72知识讲解 气体的等温变化
- 格式:doc
- 大小:744.50 KB
- 文档页数:16
《气体的等温变化》讲义一、引入在我们的日常生活中,气体无处不在。
从我们呼吸的空气到充满气球的氦气,气体的性质和变化对我们的生活和科学研究都有着重要的影响。
今天,我们要探讨的是气体的一种重要变化——等温变化。
二、气体的状态参量在研究气体的变化之前,我们先来了解一下描述气体状态的几个参量。
1、压强(p)气体对容器壁的压力与容器壁的面积之比,就叫做气体的压强。
单位通常是帕斯卡(Pa)。
比如,轮胎内气体的压强决定了轮胎的承载能力和行驶性能。
2、体积(V)气体所占据的空间大小就是体积。
单位常见的有立方米(m³)、升(L)等。
一个气球膨胀时,其内部气体的体积就增大了。
3、温度(T)温度是表示物体冷热程度的物理量,对于气体来说,温度反映了气体分子热运动的剧烈程度。
常用的温度单位是开尔文(K)和摄氏度(℃)。
这三个参量可以完整地描述一定质量气体的状态。
三、等温变化的定义当一定质量的气体,在温度不变的情况下,发生的状态变化,我们就称之为气体的等温变化。
想象一下,把一个密封的气球放在恒温的环境中,然后改变气球的体积,这时候气球内气体的变化就是等温变化。
四、玻意耳定律在气体的等温变化中,有一个非常重要的定律——玻意耳定律。
玻意耳定律指出:一定质量的某种气体,在温度不变的情况下,压强 p 与体积 V 成反比。
其数学表达式为:pV = C(常量)。
为了更好地理解这个定律,我们来看几个例子。
假设我们有一个注射器,里面封闭着一定质量的气体。
当我们缓慢地推动注射器的活塞,使气体的体积减小,这时气体的压强就会增大。
反之,如果我们向外拉活塞,增大气体的体积,气体的压强就会减小。
再比如,一个充满气体的汽缸,当我们压缩汽缸的体积时,气体的压强会急剧上升。
五、玻意耳定律的实验验证为了验证玻意耳定律,我们可以进行以下实验。
实验器材:注射器、压强传感器、数据采集器、计算机等。
实验步骤:1、将压强传感器与注射器连接好,并将数据采集器与计算机连接。
高二物理气体的等温变化知识点气体的等温变化是指在恒定的温度下,气体所发生的体积变化。
在高二物理学习中,理解气体的等温变化对于建立对气体性质的深入认识至关重要。
在本文中,我们将详细介绍高二物理气体的等温变化的知识点。
一、气体的等温过程与特点气体的等温过程是指气体在恒定温度下发生的变化。
在等温过程中,气体的温度保持不变,因此气体分子的平均动能也保持不变。
根据理想气体状态方程P V = nRT,可以得出等温过程中气体体积和压强之间的关系为 P₁V₁=P₂V₂,即等温变化下气体的体积和压强成反比。
二、气体的等温膨胀与等温压缩1. 气体的等温膨胀在等温膨胀情况下,气体受热后体积增大,但压强保持不变。
根据等温变化公式P₁V₁=P₂V₂,可得知等温膨胀中气体体积的增大是由于压强的减小引起的。
2. 气体的等温压缩在等温压缩情况下,气体受到外界的压力使其体积减小,但压强保持不变。
根据等温变化公式P₁V₁=P₂V₂,可得知等温压缩中气体体积的减小是由于压强的增加引起的。
三、等温变化中的功与热量转化在气体的等温变化过程中,气体与外界发生的功与热量之间存在转化关系。
根据热力学第一定律,气体的内能变化等于外界对气体所做的功与热量的代数和。
等温膨胀中,气体受到外界的压力使其体积增大,外界对气体做正功。
根据热力学第一定律,气体的内能增加,这部分内能增加来自外界对气体所做的功。
等温压缩中,气体受到外界的压力使其体积减小,气体对外界做正功。
根据热力学第一定律,气体的内能减少,这部分内能减少转化为外界对气体所做的功。
四、实际气体的等温变化在实际气体的等温变化过程中,受到分子间相互作用力的影响,不再满足理想气体状态方程。
此时,气体的体积与压强之间的关系将有所差异。
实际气体的等温膨胀中,由于分子间的相互作用力,气体的体积增大的程度会受到一定的限制,体积增加的压强下降速度也会减小。
实际气体的等温压缩中,由于分子间的相互作用力,气体的体积减小的程度会受到一定的限制,体积减小的压强增加速度也会减小。
气体的等温变化【学习目标】1.知道气体的温度、体积和压强为气体的状态参量.2.知道温度、体积和压强的准确定义及各自的单位。
3.知道大气压强和大气压强的特点及测量方法.4.会计算不同运动状态下密闭气体的压强。
