冰箱空调工作原理
- 格式:doc
- 大小:58.00 KB
- 文档页数:7
冰箱和空调的工作原理
冰箱的工作原理如下:冰箱中的制冷剂通过压缩和膨胀的循环流动,将室内的热量带走,使冰箱内部的温度下降。
制冷剂在压缩机中被压缩成高温高压气体,然后进入冷凝器,通过热交换与外部空气进行热量交换,将热量散发到外部环境中。
随后,制冷剂变为高温低压气体,经过膨胀阀进入蒸发器,与室内空气接触,并吸收室内的热量,使室内温度下降,并将制冷剂重新转化为低温低压气体。
制冷剂再次进入压缩机,循环往复进行制冷作业。
空调的工作原理如下:空调通过制冷循环和换热循环来调节室内温度。
在制冷循环中,空调中的制冷剂被压缩成高温高压气体,然后通过冷凝器与外部空气进行热量交换,将室内热量带走。
在换热循环中,制冷剂经过膨胀阀减压后变为低温低压气体,并通过蒸发器与室内空气接触,吸收室内热量,使室内温度下降。
制冷剂再次进入压缩机,循环往复进行制冷作业。
同时,空调还通过调节风扇的速度和方向,使冷空气均匀地分布到室内,实现空调效果。
图解电冰箱的制冷原理1、电冰箱的制冷循环原理电冰箱主要是利用制冷剂的循环和状态变化过程进行能量的转换,从而降低箱室内的温度,实现制冷。
压缩机工作后,将制治剂压缩成高温高压的过热蒸气,然后从排气口排出,进入冷凝器。
冷凝器将制冷剤的热量散发给周围的空气,使得制冷剂由高温高压的过热蒸气冷凝为常温高压的液体。
干燥过滤器对流经的制冷剤进行过滤,滤除水分、杂质和氧化物。
制冷剂在毛细管中节流降压后,变为低温低压的制冷剂液体送入蒸发器中。
在蒸发器中,低温低压的制冷剂液体吸收箱室内的热量而气化为饱和气体,这就达到了吸热制冷的目的。
最后,低温低压的制冷剂蒸气经压缩机吸气管后进入压缩机,再经压缩机压缩后成为高温高压的过热蒸气,开始下一次循环。
目前,大多数电冰箱釆用双温双控的方式进行制冷循环的控制。
双温双控是指在电冰箱中配置两个蒸发器和两个温度传感器对冷藏室、冷冻室内的温度进行检测和控制。
因此,电冰箱的冷冻室和冷藏室的制冷循环可同时进行,当冷藏室的温度达到设定温度时,冷藏室制冷循环停止,冷冻室的制冷工作继续进行。
该控制方式可减少能耗,达到电冰箱不同室内温度需求不同的目的。
2、双温双控电冰箱的制冷循环原理3、电冰箱的冷气循环原理电冰箱箱室内通过加快空气流动或自然对流的方式,使空气形成循环,来提高制冷效果。
这种冷气循环方式通常可分为冷气自然对流降温方式(直冷式降温)和冷气强制对流降温方式(间冷式降温)。
直冷式降温是利用低温气体下降,高温气体上浮这一自然气流规律实现冷气循环。
在冷藏室内设有一个蒸发器,通过蒸发器直接吸收食物和箱内空气的热量,达到制冷的目的。
间冷式降温会将蒸发器集中放置在一个专门的制冷区域内,然后依靠风扇强制吹风的方式使冷气在电冰箱内循环,从而达到制冷的效果。
直冷式降温与间冷式降温相比:直冷式降温耗电量较小,但容易结霜;而间冷式降温耗电量较大,但温度均匀,利于食品的长期保存。
用冰箱制造空调的原理
冰箱和空调的制冷原理基本上是一样的,因此可以利用冰箱制造空调。
冰箱的工作原理是利用制冷剂的循环流动和相变来实现制冷。
制冷剂一般是气体,比如氟利昂等。
制冷循环通常包括四个主要部分:蒸发器、压缩机、冷凝器和节流阀。
1. 蒸发器:在冰箱中,蒸发器是放置在冰箱内部的一条管路,制冷剂从蒸发器流过,吸收冰箱内部的热量,并通过与空气接触而蒸发为气体。
2. 压缩机:制冷剂被压缩机抽出蒸发器,使其压力升高,同时也使温度升高。
3. 冷凝器:在冰箱中,冷凝器位于外部,通过风扇将室内空气导入,制冷剂在冷凝器中被冷却、凝结为液体,并释放热量给空气。
4. 节流阀:制冷剂温度下降后通过节流阀降低压力,从而继续循环流动。
通过以上四个部分,冰箱能够不断吸收室内的热量,并将热量释放到外部空气中,从而使室内温度降低。
利用冰箱制造空调,可以通过将冷空气导入室内,达到降低室内温度的效果。
可以通过将冰箱的蒸发器连接到一个风机或者风管,将蒸发器吹出的冷空气导入室
内,从而起到制冷降温的作用。
