初二下学期数学练习题集含答案解析与解析
- 格式:doc
- 大小:435.00 KB
- 文档页数:33
初二下学期数学练习题--含答案及解析初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形 B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④11.如图,在□ABCD中,已知AD=8㎝, AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()A. 2cmB. 4cmC. 6 cmD. 8cm12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?()A.1.5 B.2 C.2.5 D.313.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折ABCD第11题图EA.13﹣2B.9+2C.11+D.7+417.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是 x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m>x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.。
习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义? (1) .. rr ;( 2)、、戸;(3),5a ;( 4) .. 2a 1 . 解析:(1)由 a + 2 >0,得 a >- 2; (2) 由 3- a > 0,得 a w 3; (3) 由 5a >0,得 a >0;1(4) 由 2a + 1 > 0,得 a > -.22、计算:3、用代数式表示:(1) 面积为S 的圆的半径; (2) 面积为S 且两条邻边的比为(1)C.5)2 ; ( 2) ( 、.02)2 ; (3) ;(4) (5.5)2 ;(5) .(10)2 ; (6)( ⑺:(?2 ; (8)(2)2.解析: ⑴(、一5)2 (2)(02)2 ( 1)2 (、、0^)20.2;(4) (3) (5.5)252 (一 5)2125 ;.(10)2■■ 10210;(5)214 ;解析:(1)设半径为r (r>0),由r 2 S,得 r2 : 3的长方形的长和宽.2x, 3x (x>0),则有2x • 3x=S,得x J-S ,(2)设两条邻边长为4、利用a (、、a)2(a > 0),把下列非负数分别写成一个非负数的平方的形式:1(1)9;( 2)5;( 3)2.5;( 4)0.25;( 5) _; (6)0.2解析:(1) 9=32; (2) 5=(... 5)2; ( 3) 2.5=(云)2;1 斤2(4) 0.25=0.52; (5) § (,瑕)2; (6) 0=02.5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:r22232, r213 ,Q r 0, r 55 .6、A ABC的面积为12, AB边上的高是AB边长的4倍.求AB的长.答案:.6 .7、当x是怎样的实数时,下列各式在实数范围内有意义?(1)X2 1 ; (2) ,(X 1)2; (3) , 1; (4) 1.V X yj x 1答案:(1) x为任意实数;(2) x为任意实数;(3) x>0; (4) x>— 1 .8、小球从离地面为h (单位:m)的高处自由下落,落到地面所用的时间为t (单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2 •试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t2,,-、5 .9、(1)已知18 n是整数,求自然数n所有可能的值;(2)已知.24n是整数,求正整数n的最小值.答案:(1) 2, 9, 14, 17, 18 ; (2) 6.因为24n=22x 6X n,因此,使得莎为整数的最小的正整数n是6.⑵210、一个圆柱体的高为 10,体积为V •求它的底面半径r (用含V 的代数式表示),并 分别求当V=5n ,10n 和20 n 时,底面半径r 的大小.习题16.21、计算:(1) •, 24 ...27 ;( 2) 6 ( .. 15);(3) .18.. 20 , 75 ;( 4) , 32 43 5 •答案:(1) 18; (2) 3 10 ; ( 3) 30.30 ; (4) 24. 5 •2、计算:3、化简:(3) 誥;(4)宁;(5) y 怎;(6) 5 •(1),4 49 ;(2) (4)a 2b 4c 2答案:(1) 14 ; (2)10 '、3 ; (3) 37(4) 4、化简: (1) ; (2)23 (3)运6 ;( 3) 3质;(4) 卑;(5)辿;(6)•3、n .2x 3 5y(1) .181; 5 ;( 4) 2 也•6 3、xy答案:(1)2 ,3 ; (3)「2 ; (4)答案:(1) .3 ;5、根据下列条件求代数式b 、b 2 4ac2a的值;答案:11、已知长方体的体积V 4 3,高 h 3、2 ,求它的底面积S .(1) a=1, b=10, c=—15; (2) a=2, b= — 8, c=5 . 答案:(1)5 2.10 ;(2)4;6 26、设长方形的面积为 S,相邻两边分别为 a , b . (1) 已知 a .8 , b .12,求 S ; (2) 已知 a 2.,50 , b 3 32,求 S . 答案:(1) 4.6 ; (2) 240.7、设正方形的面积为 S,边长为a . (1) 已知 S=50,求 a ; (2) 已知 S=242,求 a . 答案:(1) 5、、2 ; (2) 112 •8、计算:.8 3、、40,5 ; (4) 27 ■- 50 \ 6 .9、已知 2 1.414 ,答案:0.707, 2.828.10、设长方形的面积为 S ,相邻两边长分别为 a , b •已知S 4;3,a、、15,求 b .(1) m 题;答案:(1) 1.2 ; ( 2)(3)15.12、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形, 的面积.答案:12.10cm2.13、用计算器计算:(1) -.,9 9 19 ; (2)、一99 99 199 ;(3)、、999 999 1999 ; (4) 9999 9999 19999 .观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9些39 99L39 19匹39 ___________ .n个9 n个9 n个9答案:(1) 10 ; (2) 100; (3) 1000; (4) 10000. 100匕0 .n个0习题16.31、下列计算是否正确?为什么?(1) .2 .3 .,5 ;(2) 2 .2 2 2 ;(3) 32 ,2 3; (4)压8J 3 2 1 2答案: (1)不正确,,2与. 3不能合并;(2)不正确,2与不能合并;(3)不正确,3、. 2 .2 2,2 ;求留下部分12 (4) 不正确,邑空3 2 2辽2 .2 2 24、计算:(1) (、、12 5、、8八3 ; (2) (2、一 3 3. 2)(2 ,3 3、2); (3) ®3 2、、5)2 ; (4)^481、、6) ,27 •4答案:(1) 6 10 .6; (2)— 6; (3) 95 20.15; (4)-35、已知亏 2.236,求5 1 5 4*45的近似值(结果保留小数点后两位)(1)2、.-.27;(2).9;(3) 2、9X3X ;(4)a 2 , 8a 3a 50a 3 •答案: (1) 7、、3 ;⑵ \ 2 ; (3) 5 .. X ; (4)17a^. 2a23、计算:(1) .18 ,32 迈;(2) ,7554 ,96 .108 ;(3) C.45•18)(、、8 .125);(4)丄(42、3) 3(.2.27) 4•答案:(1) 0 ;(2) 、、6 . 3 ; (3) 8.. 5 . 2 ; (4)— I" •2、计算: 4(2)答案:7.83.6、已知x . 3 1,y ,3 1,求下列各式的值:(1) x 2+ 2xy + y 2; (2) x 2— y 2. 答案:(1) 12 ; (2) 4.3 .7、如图,在 Rt △ ABC 中,/ C=90° CB=CA=a .求 AB 的长.A8、已知a 1 ,10,求a -的值.aa答案:.6 .9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1) 2x 2 — 6=0 , (、、3,、、6, J, 厨;(2) 2 (x + 5) 2=24, (5 2.3,5 2.3, 5 2 G, 5 2、3). 答案:(1)3 ; (2) 2.3 5 .复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (1) r~x;12、化简:3、计算:(1) G24 J) (、1 ,6) ; (2) 2.12 乜 5、、2 ; V2 \8 4 (3) (2 ,3、、6)(2、、3 ,6) ; (4) (2 .一48 3. 27)、、6 ;(5)(2-2 3、3)2 ; (6)《J ; :1;)2 •4、正方形的边长为 a cm ,它的面积与长为 96cm ,宽为12cm 的长方形的面积相等.求 a 的值.答案:24、2 .5、已知x .5 1,求代数式x 2+ 5x — 6的值.答案:3,5 5 .6、已知x 2.3 ,求代数式(7 4 3)x 2(2 .3)x .3的值.(3):2 ;3x(4)r1:(X1)2 •答案: (1) x >— 3 ;(2) x 1 22 ;(3)%3 ;(4)乂工1-(1).500 ;(2) (3) (5)2x 2y 3 ;答案: (1) 10、5 ; (2) 2 '、3X ; ( 3)42; ;(4) 迁;(5) xy 2y ;(6) ‘五3a 答案:(1);(2);(3) 6; (4)4 10(5) 35 12.6 ; (6) 55_3 2; (4)亦;(6)5a 5答案:2 3 •7、电流通过导线时会产生热量,电流 I (单位:A )、导线电阻R (单位:Q )、通电时 间t (单位:s )与产生的热量 Q (单位:J )满足Q=l 2Rt •已知导线的电阻为 5Q, 1s 时间 导线产生30J 的热量,求电流I 的值(结果保留小数点后两位)•答案:2.45A •8、已知n 是正整数, "89n 是整数,求n 的最小值. 答案:21.9、(1)把一个圆心为点 0,半径为r 的圆的面积四等分•请你尽可能多地设想各种分 割方法. (2)如图,以点0为圆心的三个同心圆把以 0A 为半径的大圆0的面积四等分•求这 三个圆的半径 OB , 0C , 0D 的长.类比上述式子,再写出几个同类型的式子. 你能看出其中的规律吗?用字母表示这一规律,并给出证明.平方即可.答案:(1)例如,相互垂直的直径将圆的面积四等分;1(2)设 0A=r ,则 0D r , 0C20Bn n 2 1n 3 n 2 1,再两边开答案:规律是:•只要注意到习题17.11、设直角三角形的两条直角边长分别为 a 和b ,斜边长为c .(1) 已知 a=12, b=5,求 c ; (2) 已知 a=3, c=4,求 b ; (3) 已知 c=10,b=9,求 a . 答案:(1) 13; (2), 7 ; (3) J9 .2、一木杆在离地面 3m 处折断,木杆顶端落在离木杆底端 4m 处.木杆折断之前有多高?答案:8m .3、如图,一个圆锥的高 AO=2.4,底面半径 OB=0.7 . AB 的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面 5m 处向地面拉一条长 7m 的钢缆•求地面钢缆固定点 A到电线杆底部B 的距离(结果保留小数点后一位)•答案:4.9m •6、在数轴上作出表示 .20的点. 答案:略.8、在厶 ABC 中,/ C=90°, AC=2.1 , BC=2.8 .求: (1) △ ABC 的面积; (2) 斜边AB ; (3) 高 CD •7、在厶 ABC 中,/ C=90°, AB=c • (1) 如果/ (2) 如果/ A=30°,求 A=45 ,求 BC , BC , AC ; AC • 答案:(1) BC -c ,2AC(2) BCc , AC2答案:(1) 2.94; (2) 3.5; (3) 1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高I的长(结果取整数)答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面. 水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在AB的长.答案:12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.S半圆 ACD g因为/ ACD=90,根据勾股定理得 AC 2 + CD 2=AD 2, S 半圆AEC + S 半圆CFD =S 半圆ACD ,S 阴影=S ^ACD + S 半圆AEC + S 半圆CFD — S 半圆ACD , 即S 阴影=S ^ACD . 14、如图,△ ACB 和厶ECD 都是等腰直角三角形, △ ACB 的顶点A 在厶ECD 的斜边DE 上.求证:AE 2+ AD 2=2AC 2.证明:证法1:如图(1),连接BD .•••△ ECD 和△ ACB 都为等腰直角三角形,••• EC=CD , AC=CB ,/ ECD= / ACB=90 •••/ ECA= / DCB . • △ ACE ◎△ DCB . • AE=DB ,/ CDB= / E=45 . 又/ EDC=45 ,13、 月形图案 u如图,分别以等腰 AGCE 和 DHCF (1)Rt △ ACD 的边AD , AC , CD 为直径画半圆.求证:所得两个 的面积之和(图中阴影部分)等于Rt △ ACD 的面积. S半圆AECAB2 符 8 gAC 2,S 半圆CFD8 g CD 2 ,gAD 2 .所以H•••/ ADB=90 .在Rt△ ADB 中,AD 2+ DB2=AB2,得AD2+ AE2=AC2+ CB2, 即AE2+ AD 2=2AC2.<1)证法2:如图(2),作AF丄EC, AG丄CD,由条件可知,AG=FC . 在Rt△ AFC中,根据勾股定理得AF2+ FC2=AC 2.• AF2+ AG2=AC2.在等腰Rt△ AFE和等腰Rt△ AGD中,由勾股定理得AF2+ FE2=AE 2, AG 2+ GD2=AD2.又AF=FE , AG=GD ,••• 2AF2=AE2, 2AG 2=AD 而2AF2+ 2AG 2=2AC2,• AE2+ AD2=2AC2.习题17.21、判断由线段a, b, c组成的三角形是不是直角三角形:(1)a=7, b=24, c=25;(2) a .41 , b=4, c=5;5 3(3) a , b=1, c —;4 4(4)a=40, b=50, c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题•这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角•不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在厶ABC 中,AB=13 , BC=10, BC 边上的中线AD=12 .求AC .答案:13.5、如图,在四边形ABCD 中,AB=3 , BC=4 , CD=12 , AD=13,/ B=90° 求四边形ABCD的面积.