5.知道什么是等温变化.6.知道气体等温变化时应遵守玻意耳定律及定律内容和表达式.7.知道-p V 图象上等温变化的图线及物理意义.8.掌握利用-p V 图象和等温变化规律分析解决实际问颞.【要点梳理】要点一、气体的状态参量用以描述气体宏观性质的物理量,叫状态参量,对于一定质量的某种气体来说,描述其宏观性质的物理量有温度、体积、压强三个.我们把温度、体积、压强三个物理量叫气体的状态参量.1.体积(1)气体的体积就是指气体分子所能达到的空间.(2)单位:国际单位3m ,常用单位还有L m L 、.331 L 10m3 1 dm ==-,631 mL 10m3 1 cm ==-. 要点诠释:气体分子可以自由移动,所以气体总要充满容器的整个空间,因此气体的体积就是容器的容积.2.温度(1)温度是表示物体冷热程度的物理量.(2)温度的微观含义:温度是物体分子平均动能的标志,表示物体内部分子无规则运动的剧烈程度.(3)温度的两个单位:①摄氏温度:规定1标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃.表示符号为t .②热力学温度:规定273.15-℃为热力学温度的0K 。
热力学温度与摄氏温度单位等大.表示符号为T ,单位为开尔文,符号为K 。
热力学温度是国际单位制中七个基本物理量之一.0K 称为绝对零度,是低温的极限。
③热力学温度与摄氏温度的关系是:273.15 K T t =+,一般地表示为273K T t =+.3.压强(1)定义:气体作用在器壁单位面积上的压力叫做气体的压强.(2)单位:国际单位Pa ,常用单位还有标准大气压atm 、毫米汞柱mmHg . 21 Pa 1 N/m =.51 atm 1.01310Pa =⨯.1 mmHg 133 Pa =.1 atm 76 cmHg 760 mmHg ==.(3)微观解释①气体的压强是由气体中大量做无规则热运动的分子对器壁频繁持续的碰撞产生的,压强就是大量气体分子作用在器壁单位面积上的平均作用力.②气体压强的决定因素气体分子的平均动能与分子的密集程度.分子平均动能越大,分子碰撞器壁对器壁产生的作用力就越大,气体的压强就越大;在分子平均动能一定时,气体分子越密集,每秒撞击器壁单位面积的分子数就越多,气体压强也就越大.③理想气体压强公式2/3p n ε=.式中/n N V =,是单位体积的分子数,表示分子分布的密集程度,ε是分子的平均动能.要点诠释:一定质量的气体,它的温度、体积和压强三个状态参量的变化是相关联的.如果这三个量都不改变,则气体处于一定的状态中;如果三个量中有两个发生改变,或者三个都发生改变,则气体状态发生了改变.要点二、容器静止、匀速运动或加速运动时求封闭气体的压强1.容器静止或匀速运动时求封闭气体的压强(1)连通器原理:在连通器中,同一液体(中间液体不间断)的同一水平液面上的压强是相等的.(2)在考虑与气体接触的液柱所产生的附加压强p gh ρ=时,应特别注意h 是表示液面间竖直高度,不一定是液柱长度.(3)求由液体封闭的气体压强,应选择最低液面列平衡方程.(4)求由固体封闭(如汽缸和活塞封闭)气体的压强,应对此固体(如活塞或汽缸)进行受力分析,列出力平衡方程.要点诠释:若选取的是一个参考液片,则液片自身重力不计;若选取的是某段液柱或固体,则它们自身的重力也要加以考虑.一般的计算步骤为:选取研究对象,分析对象的受力情况,建立力的平衡方程,若可消去横截面积,则进一步得到压强平衡方程.最后解方程得到封闭气体的压强,计算时要注意单位的正确使用.2.容器加速运动时求封闭气体的压强(1)当容器加速运动时,通常选择与气体相关联的液体柱、固体等作为研究对象,进行受力分析,画出分析图示.(2)根据牛顿第二定律列出方程.(3)结合相关原理解方程,求出封闭气体的压强.(4)根据实际情况进行讨论,得出结论.3.气体压强与大气压强因密闭容器中的气体密度一般很小,由气体自身重力产生的压强极小,可以忽略不计,故气体压强由气体分子碰撞器壁产生,与地球引力无关.气体对上下左右器壁的压强大小都是相等的.测量气体压强用压强计.如金属压强计(测较大的压强)和液体压强计(测较小的压强).大气压强却是由于空气受到重力作用紧紧包围地球而对“浸”在它里面的物体产生的压强.由于地球引力作用的原因,大气层的分子密度上方小、下方大,从而使得大气压的值随高度的增加而减小.测量大气压强用气压计,它根据托里拆利管的原理制成,借助于一端封闭,另一端插入槽内的玻璃管中的水银柱高度来测量大气压强,其静止时的读数等于外界大气压强的值要点三、气体的等温变化1.等温变化气体的状态由状态参量决定,对一定质量的气体来说,当三个状态参量都不变时,我们就说气体的状态一定.否则气体的状态就发生了变化.对于一定质量的气体,压强、温度、体积三个状态参量中只有一个量变而其他量不变是不可能的,起码其中有两个量变或三个量都发生变化.