运动控制系统总结
- 格式:ppt
- 大小:3.46 MB
- 文档页数:139
运动控制实训总结标题:运动控制实训总结正文:运动控制是机器人控制技术中的重要组成部分,是机器人实现自主运动的关键。
本次实训旨在让学生掌握运动控制的基本理论和应用技能,为后续的机器人实践应用打下坚实的基础。
在实训过程中,我们按照以下步骤进行:一、学习运动控制基础知识在实训开始前,我们首先学习了运动控制基础知识,包括运动控制算法、传感器和执行器的应用、运动控制系统的建模等内容。
通过学习这些内容,学生了解了运动控制的基本思想和实现方法,为后续的实训操作打下了坚实的基础。
二、进行实验操作在实训过程中,我们按照课程要求进行了多个实验操作,包括使用PID控制算法实现机器人的平滑运动、使用模糊控制算法实现机器人的避障运动、使用神经网络实现机器人的运动预测和控制等。
通过实验操作,学生掌握了不同的运动控制算法和传感器/执行器的应用技巧,并且对运动控制系统的建模和调试有了更深入的理解。
三、进行仿真实验在实验操作的基础上,我们进行了仿真实验,通过搭建运动控制系统并进行仿真测试,验证运动控制算法的性能和效果。
通过仿真实验,学生可以更加直观地了解运动控制系统的运行状况,并对运动控制算法的参数进行调整和优化,以提高系统的性能和可靠性。
四、总结与反思在实训结束后,我们对所有实验操作进行了总结和反思。
通过总结,我们了解到学生在运动控制实训中取得了哪些成果和进步,同时也发现了哪些不足之处。
通过反思,我们提高了学生的实验操作能力和系统调试能力,为今后的机器人实践应用打下了坚实的基础。
拓展:除了本次运动控制实训,学生还可以参考相关书籍、论文和视频教程,进一步深入学习和了解运动控制的相关理论和应用。
同时,学生也可以参加机器人比赛和实践项目,将所学的运动控制技能应用于实际问题中,不断提高自己的机器人控制技术和实践能力。
知识创造未来
运动控制系统
运动控制系统是指利用电子设备和软件来实现运动控制的一种系统。
它可以用于控制机械设备、机器人、汽车等进行运动控制。
运动控制系统通常包括以下几个部分:
1. 传感器:用于检测实际运动的位置、速度、加速度等参数,并将
其转换为电信号。
2. 控制器:负责接收传感器的信号,并根据预设的控制算法,计算
出相应的控制命令。
3. 执行器:根据控制命令,进行相应的机械运动,如电机、气缸等。
4. 软件系统:包括控制算法、运动规划、通信协议等,用于实现运
动控制的逻辑和功能。
运动控制系统的主要功能包括位置控制、速度控制和力控制等。
通
过调整控制器的参数和算法,可以达到不同的控制效果。
运动控制系统广泛应用于各个领域,如工业自动化、机器人、航空
航天、医疗器械等。
它可以提高设备的精度、稳定性和生产效率,
实现自动化生产和操作。
1。
第2章控制:电压电流频率改变:转矩速度位移1 组成:电动机功率放大变换装置控制器传感器2 恒转矩特性:方向和转速相反恒功率:负载转矩和转速反比风机:转矩和转速平方成正比3 调节转速方法调节供电U(主要) 减弱励磁磁通改变电枢R4 电源:相控整流器:直接把交流转化成直流直流脉宽变换器先用不可控整流把交变直然后PWM调制调节输出电压5 晶闸管:优点:功率放大倍数大门级I直接可控响应时间短效率高断续:电感小Id上升段电感储能不大到Id下降电感释放能量释放维持I导通由储能少在下一项触发前Id到0 断续避免:增加整流相数采用多重话技术设置电感大的平波电抗器问题:单相导电对过U I和过高du/dt di/dt敏感谐波电流电压畸变6 PWM:优点:简单开关频率高I连续谐波少损耗小稳速精度高调速外围宽频带宽动态响应快抗扰强装置效率高功率因数高PWM变换器作用:用脉冲宽度调制把电压调制成频率一定宽度可变的电压序列改变U大小调节转速7 电能回馈:反电动势E大于电枢Ud 回馈动能变电能由于二极管电能不能回电网只给滤波电容充电造成泵升电压抑制:一定大小电容或限制电路8 比例控制闭环规律:被调量有静差抵抗扰动服从给定系统精度依赖检测精度9 积分控制:使系统在无静差恒速运行消除稳态偏差包含输入偏差量所有比例:控制快速题:1转速单闭环调速系统有哪些特点?改变给定电压能否改变电动机的转速?为什么?如果给定电压不变,调节转速反馈系数是否能够改变转速?为什么?如果测速发电机的励磁发生了变化,系统有无克服这种干扰的能力?2为什么用积分控制的调速系统是无静差的?在转速单闭环调速系统中,当积分调节器的输入偏差电压△U=0 时,调节器的输出电压是多少?它决定于哪些因素?3在无静差转速单闭环调速系统中,转速的稳态精度是否还受给定电源和测速发电机精度的影响?为什么?4在转速负反馈单闭环有静差调速系统中,当下列参数发生变化时系统是否有调节作用?为什么?(1)放大器的放大系数 Kp。