答案:36.一一1 一6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF —CD .求4证/ AEF=90 .答案:设AB=4k,贝U BE=CE=2k , CF=k , DF=3k .•••/ B=90°,••• AE2= (4k) 2+( 2k) 2=20k2.同理,EF2=5k2, AF2=25k2.• AE2+ EF2=AF2.根据勾股定理的逆定理,△ AEF为直角三角形.•••/ AEF=90 .7、我们知道3, 4, 5是一组勾股数,那么3k, 4k , 5k ( k是正整数)也是一组勾股数吗?一般地,如果a, b, c是一组勾股数,那么ak, bk, ck (k是正整数)也是一组勾股数吗?答案:因为(3k) 2+( 4k) 2=9k2+ 16k2=25k2= (5k) 2,所以3k, 4k,5k( k是正整数)为勾股数.如果a , b , c 为勾股数,即a 2 + b 2=c 2,那么(ak ) 2+( bk ) 2=a 2k 2 + b 2k 2= (a 2+ b 2) k 2=c 2k 2= (ck ) 2 • 因此,ak , bk , ck (k 是正整数)也是勾股数.复习题171、两人从同一地点同时出发, 一人以20 m/min 的速度向北直行, 一人以30m/min 的速 度向东直行.10min 后他们相距多远(结果取整数)?答案:361m .2、如图,过圆锥的顶点S 和底面圆的圆心 0的平面截圆锥得截面△ SAB ,其中SA=SB , 答案: 6、5 cm 23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm ,两孔中心的水平距离是77mm •计算两孔中心的垂直距离(结果保留小数点后一位)答案:109.7mm .4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽 a=3m ,高b=1.5m,长d=10m .求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位)AB 是圆锥底面圆答案:33.5m2.5、一个三角形三边的比为1: .3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k…3k ,2k,其中k>0.由于k2(、、3k)2 4k2 (2k)2, 根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数;(3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等.答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为2 3 1和2 3 1,求斜边c的长.答案:.26 .8、如图,在△ ABC 中,AB=AC=BC,高AD=h .求AB .答案:2 3h .39、如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)Z BCD是直角吗?答案:(1) 14.5, 3.5 、17 .. 26 ;(2)由BC 、20, CD . 5 , BD=5,可得BC2+ CD2=BD2•根据勾股定理的逆定理,△ BCD是直角三角形,因此/ BCD是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出, 如果m 表示大于1的整数,a=2m , b=m 2- 1, c=m 2 +1,那么a , b , c 为勾股数.你认为对吗?如果对, 你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2= (2m ) 2+( m 2- 1) 2=4m 2 + m 4- 2m 2+ 1=m 4+ 2m 2+ 1= (m 2+ 1) 2=c 2, 所以a , b , c 为勾股数.用 m=2, 3, 4 等大于 1 的整数代入 2m , m 2- 1, m 2 + 1,得 4, 3, 5; 6, 8, 10; 8, 15, 17;等等.12、如图,圆柱的底面半径为 6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点 A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm , 40cm , 30cm 的长方体木箱中, 能放进去吗?答案:能.习题18.11、如果四边形 3 ABCD 是平行四边形,AB=6,且AB 的长是口 ABCD 周长的,那么16BC 的长是多少?答案:10.14、设直角三角形的两条直角边长及斜边上的高分别为 a, b 及h .求证:a 21 h2 .答案:由直角三角形的面积公式,1 得- ab 2対厂,等式两边平方得抚窃(a2+ b 2),等式两边再同除以a 2b 2c 2,得 $h 2 a 22、如图,在一束平行光线中插入一张对边平行的纸板•如果光线与纸板右下方所成的 / 1是72° 15'那么光线与纸板左上方所成的/ 2是多少度?为什么?答案:72° 15 ',平行四边形的对角相等.3、如图,口ABCD的对角线AC , BD相交于点0,且AC + BD=36 , AB=11 .求厶0CD 的周长.答案:29.4、如图,在口ABCD中,点E, F分别在BC , AD上,且AF=CE .求证:四边形AECF 是平行四边形.答案: 提示:利用5、如图,口ABCD的对角线AC , BD相交于点0,且E, F, G, H分别是AO , B0 , CO, DO 的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD 和EBCF 都是平行四边形.求证:四边形ABCD 是平行四边形.7、如图,直线l i // |2,厶ABC 与厶DBC 的面积相等吗?为什么?你还能画出一些与△ ABC 面积相等的三角形吗?答案:相等•提示:在直线 l i 上任取一点P,A PBC 的面积与厶ABC 的面积相等(同 底等高).□ OABC 的顶点O , A , C 的坐标分别是(0, 0), (a , 0), (b , c ).求顶点9、如图,在梯形 ABCD 中,AB // DC .(1) 已知/ A= / B ,求证 AD=BC ; (2) 已知 AD=BC ,求证/ A= / B .答案: 8、如图, B 的坐标.答案:B 提示:利用(a + b ,答案:提示:过点AECD为平行四边形.10、如图,四边形ABCD是平行四边形,/ ABC=70°, BE平分/ ABC且交AD于点E, DF // BE且交BC于点F.求/ 1的大小.A E DB F C答案:35°11、如图,A' B BA , B'C'// CB , C ' /AC,/ ABC 与/ B'有什么关系?线段AB'与线段AC 呢?为什么?答案:由四边形ABCB是平行四边形,可知/ ABC= / B ', AB =BC ;再由四边形C BCA 是平行四边形,可知 C A=BC .从而AB =AC12、如图,在四边形ABCD 中,AD=12 , DO=OB=5 , AC=26 , / ADB=90°.求BC 的长和四边形ABCD的面积.答案: 的对角线互相平分,它是一个平行四边形•所以BC=AD=12,四边形ABCD的面积为120 .13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点0,用大头针把一根平放在平行四边形上的直细木条固定在点0处,并使细木条可以绕点0转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与口ABCD的边AD , BC分别交于点E, F,可以发现0E=0F , AE=CF ,DE=BF , △ A0E C0F , △ D0EB0F等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF // BC, GH // AB .图中哪两个平行四边形面积相等?为什么?答案:口AEPH 与□PGCF面积相等.利用△ ABD 与厶CDB , △ PHD与厶DFP, △ BEP 与厶PGB分别全等,从而口AEPH与口PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC, BD相交于点0,且/仁/2.它是一个矩形吗?为什么?答案:是.利用/ 1 = / 2,可知B0=C0,从而BD=AC , □ ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板•他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ ABC 中,/ C=90° AB=2AC .求/ A,/ B 的度数. 答案:/ A=60°,/ B=30°.5、如图,四边形ABCD是菱形,/ ACD=30°, BD=6 .求:(1)Z BAD,/ ABC 的度数;(2)AB , AC 的长.B答案:(1)Z BAD=60,/ ABC=120 ; (2) AB=6 , AC 6品-6、如图,AE // BF , AC平分/ BAD,且交BF于点C, BD平分/ ABC,且交AE于点D,连接CD •求证:四边形ABCD是菱形.答案:提示:由/ ABD= / DBC= / ADB,可知AB=AD,同理可得AB=BC .从而AD P BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角•要得到一个正方形,剪口与折痕应成多少度的角?答案:45°8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了. 纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ ABC 中,/ ACB=90°, CD 丄AB 于点D,/ ACD=3 / BCD , E 是斜边AB的中点./ ECD是多少度?为什么?45°.提示:/ BCD= / EAC= / ECA=22.5答案:10、如图,四边形ABCD 是菱形,点M , N分别在AB , AD上,且BM=DN , MG // AD , NF // AB ;点F, G分别在BC , CD上,MG与NF相交于点E.求证:四边形AMEN , EFCG都是菱形.答案:提示:四边形AMEN , EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8 , DB=6 , DH丄AB于点H .求DH的长.B答案:DH=4.8 .提示:由AB • DH=2AO • OD=2S A ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O, B , D三点的坐标分别是(0, 0),(b, 0), (0, d).求点C的坐标.(2) 如下图(2),四边形ABCD 是菱形,C , D 两点的坐标分别是(c , 0), (0, d ), 点A , B 在坐标轴上.求 A , B 两点的坐标.(3) 如下图(3),四边形OBCD 是正方形,O , D 两点的坐标分别是 (0, 0),(0, d ).求 B , C 两点的坐标.答案:正方形.提示: △ BFECMF DNM AEN ,证明四边形 EFMN 的四条 边相等,四个角都是直角.14、如图,将等腰三角形纸片 ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个 三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.(2)(3)答案:(1) C (b , (2) A ( — c , 0), B (0, — d );(3) B (d , 0), C (d , d ).13、如图,E , F , M , N 分别是正方形 ABCD 四条边上的点,且 判断四边形EFMN 是什么图形,并证明你的结论. AE=BF=CM=DN .试 B D n Cd );DB答案:3种.可以分别以 AD , AB (AC ), BD ( CD )为四边形的一条对角线,得到3B G C答案:提示:由△ ADE BAF ,可得 AE=BF ,从而 AF — BF=EF .16、如图,在△ ABC 中,BD ,CE 分别是边 AC , AB 上的中线,BD 与CE 相交于点 O. B0 与0D 的长度有什么关系? BC 边上的中线是否一定过点 0?为什么?答案:B0=20D , BC 边上的中线一定过点 0.利用四边形EMND 是平行四边形,可知B0=20D ;设BC 边上的中线和 BD 相交于点0',可知B0 =20'D ,从而0与0重合.17、如图是一块正方形草地, 要在上面修建两条交叉的小路, 使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.种平行四边形,它们的对角线长分别为 h ,、.、4n 2 h 2 (或.3n 2 m 2) ; m , m ; n ,n 2 4h 2 (或.3h 2 m 2).15、如图,四边形ABCD 是正方形. 且交AG 于点F .求证:AF — BF=EF . G 是BC 上的任意一点, DE 丄 AG 于点 E , BF // DE ,答案:分法有无数种•只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题. (1)若平行四边形中两个内角的度数比为 1 : 2,则其中较小的内角是(A • 90 °B . 60 °C • 120 °D • 45 °(2)若菱形的周长为 8,高为1,则菱形两邻角的度数比为().A . 3 : 1B . 4 : 1C . 5 : 1D . 6 : 1(3) 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,则/ AEB 为(答案:(1) B ; (2) C ; (3) B .2、如图,将口ABCD 的对角线BD 向两个方向延长,分别至点E 和点F,且使BE=DF •求 证:四边形AECF 是平行四边形.)• A . 10答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个少50。
人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。
八下数学试题分析及答案一、选择题1. 已知函数y=2x+3的图象经过点(1,5),则该函数的斜率k的值为()A. 2B. -2C. 3D. 5答案:A解析:根据一次函数的性质,斜率k等于函数表达式中x的系数。
因此,对于函数y=2x+3,斜率k=2。
2. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.33333...D. 3答案:B解析:无理数是指不能表示为两个整数比的实数,即无限不循环小数。
在选项中,只有√2是无理数。
二、填空题3. 如果一个直角三角形的两条直角边长分别为3和4,那么斜边的长度为()。
答案:5解析:根据勾股定理,直角三角形的斜边长度等于两直角边长度的平方和的平方根,即c=√(a²+b²)。
将3和4代入公式,得到c=√(3²+4²)=5。
4. 一个数的相反数是-5,那么这个数是()。
答案:5解析:一个数的相反数是与它相加等于零的数。
因此,如果一个数的相反数是-5,那么这个数就是5。
三、解答题5. 已知一个二次函数的顶点坐标为(2,-3),且经过点(0,7),求该二次函数的解析式。
答案:y=-2x²+8x-1解析:根据二次函数的顶点式y=a(x-h)²+k,其中(h,k)为顶点坐标。
将顶点坐标(2,-3)代入,得到y=a(x-2)²-3。
再将点(0,7)代入,解得a=-2。
