二次函数的应用[上学期]--浙教版
- 格式:pdf
- 大小:1.19 MB
- 文档页数:9
1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。
1.4 二次函数的应用第2课时 商品销售利润问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会根据销售问题中的数量关系列出二次函数关系式;2.利用列出的二次函数关系式,根据其性质解决商品销售过程中的最大利润问题;3、商品销售类二次函数问题,要注意二次函数自变量的取值范围; 导入新课目前,我国存在大量的商场,是人们平时购物、饮食、游玩等重要的场所;在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?知识点一二次函数的应用——商品销售问题问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.180006000数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.60001.自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.综合可知,应定价65元时,才能使利润最大.2.降价多少元时,利润最大,是多少?当 时,即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?归纳总结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.典例精析【例1】某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出30-x件,要使利润最大,每件的售价应为( )A.24元B.25元C.28元D.30元【详解】解:设利润为w,由题意可得,w=(x-20)(30-x)=-x2+50x-600=-(x-25)2+25∵-1<0,20≤x≤30,∴当x=25时w最大,故选B;【例2】已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;定价为元才能使利润最大.【详解】解:设每涨价x元,获得的总利润为y元,根据题意得:y=(6--40+x)(300-10x)=(20+x)(300-10x)==-10x2+100x+6000=-10(x-5)2+6250(0≤x≤30)∴当x=5时,y的值最大,此时定价为:60+5=65(元)故答案为:65.练一练1.“爱成都,创文明,迎大运”,卫生环境先着手,为提高工作效率,某清洁工具生产商投产一种新型垃圾夹,每件制造成本为20元,在试销过程中发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+52.(1)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,生产商每月能够获得最大利润?最大利润是多少?【详解】(1)由题意得:w=y(x-20)=(-2x+52)(x-20)=-2x2+92x-1040;(2)w=-2x2+92x-1040=-2(x-23)2+18,∴当销售单价为23元时,每月能获得最大利润,最大利润是18万元;1.2022年北京冬奥会的冰墩墩受广大群众的喜爱,某超市销售冰墩墩饰品,每件成本为40元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x(元)之间满足函数关系式y=-2x+200,若要求销售单价不得低于成本.为了每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少元?( )A.80元,1800元B.70元,2000元C.70元,1800元D.80元,2000元【详解】设每月所获利润为w,由题意可知:w=(x-40)×y=(x-40)(-2x+200)=-2(x-70)2+1800∵抛物线开口向下,∴当x=70时,函数有最大值为1800.故选:C.2.某书店销售某种中考复习资料,若每本可获利x元,一天可售出(100-5x)本,则该书店出售该种中考复习资料的日利润最大为( )A.250元B.500元C.750元D.1000元【详解】解:每本可获利x元,一天可售出(100-x)本,则一天的利润为(100-5x)x=-5x2+100x,设日利润为y,∴y=-5x2+100x=-5(x-10)2+500,∴最大利润为:500元,故选:B.3.某景区旅店有30张床位,每床每天收费10元时,可全部租出,若每床每天收费提高10元,则有2张床位不能租出;若每床每天收费再提高10元,则再有2张床位不能租出;若每次按提高10元的这种方法变化下去,则该旅店每天营业收入最多为( )A.3125元B.3120元C.2950元D.1280元【详解】解:设每床每晚收费提高x个10元,旅店每天营业收入为y元,根据题意得:y=(10+10x)(30-2x)=-20x2+280x+300=-20(x-7)2+1280,∴当x=7时,y最大,最大值为1280元,∴该旅店每天营业收入最多为1280元,故选:D.4.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为150件:销售单价每上涨1元,每天的销售量就减少10件,设销售单价为x(元),每天的销售量为y(件),每天所得的销售利润为w(元).则当销售单价为元时,每天的销售利润最大,最大利润是_______元.【详解】解:由题意,得:涨了(x-25)元,销售量少10(x-25)件,现在的销售量为y=150-10(x-25)=(400-10x)件,W=(x-20)·y=(x-20)(400-10x)=-10x2+600x-8000当x=−ᵄ2ᵄ=30时,W最大,W=(30-20)×(400-300)=1000元.故当销售单价为30元时,每天的销售利润最大,最大利润是1000元.故答案为:30,1000.5.超市销售的某商品进价是10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=-5x+150,则该商品的售价定为元/件时,每天销售该商品的获利最大.【详解】设获利W元,则W=(x-10)·y∴W=(x-10)(-5x+150)=-5x2+200x-1500当x=−ᵄ2ᵄ=20时,W的值最大,∴当x=20时,每天销售该商品的获利最大.故答案为:20.6.2022年,中国航天迈着大步向浩瀚宇宙不断探索.这一年,神舟十四号载人飞船成功发射.某航模专卖店向航天爱好者推出了“神舟十四号”飞船模型.每个模型的进价是80元,原计划按每个120元销售,每月能售出30个,经调查发现,这种模型每个降价1元,则每月销售量将增加2个.(降价为整元)(1)直接写出每月销售量y(个)与每个降价x(元)的函数关系式;(2)设专卖店销售这种模型每月可获利w元,当每个降价多少元时,每月获得的利润最大?最大利润是多少?