同时,可以利用冷凝器的热量释放,将热量通过风扇排出室外。
详解冰箱的工作原理与制冷系统流程图手把手教你空调电路板维修(变频+定频)一、普通电冰箱的工作原理1构成普通电冰箱因多采用往复式压缩机,所以它的制冷系统由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器构成如图1~图5所示图1、普通电冰箱的制冷系统1图2、普通电冰箱的制冷系统2图3、普通电冰箱的制冷系统3图4、普通电冰箱的制冷系统4图5 、普通电冰箱的制冷系统52工作原理从图1~图5可以看出,即使是普通的电冰箱,也会根据使用的蒸发器、冷凝器的位置或数量而有所不同,并且有的制冷系统还设置了门框防露管,下面以图3所示的制冷系统为例进行介绍压缩机系统的四大过程:压缩过程:插上电冰箱电源线,在温控器的触点接通的情况下,压缩机开始工作,低温、低压的制冷剂被压缩机吸入,在压缩机汽缸内被压缩成高温、高压的过热气体后排出到冷凝器中。
冷凝过程:高温、高压的制冷剂气体通过冷凝器散热,温度不断下降,逐渐被冷却为常温、高压的饱和蒸气,并进一步冷却为饱和液体,温度不再下降,此时的温度叫冷凝温度。
制冷剂在整个冷凝过程中的压力几乎不变。
节流过程:经冷凝后的制冷剂饱和液体经干燥过滤器滤除水分和杂质后流入毛细管,通过它进行节流降压,制冷剂变为常温、低压的湿蒸气。
蒸发过程:随后在蒸发器内开始吸收热量进行汽化,不仅降低了蒸发器及其周围的温度,而且使制冷剂变成低温、低压的气体。
从蒸发器出来的制冷剂再次回到压缩机中,重复以上过程,将电冰箱内的热量转移到箱外的空气中,实现了制冷的目的。
制冷剂在压缩机运转制冷时,在各器件(管路)的状态、压力、温度不同,如图6所示。
压缩机停转后,制冷剂在制冷系统中压力相同,其平均压力为0.19~0.22MPa。
图6、制冷时制冷剂在各部位状态及压力3典型故障制冷系统的焊点、器件、管路出现泄漏情况,使制冷剂跑光或泄漏较多时,会产生不制冷或制冷差故障;若系统内有水分或杂质会产生冰堵或脏堵故障。
二、双温双控制冷系统的工作原理1构成制冷系统由压缩机、干燥过滤器、冷凝器、电磁阀、冷藏室毛细管和冷冻室毛细管、冷藏室蒸发器和冷冻室蒸发器等组成,与一般的双门直冷式冰箱的制冷系统相比增加了一个毛细管、一个电磁阀。
冰箱制冷原理
冰箱是我们日常生活中不可或缺的家电之一,它能够帮助我们保存食物,让食材保持新鲜。
那么,冰箱是如何实现制冷的呢?接下来,我们将深入探讨冰箱的制冷原理。
首先,冰箱的制冷原理基于蒸发冷却的物理原理。
冰箱内部装有制冷剂,通常是氟利昂或氨等物质。
当制冷剂处于低压状态时,它会吸收周围的热量,使得冰箱内部温度降低。
这一过程中,制冷剂会蒸发成气体,吸收热量,然后通过压缩机将其压缩成液体,再次循环利用。
其次,冰箱内部的制冷循环系统起着至关重要的作用。
这个系统包括压缩机、冷凝器、膨胀阀和蒸发器。
首先,制冷剂被压缩机压缩成高压气体,然后通过冷凝器散发热量,冷却成液体。
接着,液体制冷剂通过膨胀阀减压,变成低压状态的液体,并且蒸发器内的温度较低,制冷剂在这里蒸发,吸收热量,使得蒸发器内部温度下降,从而实现冰箱内部的制冷效果。
此外,冰箱的绝热层设计也对制冷效果起着重要的作用。
冰箱外部覆盖有一层绝热材料,如聚氨酯泡沫或玻璃纤维,它们能够有效地隔离外部温度,减少热量的传导,从而保持冰箱内部的低温状态。
最后,冰箱的温控系统也是制冷原理中不可或缺的一部分。
温控系统能够感知冰箱内部的温度变化,通过控制制冷循环系统的运行,使得冰箱内部始终保持在适宜的温度范围内,从而保证食物的新鲜度和品质。
综上所述,冰箱的制冷原理是基于蒸发冷却的物理原理,利用制冷循环系统、绝热层设计和温控系统共同实现食物的冷藏和保鲜。
通过这些技术手段,冰箱能够有效地延长食物的保质期,为我们的生活提供了极大的便利。
电冰箱工作原理是利用
电冰箱的工作原理是利用制冷循环来实现的。
简单来说,制冷循环是通过一个制冷剂(一般为氨、氟利昂等)在高压和低压两个状态下的压缩和膨胀来实现的。
具体步骤如下:
1. 压缩:制冷剂从低压状态被压缩成高压状态,同时温度也升高。