因此,二次函数的解析式为y=-2x²+8x-1。
结束语:以上是对八下数学试题的分析及答案,希望对同学们的复习有所帮助。
在实际解题过程中,理解题目要求和运用相关知识点是关键。
通过不断的练习和总结,相信大家能够提高解题能力。
八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,满分30分)1.下列二次根式屮,是最简二次根式的是()A.^25B.荷C.鲁D. 712【答案】B【解析】试题解析:A、厉=5,不合题意;B、”为最简二次根式,符合题意;C^ 丁 =',不合题意;•V3 3D、厲=2屈不合题意,故选B2.下列数据是2015年某日发布的北京五个环境监测点PM2.5空气质量指数实时数据:则这组数据的中位数是()A.94B. 96C. 113D. 113.5【答案】C【解析】试题解析:先对这组数据按从小到大的顺序重新排序:94、96 '113 '114 '131.位于最中间的数是113,所以这组数的屮位数是113.故选C.3.在一个直角三角形中,已知两直角边分别为6cm, 8cm,则下列结论不正确的是()A.斜边长为10cmB.周长为25cmC.面积为24cn?D.斜边上的中线长为5cm【答案】B【解析】试题解析:・・•在一个直角三角形屮,已知两直角边分别为6cm, 8cm,1 °•I直角三角形的而积=-x6x8=24crrT,故选项C不符合题意;2•I斜边=+ 8? = 10cm,故选项A不符合题意;・・・斜边上的屮线长为5cm,故选项D不符合题意;°・•三边长分别为6cm, 8cm, 10cm,・;三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的屮线等于斜边的一半.4•如图,口ABCD中,对角线AC, BD相交于点O, OA=3,若要使平行四边形ABCD为矩形,则OB的长【答案】B【解析】试题解析:假如平行四边形ABCD是矩形,OA=OC, OB=OD, AC=BD,・•・ OA=OB=3.故选B・点睛:对角线相等的平行四边形是矩形.5.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差3:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D. T 【答案】A【解析】试题解析:・・・S甲2=3.5, S乙2=3.5, S丙2=12.5, S丁?=15,・・・S甲2=S乙'VS丙'VS 丁S•・•亦卩=175, {乙=173,「•X甲=*乙,・・・从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.点睛:根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.6.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.对角线互相平分的四边形是平行四边形D.如果两个角都是90。
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.使二次根式2a -有意义的a 的取值范围是( ) A .a ≥﹣2 B .a ≥2 C .a ≤2 D .a ≤﹣2 2.若代数式12x x --有意义,则x 的取值范围是( ) A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且 3.下列各式中,一定是二次根式的是( ) A .4- B .32a C .22x + D .1x -4.已知实数x ,y 满足|4|80x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D . 以上答案均不对 5.如果a 为任意实数, 下列各式中一定有意义的是( ) A .a B .2a - C .21a + D .21a - 6.如果二次根式x 23- 有意义,那么x 的取值范围是 .7.若使式子xx21-有意义,则x 的取值范围是 . 8.大于6的最小整数是 .9x在实数范围内有意义,则x 的取值范围是 .10.当x 是怎样的实数时,下列式子在实数范围内有意义? (1)12x -;(2)23x x --11.若3a b --与1a b ++互为相反数,求()5a b +的值是多少?12.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.第十六章 二次根式16.1 二次根式第2课时 二次根式的性质一、选择题1.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①②B .③④C .①③D .②④2.()232-的值等于( )A.32-B.23-C.1D. -13.已知二次根式2x 的值为3,那么x 的值是( )A.3B.9C.-3D.3或-34.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 二、填空题5.直接写出下列各式的结果:(1)49=_______; (2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 6.已知2<x<5,化简:()()2225x x -+-= .7.如果()22x --是二次根式,那么点(),1A x 的坐标为 .8.已知实数a 在数轴上的位置如图所示,则化简21a a -+的结果是 .9.李东和赵梅在解答题目:“先化简,再求值:212a a a +-+,其中a=10”时得出不同的答案.李东的解答过程如下:()21211a a a a a -+=+-=.赵梅的解答过程如下:()212121210119a a a a a a -+=+-=-=⨯-=(1) ___的解答是错误的;(2) 错误的原因是 .三、解答题 10.利用()20a aa =≥,把下列非负数分别写成一个非负数的平方的形式;(1)16;(2)7;(3)1.5;(4)3411.计算下列各式:(1)235⎛⎫⎪ ⎪⎝⎭; (2)()243; (3)()26-;(4)218⎛⎫-- ⎪⎝⎭;(5)()225-; (6)()22216913x x x x x -++-+≤≤16.2 二次根式的乘除第1课时 二次根式的乘法一、选择题1.下列计算正确的是()A.253565⨯=B.253555⨯=C.2535625150⨯=⨯=D.25356530⨯=⨯= 2.(易错题)等式2422a a a -=+-成立的条件是( )A.a≤-2或a≥2B. a≥2C. a≥-2D. -2≤a≤23.(易错題)对于任意实数a ,下列各式中一定成立的是( ) A.2111a a a -=-+ B.()266a a +=+C.()()164a a --=--D.42255a a =4.下列计算正确的是( ). A .532=⋅ B .632=⋅ C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9二、填空题7.化简:①328a = ; (2)2325x y = (x≥0,y≥0)8.—个长方形的长和宽分别是15cm 和1253cm ,则这个长方形的面积是 .三、解答题9.计算:(1);26⨯ (2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯-(8);51322-(9).7272y x10.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.11.化简: (1300; (2()()14112-⨯-; (3545200a b c(4221312- (5)4216320x x x +>12.比较3526.参考答案1.D 解析因为(0,0)a b c b ac bd b d ⨯=≥≥,所以2535235530⨯=⨯⨯⨯=.故D 正确.2.B 解析由积的算术平方根成立的条件知20,20,a a +≥⎧⎨-≥⎩故a≥2,故选B.3.D 解析A 中不能保证a-1≥O,a +1≥O,所以A 不正确;B 中()266a a +=+,故B 不正确;C 中()()164a a -⋅-=,故C 不正确;因为4242 =5a 255a a =⋅,所以D 正确.4.B . 5.B . 6.B .7.①27a a ②5xy y解析①32228474727a a a a a a a =⨯=⨯=.②∵x >0,2223222225555x y x y y x y y xy y ∴=⋅=⋅=. 8.25cm 2解析21251562525()3cm ⨯==. 9.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 10..cm 6211.解:(1)22300310310103=⨯=⨯=; (2)()()221411214112274-⨯-=⨯=⨯⨯2274742282=⨯⨯=⨯⨯=;(3)()()()222545222220010a b c a a a b c c =⋅⋅⋅⋅⋅⋅()()()2222222222210102a b c aca b cac =⋅⋅⋅⋅⋅=;()()22131213121312251255;-=+-=⨯(5)()4222221632162162x x x x x x +=+=⋅⋅+ 242(0).x x x =+>12.分析:可将根号外的因式移到根号里面,然后比较被开方数的大小. 解:22353545,262624=⨯==⨯=,又∵45>24,4524∴>,即3526>.16.2 二次根式的乘除第2课时 二次根式的除法一、选择题1.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x xx3294= 2.下列各式中,最简二次根式是( ). A .yx -1B .ba C .42+x D .b a 253.(易错题)下列各式错误的是( ) A.164255=B.2733648=C.222493=D.165755-=-4.11x xx x =--成立的条件是( )A. x≥0B. x<1C. 0≤x<1D.x≥0且x ≠15.下列二次根式是最简二次根式的是( )A.8B.2;C.12D.0.26.化简20的结果是( )A. 52B.25C.210D.457.计算()8223÷-⨯的结果是( ) A.26-B.33-C.32-D.62-二、填空题8.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 9.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 10.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 11.如果2,5a b ==,则1000用含a,b 的代数式表示为__________ .三、解答题 12.计算:(1)1115 3.524⨯÷;(2)241512532⎛⎫⨯⨯- ⎪ ⎪⎝⎭. 13.已知a,b 满足1414303a b b a -++--=,求12b a a b ⎛⎫÷ ⎪ ⎪-⎝⎭的值. 14.观察下列各式及其验证过程: 322233+验证:()()323222222212322223332121-+-+====+--. 333388=+.验证:()()323223333313333338883131-+-+====+--.(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n(n 为自然数,且n ≥2)表示的等式,并给出证明.15.已知9966x xx x --=--,且x 为偶数,求()225411x x x x -++-的值.16.在进行二次根式化简时,我们有时会碰上如522,,3331+这样的式子,其实我们还可以将其进一步化简:553533333⨯==⨯.(一)22363333⨯==⨯ (二)()()()()()2223123123131313131⨯--===-++--(三)以上这种化简的方法叫做分母有理化。
初二数学下册练习题及解析第一节:填空题1. 小鹏将一根76cm长的绳子剪成两段,其中一段是42cm长,另一段是____cm长。
解析:首先将已知数据填入题目空缺处:76 - 42 = ___,计算可得34。
因此,另一段绳子的长度为34cm。
2. 当x = 5时,下列表达式的值是____。
2x - 3解析:根据已知数据,我们将x代入表达式中进行计算:2 * 5 - 3 = 10 - 3 = ____,计算可得7。
3. 12个苹果平分给4个人,每人分得的苹果数是____。
解析:将苹果的数量12除以人数4,即可得到每人分得的苹果数:12 ÷ 4 = ____,计算可得3个苹果。
4. 在一个长方形的图形中,长为15cm,宽是b cm,如果周长为54cm,那么b = ____。
解析:长方形的周长公式为:2 * (长 + 宽),已知周长为54cm,长为15cm,令宽为b cm,可以得到:2 * (15 + b) = 54。
将该方程式解掉,得到 b = ____,计算可得12。
第二节:选择题1. 一根铁丝长30厘米,现要将其剪成若干段,并且其中一段要剪成6厘米长,其余各段的长度相等。
那么这根铁丝最多能剪成____段。
A. 4B. 5C. 6D. 7解析:已知其中一段需要剪成6厘米长,剩余的长度为30 - 6 = 24厘米。
由于每段长度相等,将剩余长度除以每段的长度就可以得到段数:24 ÷ 4 = ____。
因此,这根铁丝最多能剪成6段,选项C为正确答案。
2. 小雪购买了一本书,原价为75元。
商家为了促销将价格打折,小雪折扣为8折,那么小雪购买这本书需要支付____元。
A. 55B. 60C. 65D. 70解析:因为小雪的折扣是8折,即原价的80%,所以打折后的价格为75 * 80% = ____元。
计算可得60元,选项B为正确答案。
3. 下列哪一个数能被4整除?A. 17B. 24C. 33D. 42解析:如果一个数能够被4整除,那么这个数一定能被2整除,并且个位数是0、4、8中的一个。
