--30=70只验算:70×2--30×4=20(2)鸡兔共有90只,鸡的脚比兔的脚少60只,问有鸡兔各几只?60÷4=15只90--15=75只免:75÷(1+2)=25只鸡:75--25=50只验算:50×2=100(25+15)x4=160160--100=60只5,方程法可用一元一次和二元一次方程直接解题。
鸡兔同笼问题讲义一、基本知识点总结:解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:用方程思想解决鸡兔同笼问题(重点掌握)二、例题讲解:【例1】(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?【例2】鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?【例3】鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?【练习】鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?三、推广应用:【例4】某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?【例5】一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?【例6】自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?三、学练结合:1. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?2.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?3.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?4.刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?。
鸡兔同笼问题几种不同的解法
英国数学教育家贝克浩斯(Backhousl)在研究“问题解决”时首先提到的是中国古算题,其中包括鸡兔同笼问题、10买100个馒头问题等。
解这些问题需要想象,解者在其情景中有明确的且力所能及的目的,但缺少现成的方法达到此目常常作为夜航船中或纳凉赏月时的一种试智比知式考问的备办学问,一代一代传下来,还传到世界各地,鸡兔问题传到鹤问题。
明代作家张岱曾说:“天下学问,惟夜航船中最难对付”。
又到纳凉的季节,老公公们要用这些问题来试试儿孙怎样?有位小朋友听了老公公提出的问题,觉得难度不大,便满怀信心地对老公公说:慢点,让我打开灯,拿纸和笔。
不用笔就不可以算吗?这一下,许多小朋友都被难住了。
显然老公公解这些难题的技巧肯定不同凡响,那么老公公是怎问题的呢?我们先举个例子说说。
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
解法1 假设法
假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(2 60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)2
这种解法,思路清晰,但较复杂,不便操作。
能不能形象地画个图呢?让我们试试。
解法2 图形法
从图中看ACDF的面积=4×50=200(只脚),比实际多出GHEF的面积=200-140=60(只脚),AB=GH=(只鸡),BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。
这里答案是图上算出的,显然这两种解法都要用纸和笔。
不用纸和笔肯定是用口的公式,这是老公公的传家宝。
解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。
这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)2即兔有20只,则鸡有(50-20=)30(只)。
这个故事实际上老公公用了如下的公式。
脚数和÷2-头数和=兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。
老公公又出了
(1)30个头,80只脚……。
(兔10,鸡20)。
(2)100只脚,40个头……。
(兔10,鸡30)。
(3)80个头,200只脚……。
(兔20,鸡60)
小孙子们个个都愉快地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。
是碰巧做对还是符合算理的呢?这是十分重要的。
数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是手续而已。
”现在我们就来补行这个手续。
2鸡头=鸡脚。
4兔头=兔脚。
得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。
这就证明了老公公归纳的公式。
说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。
现在掌握了规律其实不难,所以凡事都应去摸索规律办事。
鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢?我们再来看下面的问题。
二、邮票问题
例2 买3角与5角的邮票共24张,总值9.6元,问两种邮票各买了几张?
解这道题当然可以用假设法和图形法,但用什么样的公式呢?美国数学教育家C·波利亚说:“……不论初等数学、中的发现……特别是不能没有类比。
”用类比很容易发现这个公式是:邮
设3角邮票为A1张,价值A2角;
5角邮票为B1张,价值B2角。
说明数量关系与鸡兔同笼问题相一致。
又3A1=A2,5B1=B2。
得:A2+B2=3A1+5B1,
这就与例1的公式相类似,很容易将这个公式翻译成语言陈述,大家试
(24-12=)12(张)。
如果你认为这个公式不太好记,就不妨用图来解。
(24×5-96)÷2=12(张、3角)
24-12=12
所以解题方法的选用常常是根据具体情况而定的。
再试试
(1)6角与8角的邮票共18张,总价12.4元,问两种邮票各几张?(10,8)
(2)3角与8角的邮票共100张,总价50元,问两种邮票各几张?(60,40)
三、植树问题
例3 一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人种树140棵,问种这两种树的各有多少人?
这道题可用例1的公式很快解得种大树的有30人,种小树的有20人。
四、运输(工作)问题
例4 有小卡车50辆,大卡车每辆运4吨,小卡车每辆运2吨,共运140吨化肥,问大小卡车各几辆?
难道不是题目看完答案就出来了吗?
五、农药问题
例5 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混已知两种农药共50千克,要配药水140千克,问甲、乙两种农药各需多少千克?
用公式解很简单(30,20),如果将这个公式交给农民,那么他们配起农药来就既方便又正确,你能想出这个公式是
还会遇到许多许多的问题,它们的数量关系(应用题的本质)与鸡兔同笼问题相一致,都可以用鸡兔同笼问题的三解,这些问题我们将它们统称为鸡兔同笼问题。
相传大禹治水到黄河,发现一只神龟,背上驮了一张图叫河图(洛书)。
(左图),用阿拉伯数字表示就是右图,竖线、三条横线、二条对角线共八条线上三个数的和都是15,这样的图是怎样造出来的呢?其法一时失传了,于是有人占卜、相风水,进入迷信状态。
后来数学家发现其原理是二进制,说明二进制是中国人最先发明的,近代根据二进制发机,所以有些基础科学的研究成果一时看起来无多大用途,以后渐渐会发现有大用途,鸡兔同笼问题不也是这样吗?因定要重视基础科学的学习和研究。