一定质量的气体,在温度不变时发生的状态变化过程,叫做气体的等温变化.2.探究气体等温变化的规律(1)实验:见课本P18.(2)数据处理.以压强p 为纵坐标,以体积的1V为横坐标,把以上各组数据在坐标系中描点,得到如图所示图象.要点诠释:①温度控制等温变化本身已明确了控制变量的研究方法,做实验时要缓慢进行,避免做功升温,不要用手直接接触气体部分玻璃管,避免影响温度.②实验数据处理采用1V来处理,化曲线为直线,便于观察规律和图线描绘,这也是物理学研究的方法. 3.玻意耳定律(1)内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =常量,或1122p V p V =.其中11p V 、和22p V 、分别表示气体在12、两个不同状态下的压强和体积.(2)研究对象:一定质量的气体,且这一部分气体保持温度不变.(3)适用条件:压强不太大(与大气压相比),温度不太低(与室温相比).(4)数学表达式:1221p Vp V=,或1122p V p V=,或pV C=(常数).要点诠释:①此定律中的恒量C不是一个普通恒量,它与气体所处的温度高低有关,温度越高,恒量C越大.②由于经常使用1122p V p V=或1221p Vp V=这两种形式,故对单位要求使用同一单位即可.要点四、气体等温变化的p V-图1.气体等温变化的p V-图(1)p V-图象.一定质量的气体发生等温变化时的p V-图象如图所示,图象为双曲线的一支.要点诠释:①平滑的曲线是双曲线的一段。
高三物理《气体的等温变化》的知识点总结高三物理《气体的等温变化》的知识点总结一、气体的状态及参量1、研究气体的性质,用、、三个物理量描述气体的状态。
描述气体状态的这三个物理量叫做气体的。
2、温度:温度是表示物体的物理量,从分子运动论的观点看,温度标志着物体内部的剧烈程度。
在国际单位制中,用热力学温标表示的温度,叫做温度。
用符号表示,它的单位是,简称,符号是。
热力学温度与摄氏温度的数量关系是:T= t+ 。
3、体积:气体的体积是指气体。
在国际单位制中,其单位是,符号。
体积的单位还有升(L)毫升、(L)1L= 3,1L= 3。
4、压强:叫做气体的压强,用表示。
在国际单位制中,压强的的单位是,符号。
气体压强常用的单位还有标准大气压(at)和毫米汞柱(Hg),1 at= Pa= Hg。
5、气体状态和状态参量的关系:对于一定质量的气体,如果温度、体积、压强这三个量,我们就说气体处于一定的状态中。
如果三个参量中有两个参量发生改变,或者三个参量都发生了变化,我们就说气体的.状态发生了改变,只有一个参量发生改变而其它参量不变的情况是发生的。
二、物体的状态参量1.温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。
热力学温度是国际单位制中的基本量之一,符号T,单位(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。
关系是t=T-T0,其中T0=273.15,摄氏度不再采用过去的定义。
两种温度间的关系可以表示为:T = t+273.15和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。
0是低温的极限,它表示所有分子都停止了热运动。
可以无限接近,但永远不能达到。
2.体积。
气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。
3.压强。
气体的压强是由于气体分子频繁碰撞器壁而产生的。
(绝不能用气体分子间的斥力解释!)一般情况下不考虑气体本身的重量,所以同一容器内气体的压强处处相等。
《气体的等温变化》讲义一、引入同学们,在我们的日常生活中,气体无处不在,从我们呼吸的空气到充满气球的氦气。
而气体的性质和变化有着许多有趣且重要的规律。
今天,咱们就一起来探究气体的一种重要变化——等温变化。
想象一下,你给一个气球充气,或者观察一个封闭的气罐,在温度不变的情况下,气体的压强和体积会发生怎样的变化呢?这就是我们要研究的气体等温变化。
二、气体等温变化的概念当一定质量的气体,其温度保持不变时,气体所发生的压强与体积的变化关系,我们就称之为气体的等温变化。
为了更直观地理解,咱们举个例子。
假设在一个恒温的房间里,有一个密封的气缸,里面充满了气体。
如果我们慢慢地压缩这个气缸,让气体的体积变小,那么气体的压强就会增大;反之,如果我们扩大气缸的体积,气体的压强就会减小。
但要注意哦,整个过程中,房间的温度一直没有改变。