初二下学期数学练习题一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣2.以下关于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形C.有两边相等的平行四边形是菱形B.对角线互相垂直的四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x 的取值范围()A. x> 2 B. x≥2 C. x> 3 D.x≥ 2 且x≠ 34.如图,将△ABC绕着点C 顺时针旋转50°后获得△ A′B′C′,若∠ A=45°,∠B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2 ( k< 0)上,则y1,y2大小关系是()A. y1> y2B. y1=y2 6.如图,在四边形ABCD中,对角线C. y1< y2D.不能够比较AC, BD订交于点E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形 ABCD的面积为()A.6B.12 C. 20 D.24 7.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1 B. m≥1 C. m≤ 1 D.m> 1 8.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1 B. 12015 2015 C. 5 D.﹣ 59.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.按次连接一个四边形的各边中点,获得了一个矩形,则以下四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④A D11.如图,在□ABCD中,已知 AD= 8 ㎝, AB= 6 ㎝,DE 均分∠ ADC交 BC边于点 E,则 BE等于( B )CEA. 2cmB. 4cmC. 6 cmD. 8cm 第11题图12.一果农贩卖的西红柿,其重量与价格成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15 公斤,付西红柿的钱26 元,若再加买 0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少?() A.1.5 B. 2 C. 2.5 D.313.如图,在 ?ABCD中,对角线AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连接 AE、 CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形14.已知 xy > 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价500 元,销售时标价为900 元,要保持利润不低于26%,则最少可打()A.六折B.七折C.八折D.九折16.已知2+ 的整数部分是a,小数部分是b,则a2+b2=()A. 13﹣ 2 B. 9+2 C. 11+ D.7+417.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C 30/D 217.如图,直线y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则关于x 的不等式﹣ x+m>x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 119.如图,四边形 ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12 D.2420.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△ AEF是等边三角形,连接AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③AC垂直均分 EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A. 5 B. 4 C. 3 D.2二、填空题(本大题共 4 小题,满分12 分)21.已知直线 y=2x+( 3﹣a)与 x 轴的交点在 A( 2, 0)、 B( 3,0)之间(包括A、B 两点),则 a 的取值范围是.22.以下列图,正方形ABCD的面积为12,△ ABE是等边三角形,点 E 在正方形 ABCD内,在对角线 AC上有一点 P,使 PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转 90°,则点 A 的对应点的坐标为.24.若关于 x 的不等式组有 4 个整数解,则 a 的取值范围是.三、解答题(本大题共 5 个小题,共48 分)25.( 1)计算(+1)(﹣1)+ + ﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的分析式为y=﹣ x+2, l 1与 x 轴交于点B,直线 l 2经过点 D( 0, 5),与直线l 1交于点C(﹣ 1, m),且与x 轴交于点 A(1)求点 C 的坐标及直线 l 2的分析式;(2)求△ ABC的面积.27.如图,在△ABC中, D是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交CE的延长线于点 F,且 AF=BD,连接 BF.( 1)证明: BD=CD;( 2)当△ ABC满足什么条件时,四边形AFBD是矩形?并说明原由.28.如图,点 P 是正方形 ABCD内一点,点 P 到点 A、 B 和 D的距离分别为1, 2 ,,△ ADP沿点A 旋转至△ ABP′,连接 PP′,并延长 AP与 BC订交于点 Q.( 1)求证:△ APP′是等腰直角三角形;( 2)求∠ BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80 元,售价 120 元;乙种每双进价 60 元,售价 90 元,计划购进两种运动鞋共 100 双,其中甲种运动鞋很多于65 双.( 1)若购进这 100 双运动鞋的花销不得高出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在6月 19 日“父亲节”当天对甲种运动鞋以每双优惠a( 0< a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w 与 a 的函数关系式,若甲种运动鞋每双优惠 11 元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016 学年山东省泰安市新泰市八年级(下)期末数学试卷参照答案与试题分析一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】依照无理数的判断条件判断即可.【解答】解:=2 ,是有理数,﹣= ﹣ 2 是有理数,∴只有π 是无理数,应选 C.【议论】此题是无理数题,熟记无理数的判断条件是解此题的重点.2.以下关于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】依照菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解: A、四个角相等的菱形是正方形,正确;B、对角线互相均分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线均分且垂直的四边形是菱形,错误;应选 A【议论】此题观察了对菱形、正方形性质与判断的综合运用,特别四边形之间的互相关系是观察重点.3.使代数式有意义的x 的取值范围()A. x> 2B. x≥2C. x> 3D.x≥ 2 且 x≠ 3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:依照题意,得,解得, x≥2 且 x≠3.应选 D.【议论】此题观察了二次根式有意义的条件、分式有意义的条件.看法:式子(a≥ 0)叫二次根式.性质:二次根式中的被开方数必定是非负数,否则二次根式没心义.4.如图,将△ ABC绕着点 C 顺时针旋转50°后获得△ A′B′C′,若∠ A=45°,∠B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】依照旋转的性质可得∠ B=∠B′,尔后利用三角形内角和定理列式求出∠ ACB,再依照对应边AC、A′C的夹角为旋转角求出∠ ACA′,尔后依照∠ BCA′=∠ ACB+∠ACA′计算即可得解.【解答】解:∵△ ABC绕着点 C 顺时针旋转 50°后获得△ A′B′C′,∴∠ B=∠B′=110°,∠ ACA′=50°,在△ ABC中,∠ ACB=180°﹣∠A﹣∠ B=180°﹣ 45°﹣ 110°=25°,∴∠ BCA′=∠ ACB+∠ACA′=50° +25°=75°.应选 B.【议论】此题观察了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的重点.5.已知点(﹣3,y1),( 1,y2)都在直线y=kx+2 ( k< 0)上,则 y1,y2大小关系是()A. y > y2 B. y =y2C. y < y2D.不能够比较1 1 1【考点】一次函数图象上点的坐标特点.【分析】直线系数k< 0,可知 y 随 x 的增大而减小,﹣3< 1,则 y1> y2.【解答】解:∵直线y=kx+2 中 k< 0,∴函数 y 随 x 的增大而减小,∵﹣ 3< 1,∴y1> y2.应选 A.【议论】此题观察的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当 k> 0 时, y 随 x 的增大而增大;当k< 0 时, y 随 x 的增大而减小.6.如图,在四边形ABCD中,对角线AC, BD订交于点E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形 ABCD的面积为()A. 6 B. 12 C. 20 D.24【考点】平行四边形的判断与性质;全等三角形的判断与性质;勾股定理.【分析】依照勾股定理,可得 EC的长,依照平行四边形的判断,可得四边形 ABCD的形状,依照平行四边形的面积公式,可得答案.【解答】解:在 Rt△ BCE中,由勾股定理,得CE===5.∵BE=DE=3, AE=CE=5,∴四边形 ABCD是平行四边形.四边形 ABCD的面积为 BCBD=4×( 3+3) =24,应选: D.【议论】此题观察了平行四边形的判断与性质,利用了勾股定理得出的四边形是平行四边形,最后利用了平行四边形的面积公式.CE的长,又利用对角线互相均分7.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1 B. m≥1 C. m≤ 1 D.m> 1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】依照不等式的性质求出不等式的解集,依照不等式组的解集获得2≥ m+1,求出即可.【解答】解:,由①得: x> 2,由②得: x> m+1,∵不等式组的解集是x > 2,∴2≥ m+1,∴m≤ 1,应选 C.【议论】此题主要观察对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能依照不等式的解集和已知得出2≥ m+1是解此题的重点.8.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1 B. 1 C. 52015 D.﹣ 52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】第一依照非负数的性质,几个非负数的和是0,则每个非负数等于尔后代入求解.【解答】解:依照题意得:,0 列方程组求得 a 和b 的值,解得:,20162016则( b﹣ a)=(﹣ 3+2)=1.【议论】此题观察了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得 a 和 b 的值是重点.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】依照中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.应选 B.【议论】此题观察了中心对称图形的知识,中心对称图形是要搜寻对称中心,旋转180度后与原图重合.10.按次连接一个四边形的各边中点,获得了一个矩形,则以下四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,依照此可知按次连接对角线垂直的四边形是矩形.【解答】解: AC⊥BD, E,F, G, H 是 AB, BC,CD, DA的中点,∵EH∥ BD, FG∥BD,∴ EH∥ FG,同理; EF∥ HG,∴四边形 EFGH是平行四边形.∵AC⊥ BD,∴EH⊥ EF,∴四边形 EFGH是矩形.所以按次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均吻合题意.应选: D.【议论】此题观察矩形的判判定理和三角形的中位线的定理,进而可求解.11.已知 a, b, c 为△ ABC三边,且满足(a2﹣ b2)( a2+b2﹣ c2) =0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】第一依照题意可得(a2﹣ b2)( a2+b2﹣ c2)=0,进而获得a2+b2=c2,或 a=b,依照勾股定理逆定理可得△ ABC的形状为等腰三角形或直角三角形.【解答】解:( a2﹣b2)( a2+b2﹣c2)=0,∴a2+b2﹣ c2,或 a﹣ b=0,解得: a2+b2=c2,或 a=b,∴△ ABC的形状为等腰三角形或直角三角形.应选 D.【议论】此题主要观察了勾股定理逆定理以及非负数的性质,重点是掌握勾股定理的逆定理:若是三角形的三边长a, b,c 满足 a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价格成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为 15 公斤,付西红柿的钱 26 元,若他再加买 0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少公斤?()A. 1.5B. 2 C. 2.5 D.3【考点】一次函数的应用.15.5 , 27)利用待定系数【分析】设价格 y 与重量 x 之间的函数关系式为y=kx+b ,由( 15, 26)、(法即可求出该一次函数关系式,令y=0 求出 x 值,即可得出空蓝的重量.【解答】解:设价格y 与重量 x 之间的函数关系式为y=kx+b ,将( 15,26)、( 15.5 , 27)代入 y=kx+b 中,得:,解得:,∴ y 与 x 之间的函数关系式为y=2x ﹣4.令 y=0,则 2x﹣ 4=0,解得:x=2.应选B.【议论】此题观察了待定系数法求函数分析式,解题的重点是求出价格y 与重量 x 之间的函数关系式.本题属于基础题,难度不大,依照给定条件利用待定系数法求出函数关系式是重点.13.如图,在 ?ABCD中,对角线AC与 BD订交于点O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连接 AE、 CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判断;平行四边形的性质.【分析】第一利用平行四边形的性质得出AO=CO,∠ AFO=∠ CEO,进而得出△ AFO≌△ CEO,再利用平行四边形和菱形的判断得出即可.【解答】解:四边形AECF是菱形,原由:∵在 ?ABCD中,对角线AC与 BD订交于点O,∴AO=CO,∠ AFO=∠CEO,∴在△ AFO和△ CEO中,∴△ AFO≌△ CEO(AAS),∴FO=EO,∴四边形 AECF平行四边形,∵EF⊥ AC,∴平行四边形AECF是菱形.应选: C.【议论】此题主要观察了菱形的判断以及平行四边形的判断与性质,依照已知得出EO=FO是解题重点.14.已知 xy > 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y< 0,结合已知条件得y< 0,化简即可得出最简形式.【解答】解:依照题意,xy> 0,得 x 和 y 同号,又 x中,≥ 0,得 y< 0,故 x< 0,y< 0,所以原式====﹣.故答案选 D.【议论】主要观察了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强走开家的行程之间的函数关系,以下说法中错误的选项是()小强从家出发先步行到车站,y(公里)和所用时间x(分)A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了 2 公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出吻合题意跌答案.【解答】解: A、小强乘公共汽车用了60﹣ 30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣ 20=10(分钟),正确;C、公共汽车的平均速度是:15÷ 0.5=30 (公里 / 小时),正确;D、小强从家到公共汽车站步行了 2 公里,正确.