2. 冷凝:高压的制冷剂在冷凝器中通过散热和冷却,将热量散发到周围环境中,制冷剂温度下降并变成高压液体。
3. 膨胀:高压液体制冷剂经过膨胀阀或节流装置迅速减压,使制冷剂压力急剧下降,同时温度也下降。
4. 蒸发:低压制冷剂进入蒸发器,接触到外部的空气或物体时,吸收热量而蒸发,使得制冷剂温度进一步降低。
5. 循环:制冷剂再次进入压缩机,循环往复。
通过上述步骤,电冰箱内部的空气或物体的热量会被吸收并带走,从而实现冷藏和冷冻的效果。
同时,电冰箱还通过保温层的设计,减少了外界热量的进入,保持内部低温。
因此,我们可以在电冰箱中长时间地保存食物和饮料,使其保持新鲜和冷藏状态。
冰箱制冷系统冰箱制冷系统冰箱是我们日常生活中常见的家电之一,其核心部件就是制冷系统。
冰箱的制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器等组成。
它们相互协作,通过循环作用,将室内的热量转移到外部环境,实现冷藏和冷冻的目的。
首先,我们来了解一下冰箱制冷系统的工作原理。
冰箱制冷系统采用了制冷循环过程,通过改变制冷剂的压力和温度来实现制冷效果。
制冷循环的基本过程是压缩、冷凝、膨胀和蒸发。
制冷循环的第一步是压缩,制冷剂从蒸发器进入压缩机中,由于压缩机的工作,制冷剂的压力和温度都会上升。
随后,制冷剂进入冷凝器,此时外界的空气通过冷凝器,使制冷剂的温度下降并散发热量。
此时的制冷剂为高温高压气体。
接下来,在膨胀阀的作用下,制冷剂经过膨胀过程,压力和温度急剧下降。
这时的制冷剂为低温低压液体,进入蒸发器。
在蒸发器内,制冷剂吸取室内空气的热量,使其降温。
同时,制冷剂蒸发为低温低压蒸汽。
这一过程中,制冷剂从液态转化为气态时吸收了大量的热量,因此室内空气的温度得到了降低。
以上就是冰箱制冷系统的基本工作原理。
但要保证冰箱的制冷效果,制冷系统的设计和选用的制冷剂都是至关重要的。
在制冷系统的设计中,压缩机是核心设备。
压缩机的作用是提供足够的压力将制冷剂推送到冷凝器中,并保持一定的循环速度。
压缩机的选择要考虑制冷剂的种类、制冷量、工作温度等因素。
一般常用的压缩机有往复式压缩机、转子式压缩机等。
此外,冷凝器也是冰箱制冷系统中的重要组成部分,其主要功能是将制冷剂中吸收的热量散发出去。
冷凝器的工作效率与散热面积和制冷剂之间的传热效果密切相关。
我们常见的冷凝器有空气冷凝器和水冷凝器两种。
膨胀阀的作用是调节制冷剂的流量和压力,使制冷剂在蒸发器中起到降温的作用。
膨胀阀的选择要根据制冷系统的需求确定,一般常用的有热力膨胀阀和电子膨胀阀。
最后,蒸发器是制冷过程中吸取热量的关键部件。
蒸发器的设计要求能够与室内空气充分接触,以保证室内空气的降温效果。
冰箱工作原理我们知道任何物质在液化后都要放出热量,在气化时都要吸收热量,这是最普遍的物理现象。
空调冰箱就是利用了这个道理,将制冷剂液化放出热量,然后再让他蒸发吸收热量。
液化放出热量的位置和蒸发吸收热量的位置不能在一处,否则没有任何效果。
因此空调就有了室外机,目的是散热和其它主要功能,冰箱则散热器在冰箱外部。
那么怎么能实现制冷剂液化-气化呢?我们知道,气体物质在它的临界温度下,当压力达到一定值的时候,就会液化。
所谓的临界温度就是在这个温度之上,无论采用多高的压力都不能使他液化。
当温度高于气体物质在某个压力下的沸点之上时就会发生气化,气化时吸收热量,吸收的热量从环境中获得,从而实现制冷。
用于上述实现制冷的气体物质就是制冷剂。
作为制冷剂的物质通常常温下为气体,便于蒸发,而且临界温度不能太低,否则压缩时液化不容易。
还要要求无毒,无异味儿。
常见的制冷剂为氨、氟(这个字念服笨蛋才念佛呢)里昂。
氟里昂实际上很多种物质的总称,是一种系列产品。
那么他是什么物质呢?实际上就是卤代烷,常见的是卤代甲烷。
例如一氟三氯甲烷、三氟一氯甲烷、二氟二氯甲烷等等。
也就是甲烷的分子中的氢原子被氯和氟原子所取代,你可以自己组合出不同的物质。
当然了,这种卤代烷一定要有氯原子和氟原子存在,不能全是氯也不能全是氟,而且烷烃中的氢原子全部被取代。