1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
第1篇一、实验背景随着科技的不断发展,运动控制技术已成为现代工业、军事、医疗等领域的关键技术之一。
运动控制系统通过对运动物体的位置、速度、加速度等参数进行精确控制,实现各种复杂运动任务。
本实验旨在通过对运动控制系统的设计与实现,掌握运动控制的基本原理和方法。
二、实验目的1. 理解运动控制系统的基本原理和组成;2. 掌握运动控制系统的设计方法;3. 学习运动控制系统的实现技术;4. 培养实际操作能力和创新能力。
三、实验内容本实验主要分为以下几个部分:1. 运动控制系统概述:介绍运动控制系统的基本概念、组成、分类和特点。
2. 运动控制器:学习运动控制器的种类、原理、功能和性能指标。
3. 运动控制算法:研究常用的运动控制算法,如PID控制、模糊控制、自适应控制等。
4. 运动控制系统设计:根据实际需求,设计运动控制系统,包括系统结构、参数选择和算法实现。
5. 运动控制系统实现:利用运动控制器和实验平台,实现运动控制系统,并进行实验验证。
四、实验步骤1. 运动控制系统概述:- 学习运动控制系统的基本概念和组成;- 了解运动控制系统的分类和特点;- 分析运动控制系统的应用领域。
2. 运动控制器:- 学习运动控制器的种类、原理和功能;- 分析运动控制器的性能指标和选择方法;- 熟悉常见运动控制器的操作方法和编程接口。
3. 运动控制算法:- 学习PID控制、模糊控制、自适应控制等运动控制算法;- 分析各种算法的优缺点和适用范围;- 熟悉各种算法的编程实现。
4. 运动控制系统设计:- 根据实际需求,确定运动控制系统的性能指标;- 设计运动控制系统的结构,包括控制器、执行器、传感器等;- 选择合适的运动控制算法,并进行参数优化。
5. 运动控制系统实现:- 利用运动控制器和实验平台,搭建运动控制系统;- 编写运动控制程序,实现运动控制算法;- 进行实验验证,分析实验结果,调整系统参数。
五、实验结果与分析1. 实验结果:- 实验过程中,成功搭建了运动控制系统,实现了预定的运动控制任务; - 通过实验验证,运动控制系统具有良好的稳定性和准确性。
第一章1.基于自动控制理论,对作为原动机的电动机加以控制,使其拖动机械负载按照给定的控制规律自动运行的系统,称为电力拖动自动控制系统。
简称为电力拖动控制系统,也被称为运动控制系统。
2.电力拖动自动控制系统的组成:电动机、功率放大与变换装置、控制器及相应的传感器等。
3.运动控制系统转矩控制规律4.转矩控制是运动控制的根本问题要控制转速和转角,唯一的途径就是控制电动机的电磁转矩Te 5.电动:转矩与转速方向一致制动:转矩与转速方向相反6.典型的生产机械的负载转矩特性:①恒转矩负载特性②恒功率负载特性③风机、泵类负载特性第二章1.晶闸管整流器-电动机系统(简称V-M 系统)开环瞬时电压平衡方程式R=R rec +R a +R L U d =K S U C0dd d di u E i R L dt=++2.直流PWM 变换器-电动机系统(不可逆调速系统)改变占空比ρ,即可改变直流电动机电枢平均电压U d ,实现直流电动机的调压调速。
ρ==sonds t UU U TVD 的作用:为电流i d 提供一个续流的通道.电路之所以不可逆是因为平均电压U d 始终大于0。
3.对转速控制的要求:①调速②稳速③加、减速4.稳态调速性能指标①调速范围:生产机械要求电动机提供的最高转速n max 和最低转速n min 之比。
②静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比。
静差率是用来衡量调速系统在负载情况变化下转速的稳定度的。
它和机械特性的硬度有关,机械特性越硬,静差率越小,转速的稳定度就越高。