应选: A.【议论】此题主要观察了函数图象,正确利用图象得出正确信息是解题重点.16.某商品原价500 元,销售时标价为900 元,要保持利润不低于26%,则最少可打()A.六折B.七折C.八折D.九折【考点】由实责问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得 x≥7,故最少打七折,应选B.【议论】要抓住重点词语,弄清不等关系,把文字语言的不等关系转变成用数学符号表示的不等式.17.如图,直线y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则关于x 的不等式﹣ x+m>x+3> 0 的取值范围为()A. x>﹣ 2 B. x<﹣ 2 C.﹣ 3< x<﹣ 2 D.﹣ 3< x<﹣ 1【考点】一次函数与一元一次不等式.【分析】解不等式 x+3> 0,可得出 x>﹣ 3,再依照两函数图象的上下地址关系结合交点的横坐标即可得出不等式﹣ x+m>x+3 的解集,结合二者即可得出结论.【解答】解:∵ x+3> 0∴x>﹣ 3;观察函数图象,发现:当 x<﹣ 2 时,直线 y=﹣ x+m的图象在 y=x+3 的图象的上方,∴不等式﹣ x+m> x+3 的解为 x<﹣ 2.综上可知:不等式﹣ x+m>x+3> 0 的解集为﹣ 3< x<﹣2.应选 C.【议论】此题观察了一次函数与一元一次不等式,解题的重点是依照函数图象的上下地址关系解不等式﹣x+m> x+3.此题属于基础题,难度不大,解集该题型题目时,依照函数图象的上下地址重点解不等式是重点.18.已知 2+ 的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2 B. 9+2 C. 11+ D.7+4【考点】估计无理数的大小.【分析】先估计出的大小,进而获得a、 b 的值,最后代入计算即可.【解答】解:∵ 1<3< 4,∴ 1<< 2.∴ 1+2< 2+ < 2+2,即 3< 2+ < 4.∴ a=3, b= ﹣ 1.∴ a2+b2=9+3+1﹣ 2 =13﹣ 2 .应选: A.【议论】此题主要观察的是估计无理数的大小,依照题意求得a、 b 的值是解题的重点.19.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D.24【考点】菱形的性质.【分析】设对角线订交于点O,依照菱形的对角线互相垂直均分求出AO、BO,再利用勾股定理列式求出AB,尔后依照菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线订交于点O,∵AC=8,DB=6,∴AO= AC= × 8=4,BO= BD=× 6=3,由勾股定理的,AB===5,∵DH⊥ AB,∴S 菱形ABCD=ABDH= ACBD,即 5DH= × 8× 6,解得 DH=.应选 A.【议论】此题观察了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直均分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点 E、F 分别在 BC、CD上,△ AEF是等边三角形,连接AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③AC垂直均分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5B.4C. 3D.2【考点】正方形的性质;全等三角形的判断与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ ADF,进而得出∠ BAE=∠ DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出 EC=FC,就可以得出 AC垂直均分 EF,③正确;设 EC=x,由勾股定理和三角函数就可以表示出 BE 与 EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ B=∠ BCD=∠D=∠BAD=90°.∵△ AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.∴Rt △ ABE≌ Rt △ ADF( HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠ DAF+∠DAF=30°,即∠ DAF=15°(故②正确),∵BC=CD,∴BC﹣ BE=CD﹣ DF,即 CE=CF,∵AE=AF,∴ AC垂直均分EF..设 EC=x,由勾股定理,得 EF= x, CG= x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴ AC= ,∴ AB= ,∴ BE=AB﹣x= ,∴ BE+DF= x﹣ x≠x,(故④错误),∵ S△AEC=CEAB, S△ABC=BCAB,CE< BC,∴ S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,应选: C.等边三【议论】此题观察了正方形的性质的运用,全等三角形的判断及性质的运用,勾股定理的运用,角形的性质的运用,三角形的面积公式的运用,解答此题时运用勾股定理的性质解题时重点.二、填空题(本大题共 4 小题,满分 12 分)21.已知直线 y=2x+( 3﹣a)与 x 轴的交点在A( 2, 0)、 B( 3,0)之间(包括A、B 两点),则 a 的取值范围是7≤ a≤ 9 .【考点】一次函数图象上点的坐标特点.【分析】依照题意获得x 的取值范围是2≤ x≤3,则经过解关于x 的方程2x+( 3﹣ a) =0 求得x 的值,由 x 的取值范围来求 a 的取值范围.【解答】解:∵直线y=2x+( 3﹣ a)与x 轴的交点在A(2, 0)、 B( 3, 0)之间(包括A、B 两点),∴2≤ x≤3,令 y=0,则 2x+( 3﹣ a) =0,解得 x=,则 2≤≤3,解得 7≤a≤ 9.故答案是: 7≤ a≤9.【议论】此题观察了一次函数图象上点的坐标特点.依照一次函数分析式与一元一次方程的关系解得x 的值是解题的打破口.22.以下列图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形 ABCD内,在对角线AC 上有一点 P,使 PD+PE的和最小,则这个最小值为2.【考点】轴对称 - 最短路线问题;正方形的性质.BE 【分析】由于点 B 与 D 关于 AC对称,所以连接BD,与 AC的交点即为 F 点.此时 PD+PE=BE最小,而是等边△ ABE的边, BE=AB,由正方形ABCD的面积为12,可求出AB的长,进而得出结果.【解答】解:连接BD,与 AC交于点 F.∵点 B 与 D 关于 AC对称,∴ PD=PB,∴ PD+PE=PB+PE=BE最小.∵正方形 ABCD的面积为12,∴ AB=2.又∵△ ABE是等边三角形,∴BE=AB=2 .故所求最小值为 2 .故答案为: 2 .【议论】此题主要观察轴对称﹣﹣最短路线问题,要灵便运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为(5,﹣ 1).【考点】坐标与图形变化- 旋转.【分析】先利用 B, C两点的坐标画出直角坐标系获得 A 点坐标,再画出△ABC绕点 C 顺时针旋转90°后点 A 的对应点的A′,尔后写出点A′的坐标即可.【解答】解:如图, A 点坐标为( 0,2),将△ ABC绕点 C 顺时针旋转90°,则点 A 的对应点的A′的坐标为(5,﹣ 1).故答案为:( 5,﹣ 1).【议论】此题观察了坐标与图形变化:图形或点旋转此后要结合旋转的角度和图形的特别性质来求出旋转后的点的坐标.常有的是旋转特别角度如:30°, 45°, 60°, 90°,180°.24.若关于x 的不等式组有4个整数解,则 a 的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】第一确定不等式组的解集,先利用含a的式子表示,依照整数解的个数就可以确定有哪些整数解,依照解的情况能够获得关于 a 的不等式,进而求出 a 的范围.【解答】解:,由①得, x> 8,由②得, x< 2﹣ 4a,∵此不等式组有解集,∴解集为 8< x< 2﹣ 4a,又∵此不等式组有 4 个整数解,∴此整数解为9、10、 11、12,∵ x< 2﹣4a, x 的最大整数值为12,12 2 4a 13∴﹣≤ a<﹣.a 的不等式组,临界【议论】此题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于数的弃取是易错的地方,要借助数轴做出正确的弃取.三、解答题(本大题共 5 个小题,共48 分)25.( 1)计算(+1)(﹣1)++﹣3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混杂运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】( 1)利用平方差公式、二次根式的性质化简计算即可;( 2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:( 1)原式 =()2﹣ 12+ + ×3 ﹣3×=3﹣ 1+ +﹣2=2+ ;(2),解①得, x< 2,解②得, x≥﹣ 1,则不等式组的解集为:﹣1≤ x< 2.【议论】此题观察的是二次根式的混杂运算、一元一次不等式组的解法,掌握二次根式的和和运算法规、一元一次不等式组的解法是解题的重点.26.如图,直线l1的分析式为y=﹣ x+2, l 1与 x 轴交于点B,直线 l 2经过点 D( 0, 5),与直线l 1交于点 C(﹣ 1, m),且与 x 轴交于点 A(1)求点 C 的坐标及直线 l 2的分析式;(2)求△ ABC的面积.【考点】两条直线订交或平行问题.【分析】( 1)第一利用待定系数法求出 C 点坐标,尔后再依照D、 C 两点坐标求出直线l 2的分析式;( 2)第一依照两个函数分析式计算出A、B 两点坐标,尔后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:( 1)∵直线 l 1的分析式为y=﹣ x+2 经过点 C(﹣ 1, m),∴m=1+2=3,∴C(﹣ 1, 3),设直线 l 2的分析式为y=kx+b ,∵经过点 D( 0, 5), C(﹣ 1, 3),∴,解得,∴直线 l 2的分析式为y=2x+5 ;(2)当 y=0 时, 2x+5=0,解得 x=﹣,则 A(﹣,0),当 y=0 时,﹣ x+2=0解得 x=2,则 B( 2,0),△ ABC的面积:×(2+)× 3=.【议论】此题主要观察了待定系数法求一次函数分析式,重点是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中, D是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交CE的延长线于点 F,且 AF=BD,连接 BF.( 1)证明: BD=CD;( 2)当△ ABC满足什么条件时,四边形 AFBD是矩形?并说明原由.【考点】全等三角形的判断与性质;矩形的判断.【分析】( 1)由 AF 与 BC平行,利用两直线平行内错角相等获得一对角相等,再一对对顶角相等,且由 E 为 AD的中点,获得 AE=DE,利用 AAS获得三角形 AFE与三角形 DCE全等,利用全等三角形的对应边相等即可得证;( 2)当△ ABC满足: AB=AC时,四边形 AFBD是矩形,原由于:由 AF 与 BD平行且相等,获得四边形 AFBD 为平行四边形,再由AB=AC, BD=CD,利用三线合一获得AD垂直于 BC,即∠ ADB为直角,即可得证.【解答】解:( 1)∵ AF∥BC,∴∠ AFE=∠ DCE,∵E 为 AD的中点,∴ AE=DE,在△ AFE和△ DCE中,,∴△ AFE≌△ DCE(AAS),∴AF=CD,∵ AF=BD,∴CD=BD;(2)当△ ABC满足: AB=AC时,四边形 AFBD是矩形,原由以下:∵ AF∥BD, AF=BD,∴四边形 AFBD是平行四边形,∵ AB=AC,BD=CD,∴∠ ADB=90°,∴四边形 AFBD是矩形.【议论】此题观察了全等三角形的判断与性质,以及矩形的判断,熟练掌握全等三角形的判断与性质是解此题的重点.28.如图,点P 是正方形 ABCD内一点,点P 到点 A、 B 和 D的距离分别为1, 2,,△ ADP沿点A 旋转至△ ABP′,连接PP′,并延长AP与 BC订交于点Q.( 1)求证:△ APP′是等腰直角三角形;( 2)求∠ BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】( 1)依照正方形的性质得AB=AD,∠ BAD=90°,再利用旋转的性质得AP=AP′,∠ PAP′=∠DAB=90°,于是可判断△ APP′是等腰直角三角形;( 2)依照等腰直角三角形的性质得PP′=PA=,∠ APP′=45°,再利用旋转的性质得PD=P′B=,接着依照勾股定理的逆定理可证明△PP′B为直角三角形,∠ P′PB=90°,尔后利用平角定义计算∠ BPQ的度数.【解答】( 1)证明:∵四边形ABCD为正方形,∴AB=AD,∠ BAD=90°,∵△ ADP沿点 A 旋转至△ ABP′,∴AP=AP′,∠ PAP′=∠DAB=90°,∴△ APP′是等腰直角三角形;( 2)解:∵△ APP′是等腰直角三角形,∴P P′= PA= ,∠ APP′=45°,∵△ ADP沿点 A 旋转至△ ABP′,∴P D=P′B=,在△ PP′B中, PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△ PP′B为直角三角形,∠ P′PB=90°,∴∠ BPQ=180°﹣∠ APP′﹣∠ P′PB=180°﹣ 45°﹣ 90°=45°.【议论】此题观察了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也观察了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80 元,售价 120 元;乙种每双进价 60 元,售价 90 元,计划购进两种运动鞋共 100 双,其中甲种运动鞋很多于65 双.( 1)若购进这 100 双运动鞋的花销不得高出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在6月 19 日“父亲节”当天对甲种运动鞋以每双优惠a( 0< a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w 与 a 的函数关系式,若甲种运动鞋每双优惠 11 元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】( 1)设购进甲种运动鞋x 双,依照题意列出关于x 的一元一次不等式,解不等式得出结论;(2)找出总利润 w 关于购进甲种衣饰 x 之间的关系式,依照一次函数的性质判断如何进货才能获得最大利润.x180x+60(100﹣ x)≤ 7500,解得: x≤75.答:甲种运动鞋最多购进75 双.。