倒不是说不存在这种物质,而是满足不了作为制冷剂的要求,例如四氯甲烷,常温下为液体,也就是四氯化碳,不能做制冷剂的。
但是四氯化碳中的一个氯被氟取代,就可以做制冷剂。
制冷的过程是这样的:首先压缩机将蒸发器来的气体制冷剂进行压缩,由于室温低于制冷剂的临界温度,当达到所需的压力后液化,液化时放出大量的热,这些热量通过散热管、散热片散发到空气中,也就是冰箱后面的散热管、空调室外机的风扇吹着的散热片。
液化后的制冷剂散热后,温度降低到接近室温,经过缓冲器后再通过毛细管进入蒸发器,蒸发器就是粗管,上面带有导热良好的金属片。
图解制冷原理(内含动态原理
图)
一、空调系统
首先是空调系统的使用。
我相信朋友们闭上眼睛也能说出原理。
二、冰箱系统
冰箱系统也是制冷系统最常见的应用。
我们来看看原理。
三、热泵系统
实际上,热泵系统是空调制冷系统的逆向应用方案。
之前用制冷制冷系统产生冷量,现在用四通换向阀产生热量。
我们来看一下原理图。
先来看看制冷模式:
再来看看热泵运行模式:
实际使用当中,最常见的还是风冷热泵机组了,看下面的原理图:
1.第一,制冷模式可以产生冷水。
如果连接空气末端设备,可以为房间提供冷能。
2、再来看看制热模式,早的很多年前,这个系统经过包装一下,摇身一变,变成一个非常时髦的概念叫空气源热泵系统,号称是第五代热水系统:
四、制冰机系统
制冰机也是制冷系统最常见的应用之一。
我们来看看制冰机的几种形式。
五、除湿机系统
当然,除湿机系统也是基于制冷系统的原理。
潮湿的空气被风扇吸入机器,并通过热交换器。
此时空气中的水蒸气凝结成水滴,而干燥的空气温度降低,排出机外。
六、汽车空调系统
汽车空调系统是制冷系统的经典用例,包括汽车空调系统、火车空调系统、公交车空调系统、冷藏车空调系统、冷藏集装箱等。
我们简单看一下:
七、冷藏展示柜
超市、餐厅的冰箱、展示柜也是利用制冷原理。
八、干冰机
干冰机也是利用制冷原理的哦。
冰箱的工作原理是什么
冰箱的工作原理是通过压缩-膨胀循环来实现的。
其基本原理
如下:
1. 压缩:冰箱内部有一个压缩机,它将制冷剂(通常为氨气或氟利昂)吸入,并使其压缩为高压气体。
在这个过程中,制冷剂的压力和温度都会升高。
2. 冷凝:高温高压的制冷剂进入冷凝器,这是一个位于冰箱背部或侧面的管状装置。
冷凝器内部有许多金属管,使制冷剂能够散热,通过与外界空气的接触使制冷剂的温度降低,变成高压液体。
3. 膨胀:高压液体制冷剂通过膨胀阀进入蒸发器,这是一个位于冰箱内部的管状装置。
在蒸发器里,制冷剂的压力突然降低,由高压液体转变成低压蒸气。
这个过程大量吸热,从而实现冷却作用。
4. 蒸发:低压蒸气制冷剂进入冰箱内部,在此过程中吸收冰箱内部的热量。
此时,冰箱内部的温度降低,食物和饮料也得以冷却。
5. 循环:低压蒸汽制冷剂再次进入压缩机,重复进行压缩-膨
胀循环。
通过这个压缩-膨胀循环,冰箱能够抽取室内的热量,使室内
温度降低,达到冷却和保鲜的效果。
冰箱和空调原理一样吗冰箱和空调都是我们日常生活中常见的家用电器,它们在炎热的夏天和寒冷的冬天给我们带来了极大的便利。
很多人可能会好奇,冰箱和空调究竟是不是一回事呢?它们的原理是否相似?本文将对这个问题进行探讨。
首先,我们先来了解一下冰箱和空调的工作原理。
冰箱通过压缩机循环制冷剂来实现制冷的目的。
当制冷剂通过蒸发器时,吸收了冰箱内部的热量,使冰箱内部温度降低。
而空调也是通过类似的原理来实现调节室内温度的。
空调通过压缩机将室内空气中的热量吸收,然后通过冷凝器排出室外,从而达到降温的效果。
从工作原理上来看,冰箱和空调确实有很多相似之处。
它们都是通过压缩机将制冷剂进行循环,从而实现热量的吸收和排出,达到降温的效果。
因此,可以说冰箱和空调在原理上是相似的。
然而,虽然冰箱和空调在原理上有相似之处,但它们的设计和功能却有所不同。
冰箱主要是用来储存食物,并保持食物的新鲜。
它的制冷温度一般在0-10摄氏度之间,主要是为了延长食物的保鲜期。