m a xm i nnD =n ()dN N eI Rn C ∆=100%Nn s n ∆=⨯n max 、n min 是在额定负载的最高和最低转速5.硬度是指机械特性的斜率。
调速范围和静差率必须同时提才有意义。
在调速过程中,若额定速降相同,则转速越低,静差率越大。
运动控制实训报告总结范文一、引言运动控制是现代工程领域中的一个重要方向,广泛应用于机器人控制、工业自动化、航空航天等领域。
本次实训旨在通过实际操作,提高我们对运动控制的理论知识的理解和应用能力,加深对运动控制系统的工作原理和设计方法的了解。
二、实训内容1. 运动控制理论讲解在实训之初,我们首先接受了相关的理论知识讲解。
通过学习运动控制的基本原理和常见的控制算法,我对闭环控制、速度控制和位置控制等概念有了更加清晰的认识。
2. 运动控制系统设计在实训的第二部分,我们利用软件仿真工具进行了运动控制系统的设计。
通过搭建闭环控制系统模型并进行仿真实验,掌握了运动控制器的设计方法,并深入了解了不同参数对系统性能的影响。
3. 实际控制器配置与调试基于虚拟仿真的系统设计,我们进一步进行了实际控制器的配置和调试。
通过连接电机、编码器和控制器,掌握了运动控制系统的实际搭建流程并对其进行了参数调整和优化,使系统能够实现准确控制。
4. 运动控制系统性能评估在控制系统搭建完成后,我们对其性能进行了评估。
通过对速度和位置误差的分析和测量,以及对实际轨迹和目标轨迹的对比,判断控制系统是否达到设计要求,并进行可能的改进。
三、实训成果通过本次实训,我取得了以下几方面的成果和收获:1. 提高了对运动控制的理论和实际应用的理解。
通过实际操作,我对运动控制的原理、方法和技术有了更深刻的认识,进一步巩固了相关的理论知识。
2. 掌握了运动控制系统的设计和调试方法。
通过实践操作,我了解了运动控制系统的设计流程和调试步骤,提升了自己的工程实践能力。
3. 熟悉了实际控制器的配置和参数调整。
在实际操作中,我掌握了常见的控制器配置方法,并学会了如何根据系统需求进行参数调整和优化。
4. 学会了运动控制系统性能评估方法。
通过对实际控制系统的性能评估,我了解了如何分析系统的误差和偏差,提出改进方案,进一步完善运动控制系统。
四、实训反思本次实训对我来说是一次非常宝贵的学习机会。
运动控制系统简答题总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(运动控制系统简答题总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为运动控制系统简答题总结的全部内容。
转速调节器和电流调节器在双闭环直流调速系统中的作用分别是什么?转速调节器的作用1.转速调节器是调速系统的主导调节器,它使转速n很快地随给定电压Un变化,稳态时可减少转速误差,如果采用PI调节器,则可实现无静差。
2.对负载变化起抗绕作用3.其输出限幅值决定电动机允许的最大电流。
电流调节器的作用1.作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压Ui(既外环调节器的输出量)变化.2.对电网电压的波动起及时抗绕的作用。
3.在转速动态过程中,保证获得电动机允许的最大电流,从而加快动态过程。
4.当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
一旦故障消失,系统立即自动恢复正常.这个作用对系统的可靠运行来说是十分重要的。
在交流调速系统中,转差频率控制的规律为:(1)在Ws≤Wsm的范围内,如果气隙磁通保持不变,转矩Te基本上与ωs成正比。
(2)定子电流不同时,按照一定的US=f(w1,IS)函数关系控制定子的电压和频率,可以保持气隙磁通恒定。
按转子磁链定向矢量控制系统的基本思路:通过坐标变换,在按转子磁链定向同步旋转正交坐标系中,得到等效的直流电动机模型,仿照直流电动机的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制.正弦波脉宽调制(SPWM):以频率与期望的输出电压波相同的正弦波作为调制波,以频率比期望波高得多的等腰三角波作为载波,当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得幅值相等、宽度按正弦规律变化的脉冲序列,这种调制方法称为正弦波脉宽调制.试述直流调速中开环机械特性与闭环静特性的关系闭环静特性可以比开环机械特性硬得多.闭环静特性的静差率比开环系统小得多。