八年级下册数学试题及答案解析一次函数与不等式学生姓名家长签字一、学习指引1.知识要点(1)图形与平面直角坐标系(2)一次函数与不等式(3)一次函数与不等式的应用2.方法指引(1)熟知一次函数的图象与性质,实际问题一定要注意自变量取值.(2)一次函数的图象在X轴上方的部分X的取值相当于一次不等式大于0的解;一次函数的图象在X轴下方的部分X的取值相当于一次不等式小于0的解.(3)函数题一定要注意一种重要的数学思想即数形结合.(4)会用图象上的点、实际问题中的变量关系以及图象的形状和位置或具有的性质等各种条件,灵活运用转化、分类讨论和方程等思想方法,用待定系数法来确定函数的解析式.一、典型例题(一)填空与选择1.如图,在直角坐标系中,已知点,,对△ 连续作旋转变换,依次得到三角形①、②、③、④,则三角形⑩的直角顶点的坐标为 .2.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2 007次,点P依次落在点P1, P2, P3, P4, ,P2 007的位置,则P2 007 的横坐标x2 007=_ .3.若直线y=mx+4,x=l,x=4和x轴围成的直角梯形的面积是7,则m的值是( )A.-12B.- 23C.-32D.-24.已知直线y1=ax+b和y2=mx+n的图象如图所示,根据图象填空.⑴ 当x_ _时,y1当x___ _时,y1=y2;当x___ ___时,y1⑵ 方程组是 .5.如图,直线经过,两点,则不等式的解集为 .6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置.点A1,A2,A3,和点C1,C2,C3,分别在直线 (k0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是______________.(二)例题讲解例1:某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm30 cm,B型板材规格是40 cm30 cm.现只能购得规格是150 cm30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m = ,n = ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?例2.512汶川大地震后,某健身器材销售公司通过当地红十字会向灾区献爱心,捐出了五月份全部销售利润.已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与总销售量x(台)成一次函数关系(如图). (1)求y1与x的函数解析式; (2)求五月份该公司的总销售量;(3)设公司五月份售出甲种型号器材t台,五月份总销售利润为W(万元),求W与t的函数关系式;(销售利润=销售额-进价-其他各项支出)(4)请推测该公司这次向灾区捐款金额的最大值.单位万元/台甲乙丙进价 0.9 1.2 1.1售价 1.2 1.6 1.3(例2图)例3.如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车分别从B、C 两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A 地的距离、 (千米)与行驶时间 x(时)的关系如图②所示.根据图象进行以下探究:⑴请在图①中标出 A地的位置,并作简要的文字说明;⑵求图②中M点的坐标,并解释该点的实际意义;⑶在图②中补全甲车的函数图象,求甲车到 A地的距离与行驶时间x的函数关系式;⑷A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.例4.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?例5.如图,直线y=- x+1分别与X轴,Y轴交于B,A.(1)求B,A的坐标;(2)把△AOB以直线AB为轴翻折,点O落在点C,以BC为一边做等边三角形△BCD,求D点的坐标.例6.如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O 为坐标原点,点A的坐标为(4,0).(1)求k的值;(2)若P为y轴(点B除外)上的一点,过P作PC轴,交直线AB于C.设线段PC的长为n,点P的坐标为(0,m).①如果点P在线段BO(点B除外)上移动,求n与m的函数关系式,并求自变量m的取值范围;②如果点P在射线BO(B、O两点除外)上移动,连结PA,则APC的面积S也随之发生变化。
一.选择题(共10小题)1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°2.将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.3603.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.34.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.16.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°9.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是910.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)二.填空题(共9小题)11.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16.分解因式:x3y﹣2x2y+xy=.17.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为.18.若x2﹣9=(x﹣3)(x+a),则a=.19.分解因式:9a2﹣30a+25=.三.解答题(共11小题)20.如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:AD⊥EF.21.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:24.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.25.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.26.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.27.如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.28.分解因式:(x﹣1)(x﹣2)+.29.分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)30.已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.2020年03月23日neg123的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2014秋•南平期末)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°考点:旋转的性质.分析:如图,证明CA=CA′,∠A=∠CA′A;求出∠A=60°,得到∠A′CA=60°,即可解决问题.解答:解:如图,由题意得:CA=CA′,∴∠A=∠CA′A;∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠A′CA=180°﹣2×60°=60°,故选A.点评:该题主要考查了旋转变换的性质及其应用问题;解题的关键是抓住旋转变换过程中的不变量,灵活运用全等三角形的性质来分析、解答.2.(2014秋•南昌期末)将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.360考点:旋转对称图形.分析:等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,计算旋转角即可.解答:解:因为等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,所以,360°÷3=120°,即每次至少旋转120°.故选:B.点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.4.(2014•大庆)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.5.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.6.(2014•资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°考点:旋转的性质.分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解答:解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.7.(2014•北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED 的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.(2014•桂林)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°考点:旋转的性质.分析:根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.解答:解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.9.(2014•随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9考点:旋转的性质;平行线的判定;等边三角形的性质.专题:几何图形问题.分析:首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.解答:解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选:B.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.10.(2014•阜新)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)考点:关于原点对称的点的坐标.专题:几何图形问题.分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.解答:解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.点评:此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.二.填空题(共9小题)11.(2014•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.12.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.13.(2014•汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.(2014•黑龙江)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.15.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.16.(2019•河南模拟)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(2019•永州模拟)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为2011.考点:因式分解的应用.分析:首先将所给的代数式恒等变形,借助已知条件得到x2﹣x=1,即可解决问题.解答:解:﹣x3+2x2+2010=﹣x(x2﹣x﹣1)+x2﹣x+2010;∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2010=2011.故答案为2011.点评:该题主要考查了因式分解及其应用问题;解题的关键是牢固把握代数式的结构特点,灵活运用因式分解法来分析、判断、推理活解答.18.(2014•益阳)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.19.(2014•呼伦贝尔)分解因式:9a2﹣30a+25=(3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.三.解答题(共11小题)20.(2014秋•莘县期末)如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB 于点E,DF⊥AC于点F,求证:AD⊥EF.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:易证△AED≌△AFD,得AE=AF,利用等腰三角形三线合一可得证结论.解答:证明:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD.在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF.点评:本题主要考查全等三角形的判定和性质及等腰三角形的判定和性质,掌握全等三角形的对应边相等及等腰三角形“三线合一”的性质是解题的关键.21.(2014秋•越秀区期末)如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C 的度数.考点:等腰三角形的性质.分析:设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.解答:解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.点评:本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.22.(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F 为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.23.(2013•泉州模拟)如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题;开放型.分析:根据等腰三角形的判定方法,即在一三角形中等边对等角或等角对等边,可选①③来证明△ABE≌△DCE,从而得到AE=DE,即△AED是等腰三角形.(或①④,或②③,或②④.)解答:解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中∵∴△ABE≌△DCE;∴AE=DE;△AED是等腰三角形.点评:此题考查学生对等腰三角形的判定方法及全等三角形的判定的掌握情况;发现并利用全等三角形是正确解答本题的关键.24.(2013秋•长丰县期末)如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.考点:角平分线的性质;等腰三角形的判定与性质.专题:证明题.分析:先根据角平分线的性质得出CF=FG,由HL定理得出△ACF≌△AGF,故可得出∠AFC=∠AFG,再由平行线的性质得出∠AFG=∠AED,由对顶角相等可知∠AED=∠CEF,故可得出∠CEF=∠AFC,那么CE=CF,由此可得出结论.解答:证明:∵AF是∠BAC的平分线,∠ACB=90°,FG⊥AB,∴CF=FG.