而空调则是用来调节室内温度,使人们能够在炎热的夏天和寒冷的冬天里获得舒适的环境。
因此,冰箱和空调在使用场景和功能上是有所区别的。
除了在功能上有所不同外,冰箱和空调在制冷效果上也有所区别。
冰箱的制冷效果主要体现在保持低温和延长食物的保鲜期上,而空调则是通过调节室内温度来达到降温的效果。
因此,冰箱和空调在制冷效果上虽然有相似之处,但也存在着一定的差异。
综上所述,冰箱和空调在原理上是相似的,都是通过压缩机循环制冷剂来实现降温的效果。
但在功能和制冷效果上却有所不同。
冰箱主要用于食物储存和保鲜,而空调则是用来调节室内温度。
因此,虽然它们有相似之处,但也有着各自不同的特点。
应用到反馈原理的家用电器1. 简介家用电器是现代生活中必不可少的一部分,从冰箱到洗衣机,从电视到空调,各种家电设备方便了人们的生活。
这些家电设备的设计和工作原理中应用了反馈原理,以实现更高的效率和更好的性能。
2. 冰箱•冰箱是人们日常生活中常见的家电设备之一,它使用了反馈原理来控制温度。
•冰箱的工作原理是通过压缩机压缩制冷剂,使其温度升高并通过传热管散热,然后通过膨胀阀冷却制冷剂,并将其送到制冷室内。
在制冷室内,制冷剂吸热并降低温度,实现冷藏和冷冻的效果。
•冰箱使用了温度传感器和控制电路来感知和维持制冷室内的温度。
•当温度升高时,温度传感器将检测到这一变化,并通过电路将信号发送给控制器。
•控制器根据传感器信号来控制压缩机的运行时间和制冷剂的流量,以维持制冷室内的温度在设定的范围内。
•这种反馈机制使冰箱能够根据实际需要自动调整温度,提供稳定和合理的制冷效果。
3. 洗衣机•洗衣机是家庭中常用的电器之一,既可以省去人们手洗衣服的麻烦,又能够更有效地清洁衣物。
•洗衣机工作时,它会通过感应器来检测衣物的重量和水位,根据这些信息来调整水的用量和清洗时间。
•当洗衣机启动时,感应器会感知到衣物的重量,并将这些信息传输给控制系统。
•控制系统根据衣物重量来确定所需的水量,并控制水泵的运行时间和水阀的开闭来调整水位。
•同时,控制系统还会根据衣物的重量和材质来确定洗衣时间和转速。
•这种反馈机制使洗衣机能够根据衣物的实际情况进行自动调整,提供更高效和适合的清洗效果。
4. 电视•电视是人们休闲娱乐的主要方式之一,现代电视不仅可以收看电视频道,还可以通过互联网播放各种媒体内容。
•电视通过反馈原理来实现对图像和声音的控制和优化。
•在电视背后,有许多电子元件,如图像传感器和音频处理器,来感知和处理输入的图像和声音信号。
•电视的反馈机制会根据输入信号的质量和效果,调整图像和声音的参数,以获得更好的观看和听觉体验。
•比如,在接收电视信号时,电视会根据实际情况调整图像的对比度、亮度和色彩。
冰箱运转原理
冰箱运转基本原理是利用制冷系统的工作原理来实现。
制冷系统由压缩机、冷凝器、膨胀阀和蒸发器四个组件组成。
首先,压缩机负责将低压制冷剂(通常为氨或氟利昂等)吸入,并增加其压力和温度。
随后,高压高温的制冷剂进入冷凝器,通过散热器散发热量,同时被冷却成高压液态。
接下来,高压液态制冷剂通过膨胀阀进入蒸发器。
在蒸发器内,制冷剂的压力迅速降低,从而使其变成低压蒸发气体。
这个过程需要从周围环境吸热,从而使得蒸发器内温度下降。
最后,低压蒸发气体再次被吸入压缩机,循环往复进行制冷过程。
通过循环的不断进行,冰箱内的温度可以持续下降,从而实现冷藏和冷冻的功能。
冰箱在内部设置了风扇和传热管来实现空气对流和热量传递,以保持冷藏空间内的均匀温度分布。
此外,冰箱还通过外壳和绝缘材料进行隔热,以减少外界热量的影响,提高制冷效果。
需要注意的是,冰箱并非通过制冷产生冷气,而是通过吸热制冷,将热量从冷藏空间转移到外界环境中,从而使冷藏空间内的温度降低。
空调和冰箱的制冷原理首先,低压的气态氟里昂被吸入压缩机,被压缩成高温高压的气体氟里昂;而后,气态氟里昂流到室外的冷凝器,在向室外散热过程中,逐渐冷凝成高压液体氟里昂;接着,通过节流装置降压(同时也降温)又变成低温低压的气液氟里昂混合物。