一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。
分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。
(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。
(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。
二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。
三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。
在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。
(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
第一篇 直流拖动控制系统=电力拖动系统绪论概念:1.电机拖动:由电动机拖动生产机械进行运转。
2.根据直流电动机转速方程,有三种方法调节电动机的转速以及各自特点:(1)调节电枢供电电压 U :调节电枢供电电压进行调速,机械特性曲线平行移动,在一定范围内无级平滑调速; (2)减弱励磁磁通:虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速,机械特性曲线变软,属无级调速。
(3)改变电枢回路电阻 R :变电阻调速只能实现有级调速,机械特性曲线硬度改变。
自动控制的直流调速系统往往以调压调速为主3.请比较直流调速系统、交流调速系统的优缺点,并说明今后电力传动系统的发展的趋势,最后说明为何要先研究直流拖动控制系统。
* 直流电机调速系统优点:调速范围广,易于实现平滑调速,起动、制动性能好,过载转矩大,可靠性高,动态性能良好,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
缺点:有机械整流器和电刷,噪声大,维护困难;换向产生火花,使用环境受限;结构复杂,容量、转速、电压受限。
* 交流电机调速系统(正好与直流电机调速系统相反)优点:异步电动机结构简单、坚固耐用、维护方便、造价低廉,使用环境广,运行可靠,便于制造大容量、高转速、高电压电机。
大量被用来拖动转速基本不变的生产机械。
缺点:调速性能比直流电机差。
* 发展趋势:用直流调速方式控制交流调速系统,达到与直流调速系统相媲美的调速性能;或采用同步电机调速系统。
* 由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
第1章 闭环控制的直流调速系统1.1 直流调速系统用的可控直流电源1.2 晶闸管-电动机系统(V-M 系统)的主要问题 1.3 直流脉宽调速系统的主要问题1.4 反馈控制闭环直流调速系统的稳态分析和设计 1.5 反馈控制闭环直流调速系统的动态分析和设计 1.6 比例积分控制规律和无静差调速系统一 直流调速系统用的可控直流电源(调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源)直流调速系统用的可控直流电源的种类、特点及适用场合。
运动控制综合实训总结一、前言运动控制综合实训是机械工程专业的一门重要课程,通过该课程的学习,可以让学生深入了解运动控制系统的原理及应用,提高其实践能力和创新能力。
本文将对我在运动控制综合实训中所学到的知识和经验进行总结。
二、实验内容1.基于PLC控制的单轴伺服系统设计本次实验旨在通过使用PLC编程语言对单轴伺服系统进行控制,从而达到对电机转速、位置等参数进行精确调节的目的。
在该实验中,我们需要完成以下任务:(1)掌握PLC编程语言的基本语法和程序设计流程;(2)熟悉伺服电机驱动器和编码器等相关硬件设备;(3)完成伺服电机转速和位置控制等功能。
2.基于PC机控制的多轴步进电机系统设计该实验主要是通过使用PC机来对多轴步进电机系统进行控制,从而达到对多个电机同时运行或者按照特定顺序进行运行的目的。