【详解】(1)根据题意得:y=30+2x;(2)设每个降价x元,根据题意得,w=(120-80-x)(30+2x)=-2x2+50x+1200=-2(x-252)2+30252,当每个降价12或13元时,每月获得的利润最大,最大利润是1512元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.7.水果店新进一种水果,进价为每千克5元,每天的销售量y(kg)与销售单价x(元)之间满足一次函数关系式,其图像如图所示.(1)求y与x之间的函数关系式;(2)水果的销售单价定为多少元时,水果店卖这种水果每天获得的利润最大?最大利润是多少元?【详解】(1)解:设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:8ᵅ+ᵄ=606ᵅ+ᵄ=100,解得:ᵅ=−20ᵄ=220,∴y与x的函数关系式为y=-20x+220.(2)解:设每天销售这种水果所获的利润为w元,∵y=-20x+220,∴w=(x-5)y=(x-5)(-20x+220)=-20(x-8)2+180,∴当x=8时,w有最大值,最大值为180,∴售价定为8元/件时,每天最大利润为180元.课堂小结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.谢谢~。
《1.4.2二次函数的应用》教学设计一、教学目标(1)情感态度与价值观目标发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值. (2)能力目标会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题. (3)知识目标继续经历利用二次函数解决实际最值问题的过程. 二、教学重点利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题. 三、教学难点将现实问题的数学化,情景比较复杂. 四、教学方法自主探究、合作交流,采用多媒体问题引领 五、教学过程设计 问题引入,回顾旧知问题1:利用函数解决实际问题的基本思想方法?【设计意图】借助一次函数的实际应用,回忆函数解决实际问题的基本思想方法.问题2:求函数的最值问题,应注意什么? 图中所示的二次函数图象的解析式为:13822++=x x y⑴若-3≤ x ≤3,该函数的最大值、最小值分别为( )、( ). ⑵又若0≤ x ≤3,该函数的最大值、最小值分别为( )、( ). 预设:归纳出二次函数取最值时应考虑自变量的范围.【设计意图】通过辨析两个例子,归纳出二次函数取最值时应考虑自变量的范围. 问题2:如何求下列函数的最小值?y x x 2=2+4+5预设:体会问题的本质是求二次函数的最小值. 【设计意图】本问题是二次函数的优化模型的深入研究和发展,使学生进一步感受二次函数是探索自然现象、社会现象的重要工具.例1如图,B船位于A船正东26km处,现在A、B两船同时出发,A船以12 km/h的速度朝正北方向行驶,B船以5km/h的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?预设:【设计意图】由实际问题先提炼几何图形,并类比问题3采用化归方法求二次函数最小值.例2 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日销售量减少40瓶;当售价为每瓶12元时,日均销售量为400瓶,问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?预设:等量关系单件利润=售价-进价;总利润=单件利润×销售数量列表分析如下:单价单利数量降价前123400降价后X x-91360-80xy=(x-9)(1360-80x)=-80x²+2080x-12240-ba2=13,在x10≤≤14的范围内.所以当x=13时,maxy=1280元.【设计意图】感受列表格的优势,并经历二次函数求最值应先确定自变量的取值范围.练1某大棚内种植西红柿,其单位面积的产量与这个单位面积种植的株树构成一种函数关系,每平方米种植4株时,平均单株产量为2kg ,以同样的栽培条件,每平方米种植的株树每增加1株,单株产量减少 kg ,问:每平方米种植多少株时,能获得最大的产量?最大产量为多少?预设:列表分析如下:x x x y x x x 2-4⎛⎫⎛⎫=2-=3-=-+3 ⎪ ⎪444⎝⎭⎝⎭ ()x 21=--6+94(x >0,且x 为正整数) ∴ 当x =6时,获得最大产量,最大产量为9kg .练2 上午8点,某台风中心在A 城正南方向的200km 处,以25km /h 的速度向A 城移动,此时有一辆卡车从A 城以100km /h 的速度向正西方向行驶,问何时这辆卡车与台风中心的距离最近?当距离最近时台风中心与这辆卡车分别位于何处? 题目分析:设经过的时间为t (h ) ,卡车与台风中心的 距离CB 为s (km ) .则AC =100t ,AB =200-25t.s ==(t >0)∴当t 8=17时,s 有最小值,即在8:28,台风中心与卡车分别离A 城约188km 和47km . 小结新课,梳理新知。
浙教版数学九年级上册《1.4 二次函数的应用》教案一. 教材分析浙教版数学九年级上册《1.4 二次函数的应用》这一节主要让学生了解二次函数在实际生活中的应用,通过实例让学生掌握二次函数的图像和性质,从而解决一些实际问题。
教材通过生活中的实例,引导学生运用数学知识解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,二次函数的应用能力有待提高。
此外,学生的数学思维能力和解决问题的能力也亟待提高。
三. 教学目标1.了解二次函数在实际生活中的应用。
2.掌握二次函数的图像和性质,提高解决实际问题的能力。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:将实际问题转化为数学问题,以及如何运用二次函数解决实际问题。
五. 教学方法采用案例教学法、问题驱动法和小组合作法。
通过生活实例,引导学生运用数学知识解决实际问题,培养学生的问题分析能力和数学应用能力。
六. 教学准备1.准备相关的实际问题案例。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出二次函数的应用。
例如,假设一家工厂生产的产品,其成本函数为c(x)=2x2+3x+1,其中x表示生产的产品数量。
问当工厂生产多少产品时,成本最低?2.呈现(10分钟)呈现教材中的相关实例,让学生观察二次函数的图像和性质,引导学生理解二次函数在实际生活中的应用。
同时,让学生尝试解决教材中的问题,巩固二次函数的知识。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用二次函数的知识解决。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)选取几组学生的成果,进行讲解和分析,让学生加深对二次函数应用的理解。
同时,引导学生总结解决实际问题的方法和步骤。