此时,气液混合的氟里昂就可以发挥空调制冷的“威力”了:它进入室内的蒸发器,通过吸收室内空气中的热量而不断汽化,这样,房间的温度降低了,它也又变成了低压气体,重新进入了压缩机。
如此循环往复,空调就可以连续不断的运转工作了。
而室外机主要就是空调压缩机,所以室外温度会被高温高压的气体氟里昂升高。
最后讲一讲空调水又是怎么来的,平时你一定见过拿出冰箱的冷饮外表面立刻凝结很多露珠的现象,这是因为空气中含有很多的水蒸气,温度越高,可以包含的水蒸气就越多,温度越低,可以包含的水蒸气就越少(和水溶解盐的多少随温度改变原理有点相似是吧),而前面说的空调蒸发器是冷却周围空气的,温度就低,周围空气里的水蒸气就和凝结在蒸发器上了,和冷饮瓶外表面凝结很多露珠一样的道理。
但是这个水不能任其凝结,不然房间里就不断滴水了,所以需要用一个托盘收集起来排到室外,这就是空调水。
我们知道,要想使电冰箱内的温度下降,就必须想办法不断地把电冰箱内的热量移到箱外来,那么用什么办法呢?我们知道,水在标准大气压下的沸腾温度为100℃,即水在100℃时就“开”了。
在沸腾过程中,水要吸收大量的热量,由液体变为水蒸气。
其中“吸收大量的热量变为水蒸汽”这一特性对我们很有启发。
于是我们找到了一种物质,“氟利昂—12”,它不像水那样在100℃时沸腾,而是在-30℃左右的低温下就能沸腾汽化,在汽化的过程中也要吸收大量的热量。
我们将这种物质作为电冰箱的制冷剂,让这种液态物质在冰箱的蒸发器内沸腾汽化,吸收箱内的大量热量,使电冰箱内降温。
又因氟利昂—12在-30℃左右的低温下就能沸腾汽化,因此电冰箱内的温度就可以降低到很低,例如普通双开门电冰箱冷冻室的温度可以降低到-18℃以下(即三星级标准)。
冰箱/空调工作原理我们知道,要想使电冰箱内的温度下降,就必须想办法不断地把电冰箱内的热量移到箱外来,那么用什么办法呢?我们知道,水在标准大气压下的沸腾温度为100℃,即水在100℃时就“开”了。
在沸腾过程中,水要吸收大量的热量,由液体变为水蒸气。
其中“吸收大量的热量变为水蒸汽”这一特性对我们很有启发。
于是我们找到了一种物质,“氟利昂—12”,它不像水那样在100℃时沸腾,而是在-30℃左右的低温下就能沸腾汽化,在汽化的过程中也要吸收大量的热量。
我们将这种物质作为电冰箱的制冷剂,让这种液态物质在冰箱的蒸发器内沸腾汽化,吸收箱内的大量热量,使电冰箱内降温。
又因氟利昂—12在-30℃左右的低温下就能沸腾汽化,因此电冰箱内的温度就可以降低到很低,例如普通双开门电冰箱冷冻室的温度可以降低到-18℃以下(即三星级标准)。
为了使汽化后的氟利昂—12还能还原为原来的液体状态重复使用,这一任务是由压缩机及冷凝器来完成的。
压缩机通过消耗电能,将汽化后的氟利昂—12压缩成高温、高压蒸汽,并使这种高温高压的氟利昂—12蒸汽,流经设置在箱体外面的冷凝器,就像暖气片散热一样,将在箱内吸收的热量散发到箱体外面空气中,使制冷剂又变成高温、高压液体,这样作为制冷剂的氟利昂—12就可以循环使用了。
压缩机不断地运转,电冰箱内的热量就会不断地被移到箱体外空气中去,于是就达到了制冷的目的。
电冰箱内还设有一个自动控制系统,通过自行调节这个控制系统,可使箱内保持一定的所需冷藏、冷冻温度。
电冰箱外壳内均设有良好的隔热材料,以阻止箱外热量进入箱内。
我们日常使用的电冰箱,正好由这四要件加上箱体组成,箱体就好像冷库。
不过电冰箱上的③节流阀在技术上由相同作用的毛细管替代。
首先讲讲什么叫制冷。
制冷两字只能说是技术上的术语,严格讲是错误的,世界上没有那国的科学家能制造出“冷”来。
那到底什么是冷,先举例说明:在寒冬腊月,气温降到-5℃,我们说今天天气真冷,可东北人说不冷;在大伏天,气温在+32℃时,我们会说不算热,但气温突然降到+25℃,我们会说太冷了;这冷是随着人的常识来定的,在物理学中没有冷的定义。
在工程中冷是跟着生产需要而定的。
如老总问,冷库打冷了吗?你说打冷了,这个冷是指-18℃;老总问,水果库温度稳定吗?你说很稳定,这回答的含义是水果库温度稳定在±0℃了,这是我们这个行业对冷的定义。
但是我们还是把这种利用机械设备把降温对象降到所需温度的方法叫制冷,这就是术语。