在Rt△ACF与Rt△AGF中,,∴△ACF≌△AGF(HL),∴∠AFC=∠AFG.∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠AFG=∠AED.∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,∴∠CEF=∠AFC,∴CE=CF,∴CE=FG.点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.26.(2014•兰州一模)如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.27.(2014•开封一模)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)利用等边三角形的判定与性质得出∠DAB=∠ABC,进而得出答案;(2)首先利用旋转的性质以及全等三角形的判定方法得出△DBG≌△ABF(SAS),进而得出△BGF为等边三角形,求出DF=DG+FG=AF+AF=2AF.解答:(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.点评:此题主要考查了全等三角形的判定与性质以及旋转的性质和等边三角形的判定与性质等知识,熟练掌握等边三角形的判定方法是解题关键.28.(2014秋•栖霞市期末)分解因式:(x﹣1)(x﹣2)+.考点:因式分解-运用公式法.分析:首先去括号,进而利用完全平方公式分解因式得出即可.解答:解:(x﹣1)(x﹣2)+=x2﹣3x+2+=x2﹣3x+=(x﹣)2.点评:此题主要考查了公式法分解因式,正确运用公式法分解因式是解题关键.29.(2014秋•青神县期末)分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)考点:提公因式法与公式法的综合运用.分析:(1)利用完全平方公式分解因式即可;(2)先整理,然后提取公因式2,再利用十字相乘法分解因式即可.解答:解:(1)4m2﹣12mn+9n2=(2m﹣3n)2;(2)(a2﹣4b2)+(a2+2ab)=a2﹣4b2+a2+2ab=2a2+2ab﹣4b2=2(a2+ab﹣2b2)=2(a﹣b)(a+2b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.30.(2014秋•宜城市期末)已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.考点:因式分解的应用.专题:常规题型.分析:先去分母得到a2+b2+c2=ab+ac+bc,再利用配方法得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,则根据非负数的性质有a﹣b=0,b﹣c=0,a﹣c=0,所以a=b=c,于是可判断△ABC是等边三角形.解答:解:△ABC是等边三角形.理由如下:∵++=++,∴a2+b2+c2=ab+ac+bc,∴2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,∴a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC是等边三角形.点评:本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了等边三角形的定义.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
八年级下学期数学练习题及答案
22.(8分)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以下信息,解答下列问题:
(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.
【解答】解:(1)设y1=k1x+80,
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80<30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.。
初二下学期数学练习题含答案及解析题1:一团黄油重200克,为防止变质,包装在4独立包装中,每包装一样重,包装每独立包装中黄油重多少克?解析:假设每独立包装中黄油的重量为x克。
根据题意可得方程:x + x + x + x = 2004x = 200x = 50答案:每独立包装中黄油重50克。
题2:一根木材长18米,需要切割成6段,每段长度相等,每段木材的长度是多少米?解析:假设每段木材的长度为x米。
根据题意可得方程:x + x + x + x + x + x = 186x = 18x = 3答案:每段木材的长度为3米。
题3:某音乐班共有48位学生,男生和女生人数的比例为2:3,男生有多少人?解析:假设男生人数为2x,女生人数为3x。
根据题意可得方程:2x + 3x = 485x = 48x = 9.6答案:男生人数为2x = 2 * 9.6 = 19.2(约等于19)人。
题4:某商场举办特价促销活动,原价100元的商品打75折出售,打折后的价格是多少?解析:打75折相当于原价乘以0.75。
打折后的价格 = 100 * 0.75 = 75元。
答案:打折后的价格为75元。
题5:一个矩形的长是5米,宽是2米,求它的面积和周长。
解析:矩形的面积等于长乘以宽,周长等于长加宽乘以2。
面积 = 5 * 2 = 10 平方米。
周长 = (5 + 2) * 2 = 14 米。
答案:矩形的面积为10平方米,周长为14米。
题6:一辆汽车每小时行驶60公里,行驶多少小时可行驶480公里?解析:设行驶的小时数为x小时。
根据题意可得方程:60x = 480x = 480 ÷ 60x = 8答案:行驶8小时可以行驶480公里。
题7:某书店原价卖出一本书得到50元的利润,现在决定打折出售,打折后的价格要使得利润为30元,打折后的价格是多少?解析:设打折后的价格为x元。
打折后的利润 = x - 原价利润为30元,可得方程:x - 原价 = 30x - (原价 + 50) = 30x = 原价 + 80答案:打折后的价格为原价 + 80元。
一、选择题(每题3分,共30分)1. 若实数a、b满足a+b=0,则a和b的关系是()A. a和b互为相反数B. a和b相等C. a和b互为倒数D. a和b互为同号答案:A解析:根据实数的相反数的定义,若a+b=0,则a和b互为相反数。
2. 下列函数中,定义域为全体实数的是()A. y=x^2B. y=√xC. y=|x|D. y=1/x答案:A解析:选项A中,y=x^2的定义域为全体实数;选项B中,y=√x的定义域为非负实数;选项C中,y=|x|的定义域为全体实数;选项D中,y=1/x的定义域为非零实数。
因此,选项A的定义域为全体实数。
3. 已知二次函数y=ax^2+bx+c的图象与x轴有两个交点,则下列说法正确的是()A. a>0B. b>0C. c>0D. ac>0答案:D解析:二次函数的图象与x轴有两个交点,即函数有两个实数根。
根据二次函数的判别式,当判别式大于0时,函数有两个实数根。
判别式为b^2-4ac,因此ac>0。
4. 下列等式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^3=a^3+3a^2b+3ab^2+b^3D. (a-b)^3=a^3-3a^2b+3ab^2-b^3答案:C解析:选项A和B分别是平方差公式和完全平方公式,它们的等式正确。
选项C是完全立方公式,它的等式也正确。
选项D是完全立方公式的反例,等式不正确。
5. 若直角三角形的两个锐角分别为30°和60°,则这个三角形的边长比是()A. 1:√3:2B. 1:2:√3C. 1:√2:√3D. 1:√3:√2答案:A解析:根据直角三角形的性质,30°角的邻边是斜边的一半,60°角的邻边是斜边的一半乘以√3。
因此,这个三角形的边长比是1:√3:2。
二、填空题(每题3分,共30分)6. 已知x+2y=5,则x=()答案:3解析:将方程x+2y=5中的y用3替换,得到x+23=5,解得x=3。
八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。
第十六章 分式 16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v+20100=v-2060. 3. 以上的式子v+20100,v-2060,a s,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 ,209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4,209y +, 54-m 分式: x 7,238y y -,91-x2.(1)x ≠-2(2)x ≠(3)x ≠±21-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+x x3217-xx x --22123xx x --212312-+xx3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x,,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80,ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点x 80321.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,4320152498343201524983使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--,y x 3-, n m --2, n m 67--, yx 43---。
初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形 B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△绕着点C顺时针旋转50°后得到△A′B′C′,若∠45°,∠B′=110°,则∠′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y12C.y1<y2D.不能比较6.如图,在四边形中,对角线,相交于点E,∠90°,4,3,10,则四边形的面积为()A.6 B.12 C.20 D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若2a﹣10,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它及图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④11.如图,在□中,已知=8㎝,=6㎝,平分∠交边于点E,则等于()A. 2B. 4cmC. 6D. 8cm12.一果农贩卖的西红柿,其重量及价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的ABCD第11题图E西红柿,需多付1元,则空竹篮的重量为多少?()A.1.5 B.2 C.2.5D.313.如图,在▱中,对角线及相交于点O,过点O作⊥交于点E,交于点F,连接、.则四边形是()A.梯形B.矩形C.菱形D.正方形14.已知>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折16.已知2+的整数部分是a,小数部分是b,则a22=()A.13﹣2B.9+2C.11+D.7+417.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线﹣及3的交点的横坐标为﹣2,则关于x的不等式﹣>3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形是菱形,8,6,⊥于H,则()A.B.C.12 D.2420.如图,正方形中,点E、F分别在、上,△是等边三角形,连接交于G,下列结论:①;②∠15°,③垂直平分,④,⑤S△△,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线2(3﹣a)及x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形的面积为12,△是等边三角形,点E在正方形内,在对角线上有一点P,使的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为﹣2,l1及x轴交于点B,直线l2经过点D(0,5),及直线l1交于点C(﹣1,m),且及x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△的面积.27.如图,在△中,D是边上的一点,E是的中点,过A点作的平行线交的延长线于点F,且,连接.(1)证明:;(2)当△满足什么条件时,四边形是矩形?并说明理由.28.如图,点P是正方形内一点,点P到点A、B和D的距离分别为1,2,,△沿点A旋转至△′,连结′,并延长及相交于点Q.(1)求证:△′是等腰直角三角形;(2)求∠的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w及a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案及试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质及判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△绕着点C顺时针旋转50°后得到△A′B′C′,若∠45°,∠B′=110°,则∠′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠∠B′,然后利用三角形内角和定理列式求出∠,再根据对应边、A′C的夹角为旋转角求出∠′,然后根据∠′=∠∠′计算即可得解.【解答】解:∵△绕着点C顺时针旋转50°后得到△A′B′C′,∴∠∠B′=110°,∠′=50°,在△中,∠180°﹣∠A﹣∠180°﹣45°﹣110°=25°,∴∠′=∠∠′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y12C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数:当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形中,对角线,相交于点E,∠90°,4,3,10,则四边形的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定及性质;全等三角形的判定及性质;勾股定理.【分析】根据勾股定理,可得的长,根据平行四边形的判定,可得四边形的形状,根据平行四边形的面积公式,可得答案.【解答】解:在△中,由勾股定理,得5.∵3,5,∴四边形是平行四边形.四边形的面积为4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定及性质,利用了勾股定理得出的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥1,求出即可.【解答】解:,由①得:x>2,由②得:x>1,∵不等式组的解集是 x>2,∴2≥1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥1是解此题的关键.8.