在该实验中,我们需要完成以下任务:(1)学习并熟悉PC端软件开发环境;(2)掌握多轴步进电机控制的原理和应用;(3)完成多个步进电机的同时或者顺序运行等功能。
3.基于DSP控制的直线运动系统设计该实验主要是通过使用DSP芯片来对直线运动系统进行控制,从而达到对系统位置、速度等参数进行精确调节的目的。
在该实验中,我们需要完成以下任务:(1)学习并熟悉DSP芯片的编程语言和开发环境;(2)了解直线运动系统中相关硬件设备如电机、传感器等;(3)完成直线运动系统位置、速度等参数调节。
三、实验经验与收获1.团队协作能力得到提高在实验过程中,我们需要分工合作,共同完成实验任务。
通过合理分配任务和密切配合,我们成功地完成了实验任务。
这不仅提高了我们的团队协作能力,还让我们更好地理解了“团队合作”的重要性。
2.技术能力得到提升在本次实践过程中,我们不仅学习了理论知识,还亲手操作了各种设备,并且进行了大量的调试工作。
通过这些操作和调试过程,我们不断地摸索和尝试,最终成功地完成了实验任务。
这不仅提高了我们的技术能力,还让我们更好地理解了理论知识的应用。
运动控制系统心得体会运动控制系统是一种通过控制运动装置的运动状态的系统,广泛应用于各个领域,如机械制造、机器人、汽车行业等。
经过这段时间的学习和实践,我对运动控制系统有了更加深入的理解和体会。
首先,运动控制系统的设计和调试是一个相当复杂的过程。
在设计过程中,我们需要考虑运动装置的运动方式、运动速度、运动精度等因素。
同时,还需要根据实际需求选择合适的传感器和执行器。
在调试过程中,我们需要对控制算法进行优化,以提高系统的性能和稳定性。
这些工作都需要经验和专业知识的支持。
因此,我认为在设计和调试运动控制系统时应该注重理论与实践相结合,不断学习和积累经验,以提高技术水平和解决问题的能力。
其次,运动控制系统的性能对于运动装置的运动效果和生产效率具有重要影响。
一个良好的运动控制系统能够使运动装置运动起来更加平稳、准确,并且能够实现复杂的运动轨迹。
这不仅能提高产品的质量和可靠性,还能提高生产效率和降低成本。
因此,在运动控制系统的设计和调试过程中,我们应该注重对控制算法的优化和对硬件设备的选择。
只有通过不断优化和改进,才能提高系统的性能,满足实际需求。
再次,运动控制系统的故障诊断和排除是一个非常关键的环节。
在实际运行中,由于各种原因,运动控制系统可能会出现故障,导致运动装置无法正常运行。
这时,我们需要通过故障诊断和排除来找到问题的原因,并采取相应的措施进行修复。
因此,在平时的工作中我们应该注重对运动控制系统的日常维护和保养,及时发现和处理问题,以降低故障的发生率和影响。
最后,运动控制系统的发展是一项持久而繁重的任务。
随着科技的不断进步和行业的发展,运动控制系统也在不断地发展和改进。
新的传感器、执行器和控制算法的出现,为运动控制系统带来了更多的可能性和挑战。
因此,我们应该保持对新技术和新方法的学习和研究,不断提高自身的技术水平和创新能力。
只有不断追求进步,才能适应社会的发展和满足人们日益增长的需求。
总之,运动控制系统是一项需要理论和实践相结合的技术工作,需要不断学习和积累经验,才能设计出性能优良、稳定可靠的系统。
第1章绪论1.什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M )系统的组成:纯滞后环节,一阶惯性环节。
2.V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D 和静差率s 。
D =??(1-??),额定速降??,D =????,s =????04.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:t 0n cd 1tU U 比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7.数字测速方法:M 法测速、T 法测速、M/T 法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10.直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。