什么叫制冷,比如我们将装有一公斤20℃冷水的水壶放到一块烧到500℃的铁板上,没有多久水就开了,如果不拿开水壶,不多久水就干了。
大家和说钢板在对水加热,反过来也可以说水在对钢板降温。
而且,降了多少度,都可计算出来,因为一公斤水从20℃升到100℃,它需要外界提供它80大卡热量,水从100℃到烧干,它需要外界提供539大卡热量,也就是说一公斤20℃冷水烧到干,要外界提供619大卡热量。
如果按制冷的角度它从外界或钢板中提取了619大卡热量而变成了水蒸汽,使钢板降温了,这就是制冷,是利用水对钢板制冷。
如果将水倒在钢板上,那就更直观了。
在上述的制冷过程中,如果钢板的大小一定,并排除外界空气的降温因素,那么钢板降了多少度,是可以精确计算出来的。
在这里所述及到的‘热量’、‘温度’、‘大卡’、‘℃’等物理量,我想学过物理的人都能理解。
初中物理就讲到,热量总是通过传导、对流、辐射,从温度高的物体转移到温度低的物体,绝不可能反过来进行。
一个物体失去一些热量后,它的温度也会降低一些。
我们的目的就是通过制冷系统,将商品中和空气中的热量向比商品温度更低的制冷剂传递,达到降低商品温度的目的。
我们的制冷系统与锅炉的制热系统在热力学上来讲是完全一样的,它们的热传导公式也完全一样,我们先以锅炉作比拟,进一步讲讲制冷剂在制冷时的作用。
上面讲的烧水壶也可算是一只锅炉,不过水烧开了,我们就灌热水瓶了,如果我们在壶嘴上套根管子,通到浴室,那就可以洗桑拿了,水壶就成小锅炉了。
要注意的是这时水壶中的水永远是100℃,水壶出口处的蒸汽温度也是100℃,为什么不是110℃,不是90℃?这是因为在一个大气压下水的沸腾温度是100℃,这是水的物理性能所决定了的。
在青藏高原,大气压力较低,水70℃左右就开了,没有高压锅就只能吃夹生饭,而在高压锅里,温度可达到110℃,因为高压锅排气阀的重量,刚好使锅内压力保持在1Kg/CM2表压力(实际是2个大气压)。
一般小型锅炉可烧4Kg/CM2表压力蒸汽,蒸汽温度也接近140℃,锅炉中的水温也与蒸汽温度一样也是140℃。
煤气炉的火头温度可达1000℃左右,火头将热量传递给水,使水的温度上升直达沸点,一公斤水从沸点到烧干(全部变成蒸汽),将从煤气火头中带走的热量与上面所讲水壶给钢板降温是一样的,接近壶底的火焰是一个降温过程。
锅炉中的煤燃烧温度在1200℃左右,没有锅炉中水的降温,锅炉中的排管将被烧塌。
从我们的角度来讲,在这里的水就是制冷剂。
反过来水蒸汽进了浴室马上凝结成小水珠(雾气),放出热量使浴室内温度上升,同样一公斤水烧成的一公斤蒸汽,汽在浴室里放出539大卡热量后全部变成水,在蒸汽变成水的时候,小水珠的温度是100℃,这是一个冷凝过程。
当然小水珠会继续放出热量而降低温度,等水珠变成水滴落到地上或附在墙壁上时,只有30℃左右了,这就不是冷凝过程了,而只是普通降温过程。
同样将锅炉蒸汽通到室内热水汀(室内供热排管)中,热水汀对蒸汽来说就成了冷凝器,如果供应的蒸汽压力是1Kg/CM2表压力(实际是2个大气压),热水汀表面温度就是110℃,热水汀向室内空气散发热量,使室内温度上升,而蒸汽就在热水汀内冷凝成水,如果向室内散发了539大卡热量,热水汀内就冷凝下来1公斤水。
按制冷角度来讲,这整个过程就是煤燃烧的热量被水吸收而沸腾,成为蒸汽,蒸汽带着吸收来的热量来到热水汀,热水汀的表面向空气散发了热量,蒸汽失去热量后又从新冷凝成蒸馏水,这水可通过设备回到锅炉继续使用。
现在回到制冷的四大要件:①压缩机,与空气压缩机原理一样;②冷凝器,可以理解为热水汀或做酒业的蒸馏器(锡锅);③蒸发器,可以理解为上面所讲的水壶或锅炉;④节流阀,可以理解为从楼上高位的热水汀到锅炉之间,加一只阀,开小一点,让蒸馏下来的水流进锅炉继续使用,不让热水汀中的水流光了使锅炉中的蒸汽反冲回热水汀,这一点与我们制冷不同,因为整个系统是均压的,而制冷系统冷凝部分是高压的,节流阀是控制制冷剂合理分配给蒸发器,让蒸发器处于正常的制冷工作状态。