若2a﹣10,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它及图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后及原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:⊥,E,F,G,H是,,,的中点,∵∥,∥,∴∥,同理;∥,∴四边形是平行四边形.∵⊥,∴⊥,∴四边形是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△三边,且满足(a2﹣b2)(a22﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a22﹣c2)=0,进而得到a222,或,根据勾股定理逆定理可得△的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a22﹣c2)=0,∴a22﹣c2,或a﹣0,解得:a222,或,∴△的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a222,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量及价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y及重量x之间的函数关系式为,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令0求出x值,即可得出空蓝的重量.【解答】解:设价钱y及重量x之间的函数关系式为,将(15,26)、(15.5,27)代入中,得:,解得:,∴y及x之间的函数关系式为2x﹣4.令0,则2x﹣4=0,解得:2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y及重量x 之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱中,对角线及相交于点O,过点O作⊥交于点E,交于点F,连接、.则四边形是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出,∠∠,进而得出△≌△,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形是菱形,理由:∵在▱中,对角线及相交于点O,∴,∠∠,∴在△和△中,∴△≌△(),∴,∴四边形平行四边形,∵⊥,∴平行四边形是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定及性质,根据已知得出是解题关键.14.已知>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质及化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线﹣及3的交点的横坐标为﹣2,则关于x的不等式﹣>3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数及一元一次不等式.【分析】解不等式3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣>3的解集,结合二者即可得出结论.【解答】解:∵3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线﹣的图象在3的图象的上方,∴不等式﹣>3的解为x<﹣2.综上可知:不等式﹣>3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数及一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣>3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a22=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴3,﹣1.∴a22=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形是菱形,8,6,⊥于H,则()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出、,再利用勾股定理列式求出,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵8,6,∴×8=4,×6=3,由勾股定理的,5,∵⊥,∴S菱形,即5×8×6,解得.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形中,点E、F分别在、上,△是等边三角形,连接交于G,下列结论:①;②∠15°,③垂直平分,④,⑤S△△,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定及性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△≌△,从而得出∠∠,,①正确;②正确;由正方形的性质就可以得出,就可以得出垂直平分,③正确;设,由勾股定理和三角函数就可以表示出及,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形是正方形,∴,∠∠∠∠90°.∵△等边三角形,∴,∠60°.∴∠∠30°.在△和△中,,∴△≌△(),∴(故①正确).∠∠,∴∠∠30°,即∠15°(故②正确),∵,∴﹣﹣,即,∵,∴垂直平分..设,由勾股定理,得,,60°60°=2×60°,∴,∴,∴﹣,∴﹣x≠x,(故④错误),∵S△,S△,<,∴S△<S△,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线2(3﹣a)及x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线2(3﹣a)及x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令0,则2(3﹣a)=0,解得,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式及一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形的面积为12,△是等边三角形,点E在正方形内,在对角线上有一点P,使的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B及D关于对称,所以连接,及的交点即为F点.此时最小,而是等边△的边,,由正方形的面积为12,可求出的长,从而得出结果.【解答】解:连接,及交于点F.∵点B及D关于对称,∴,∴最小.∵正方形的面积为12,∴2.又∵△是等边三角形,∴2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标及图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标及图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a <﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a 的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12×3﹣3×=3﹣1﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为﹣2,l1及x轴交于点B,直线l2经过点D(0,5),及直线l1交于点C(﹣1,m),且及x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△的面积即可.【解答】解:(1)∵直线l1的解析式为﹣2经过点C(﹣1,m),∴1+2=3,∴C(﹣1,3),设直线l2的解析式为,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为25;(2)当0时,25=0,解得﹣,则A(﹣,0),当0时,﹣2=0解得2,则B(2,0),△的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△中,D是边上的一点,E是的中点,过A点作的平行线交的延长线于点F,且,连接.(1)证明:;(2)当△满足什么条件时,四边形是矩形?并说明理由.【考点】全等三角形的判定及性质;矩形的判定.【分析】(1)由及平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为的中点,得到,利用得到三角形及三角形全等,利用全等三角形的对应边相等即可得证;(2)当△满足:时,四边形是矩形,理由为:由及平行且相等,得到四边形为平行四边形,再由,,利用三线合一得到垂直于,即∠为直角,即可得证.【解答】解:(1)∵∥,∴∠∠,∵E为的中点,∴,在△和△中,,∴△≌△(),∴,∵,∴;(2)当△满足:时,四边形是矩形,理由如下:∵∥,,∴四边形是平行四边形,∵,,∴∠90°,∴四边形是矩形.【点评】此题考查了全等三角形的判定及性质,以及矩形的判定,熟练掌握全等三角形的判定及性质是解本题的关键.28.如图,点P是正方形内一点,点P到点A、B和D的距离分别为1,2,,△沿点A旋转至△′,连结′,并延长及相交于点Q.(1)求证:△′是等腰直角三角形;(2)求∠的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得,∠90°,再利用旋转的性质得′,∠′=∠90°,于是可判断△′是等腰直角三角形;(2)根据等腰直角三角形的性质得′,∠′=45°,再利用旋转的性质得′,接着根据勾股定理的逆定理可证明△′B为直角三角形,∠P′90°,然后利用平角定义计算∠的度数.【解答】(1)证明:∵四边形为正方形,∴,∠90°,∵△沿点A旋转至△′,∴′,∠′=∠90°,∴△′是等腰直角三角形;(2)解:∵△′是等腰直角三角形,∴′,∠′=45°,∵△沿点A旋转至△′,∴′,在△′B中,′=,2,P′,∵()2+(2)2=()2,∴′22′B2,∴△′B为直角三角形,∠P′90°,∴∠180°﹣∠′﹣∠P′180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点及旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w及a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:8060(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润(120﹣80﹣a)(90﹣60)(100﹣x)=(10﹣a)3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.【点评】本题主要考查了一次函数的应用和解一元一次不等式,解题的关键是:根据题意列出关于x的一元一次不等式,找出利润w关于x的关系式.在一次函数中,当k<0时,y随x的增大而减小,这是判断的依据.。
初二数学下册练习题及解析在初二数学下册中,练习题及其解析在学生的学习中扮演着重要的角色。
通过解答这些练习题,学生们可以巩固所学的数学知识,并提高解题能力。
本文将为大家提供一些初二数学下册的典型练习题,并附上详细解析,帮助学生们更好地理解掌握相关知识点。
一、整数1. 某城市最高气温连续4天分别是20℃、25℃、18℃和23℃,这4天的最低气温分别是10℃、13℃、8℃和11℃,这段时间内的气温变化情况如何?解析:首先,我们计算出每天的温差。
第一天的温差为20-10=10℃,第二天的温差为25-13=12℃,第三天的温差为18-8=10℃,第四天的温差为23-11=12℃。
可以发现,这4天的温差分别是10℃、12℃、10℃和12℃,温差的变化并不规律。
2. 小明身高增长4厘米,现在的身高是160厘米,求他原来的身高是多少?解析:设小明原来的身高为x厘米。
根据题意,可得方程x + 4 = 160。
解这个方程可得x = 156。
因此,小明原来的身高是156厘米。
二、平面几何1. 在平面直角坐标系中,点A(2,3)和点B(5,7)是两个坐标点,求点A到点B的距离。
解析:根据两点间距离公式,可得点A到点B的距离为√[(5-2)² + (7-3)²],计算可得√(3² + 4²) = 5。
2. 如图所示,直角三角形ABC,AB=3,BC=4,则AC的长度为多少?解析:根据勾股定理,可得AC的长度为√(3² + 4²) = 5。
三、函数1. 函数f(x) = 2x - 5 + 3x²,求f(3)的值。
解析:将x=3代入函数表达式,可得f(3) = 2*3 - 5 + 3*3² = 19。
2. 已知函数y = -2x + 3的图象关于y轴对称,求该函数的对称中心坐标。
解析:由于函数的图象关于y轴对称,所以对称中心坐标为(0,0)。
四、图形的相似与全等1. 在△ABC中,∠ABC=90°,BD是边AC上的高,若AD=3,BD=4,求BC的长度。
初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.247.不等式组的解集是x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④11.如图,在□ABCD中,已知AD=8㎝,AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()A. 2cmB. 4cmC. 6 cmD. 8cm12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?()A.1.5 B.2 C.2.5 D.313.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()ABCD第11题图EA.梯形B.矩形C.菱形D.正方形14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折16.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+417.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解:=2,是有理数,﹣=﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BCBD=4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m >x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE 是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A 的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD 为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.【点评】本题主要考查了一次函数的应用和解一元一次不等式,解题的关键是:根据题意列出关于x的一元一次不等式,找出利润w关于x的关系式.在一次函数y=kx+b中,当k<0时,y随x的增大而减小,这是判断的依据.。