在电冰箱上制冷的四大要件是:①压缩机,藏在冰箱后面,圆头圆脑的家伙;②冷凝器,就是在冰箱后面的散热片;③蒸发器,在初期的单门冰箱中的冻结框,可以看得很清楚,拆开无霜冰箱的内衬也能看到冷风机一样的翅片管;④节流阀,在冰箱后面有一段绕成螺旋状的细铜管,那就是毛细管。
冰箱的外壳就相当与冷库外体。
在制冷行业中,制冷剂可以是水、氨、F12、F22、F502、液氮等等。
空调用溴化锂吸收式制冷机,就是以水作为制冷剂使用。
电冰箱中使用的是F12,在大冷库的制冷系统中用的是液态氨(不是氨水),液态氨的性质在氨的物理性能表上可以查到,它在一个大气压下的蒸发温度是-33.3℃。
如果将液氨从常温的钢瓶中放出,一出钢瓶它立即变为-33.3℃的液氨(因为外界是一个大气压),如果流到水泥地上,水泥地的温度立刻使它沸腾,这是水泥地的热量传给了液氨,使液氨蒸发成汽态氨,水泥地的局部也很快降到-30℃左右,如果流到水泥地上的液氨正好是一公斤,要使液氨全部蒸发光,他必需从水泥地上吸收326大卡热量,吸收多少,蒸发多少,吸不足326大卡热量,就一定有液氨残留下来。
如果将液氨放在一个金属盆里,再将金属盆底接触水面,水的热量立刻传给液氨,液氨受热沸腾,水也很快结冰;如果将盆悬挂在空中,盆底周围的空气立即因热量传给了液氨而失去热量而降温,降了温的空气在下降,周围热空气立即来补充,在盆下面可以看到带着雾的冷空气在缓缓降下。
这个盆就是‘蒸发器’。
至于蒸馏器,有人看过,有人没看过,但是大家都看过茶缸盖凝结水的现象,或者农村吊酒的锡锅,原理是一样的。
缸盖里面是热腾腾的水蒸汽,缸盖外是冷空气,水蒸汽通过缸盖将热量传递给了冷空气,失去了一定热量的水蒸汽,在缸盖里表面凝结成水,这就是冷凝器的原理,上面讲的热水汀也是同样原理。
现在讲库房里的制冷进行过程:液态氨在蒸发器(排管)中如果处于0.3Kg/CM2表压力状态(应该是0.03Mpa表压力,出于习惯的方便,还是用Kg/CM2),它的沸腾温度应该是-28℃;而蒸发器外是-18℃的冷库,如果有高于-18℃的商品进库,商品中的热量很快传给了空气,使空气温度上升到比如-15℃,-15℃的空气又将从商品中传来的热量传给了-28℃的液氨,液氨吸收了热量温度不会上升,而是沸腾蒸发为气体(氨蒸汽),这样空气来来回回的传送,商品中的热量逐步减少,温度逐步降低,最后降到-18℃,制冷就可以结束了,这是蒸发器的工作任务,库内空气向蒸发器传递多少热量,蒸发器内的液氨就蒸发掉相应的重量。
当然除了商品中的热量外,还有外界气温中的热量通过围护结构传进来的热量,开门时空气带进的热量,使库温不时的上升,所以需要定时开机降温。
但是如果没有压缩机的参与,蒸发器的工作是不能持久的,因为液氨受热蒸发成为氨蒸汽,氨蒸汽逐步挤占蒸发器的空间,蒸发器中的压力也就逐步升高,压力升高,液氨的沸腾温度就会上升,最后压力升到1Kg/CM2表压力时,温度也上升到-18℃左右,液氨与冷库的温度相同,由于温度平衡,热量就无法向液氨传递了,制冷也就停止了。
压缩机的任务就是要把蒸发器中产生的氨蒸汽抽走,使蒸发器中的压力一直保持在我们生产需要的0.3Kg/CM2表压力状态。
这时候蒸发器中的压力叫蒸发压力,蒸发器中的液氨温度叫蒸发温度。
压缩机抽出的氨蒸汽并不是排到大气中去的,而是排到冷凝器中,氨蒸汽被压缩到冷凝器后,冷凝器的压力会逐步升高,而后就是冷凝器的任务了。
我们知道氨蒸汽是带着冷库中的热量的,氨蒸汽被压缩机从蒸发器抽出,而后压缩到冷凝器中,那么压缩机就完成了输送热量的任务。
现在氨蒸汽被聚集在冷凝器中(带着大量冷库中的热量),压力不断升高,温度也随着压力的升高而升高,比如说压力升高到表压力14Kg/CM2,温度也就对应升到+39℃,如果在冷凝器管外供给+34℃的冷却水,那冷凝器中的氨蒸汽就会向水传送出热量,每向冷却水送出264大卡热量,冷凝器中就有一公斤重的氨蒸汽凝结成液态氨,并让出原来氨蒸汽占领的大部分空间来。
如果热量没有出路,那冷凝器中的压力就继续升高,到冷凝器爆炸或跳安全阀为止。
但是实际上压缩机的排出温度,在表压力14公斤/平方公分时,不是+39℃,而是+100℃以上。