三、实验探究既然要研究气体的等温变化,那肯定少不了实验。
下面我们来看看一个经典的实验。
实验装置:我们需要一个带有活塞的密闭气缸,一支温度计用于测量气体的温度,一个压强计来测量气体的压强。
实验步骤:首先,把气缸放置在恒温环境中,比如恒温箱里,确保温度恒定。
然后,通过改变活塞的位置来改变气缸内气体的体积,并同时记录下对应的压强和体积的数值。
在实验过程中,一定要小心操作,确保温度没有变化,并且测量的数据要准确。
实验数据处理:把测量得到的数据记录下来,然后以体积为横轴,压强为纵轴,绘制出压强和体积的关系图像。
通过大量的实验数据和图像分析,我们发现,在温度不变的情况下,气体的压强和体积之间存在着一种反比例的关系。
四、玻意耳定律经过无数次的实验和研究,科学家们总结出了描述气体等温变化的规律,这就是玻意耳定律。
玻意耳定律的内容是:一定质量的某种气体,在温度不变的情况下,压强 p 与体积 V 成反比,其数学表达式为 pV = C(常量)。
这里的 C 取决于气体的质量和温度。
也就是说,只要气体的质量和温度不变,C 就是一个固定的值。
《气体的等温变化》讲义一、引入在我们的日常生活中,气体无处不在。
从我们呼吸的空气到气球中的氢气,气体的性质和变化对我们的生活和科学研究都有着重要的影响。
今天,我们就来深入探讨气体的一种重要变化——等温变化。
想象一下,你给一个气球充气,气球的体积会随着你充入气体的量而改变。
但如果在这个过程中,温度保持不变,那么气体的压强和体积之间会存在怎样的关系呢?这就是我们要研究的气体等温变化。
二、气体的状态参量在研究气体的等温变化之前,我们先来了解一下描述气体状态的几个参量。
1、体积(V)气体所占的空间大小就是体积。
单位通常是立方米(m³)、升(L)等。
2、压强(p)气体对容器壁单位面积上的压力叫做压强。
单位是帕斯卡(Pa),常用的还有标准大气压(atm)、毫米汞柱(mmHg)等。
3、温度(T)温度是表示物体冷热程度的物理量。
在热力学中,常用的温度单位是开尔文(K)。
这三个参量能够完整地描述气体的状态。
当其中一个或多个参量发生变化时,气体的状态就会改变。
三、等温变化的实验探究为了研究气体的等温变化,我们可以进行一个简单的实验。
实验装置:一个带有活塞的密闭气缸,气缸上连接有压强计,可以测量气缸内气体的压强。
实验步骤:1、将气缸内的气体加热到一定温度,并保持温度不变。
2、改变活塞的位置,从而改变气缸内气体的体积。
3、记录不同体积时对应的气体压强。
通过实验数据的分析,我们可以发现,在温度不变的情况下,气体的压强和体积之间存在着一定的关系。
四、玻意耳定律经过大量的实验和研究,科学家们总结出了气体等温变化的规律,这就是玻意耳定律。
玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强 p 与体积 V 成反比,即 pV =常数。
数学表达式为:p₁V₁= p₂V₂这里的 p₁、V₁是气体在初始状态下的压强和体积,p₂、V₂是气体在末状态下的压强和体积。
五、对玻意耳定律的理解1、适用条件玻意耳定律适用于一定质量的、温度不变的理想气体。
气体的等温变化【学习目标】1.知道气体的温度、体积和压强为气体的状态参量.2.知道温度、体积和压强的准确定义及各自的单位。
3.知道大气压强和大气压强的特点及测量方法.4.会计算不同运动状态下密闭气体的压强。
5.知道什么是等温变化.6.知道气体等温变化时应遵守玻意耳定律及定律内容和表达式.7.知道-p V 图象上等温变化的图线及物理意义.8.掌握利用-p V 图象和等温变化规律分析解决实际问颞.【要点梳理】要点一、气体的状态参量用以描述气体宏观性质的物理量,叫状态参量,对于一定质量的某种气体来说,描述其宏观性质的物理量有温度、体积、压强三个.我们把温度、体积、压强三个物理量叫气体的状态参量.1.体积(1)气体的体积就是指气体分子所能达到的空间.(2)单位:国际单位3m ,常用单位还有L m L 、.331 L 10m3 1 dm ==-,631 mL 10m3 1 cm ==-. 要点诠释:气体分子可以自由移动,所以气体总要充满容器的整个空间,因此气体的体积就是容器的容积.2.温度(1)温度是表示物体冷热程度的物理量.(2)温度的微观含义:温度是物体分子平均动能的标志,表示物体内部分子无规则运动的剧烈程度.(3)温度的两个单位:①摄氏温度:规定1标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃.表示符号为t .②热力学温度:规定273.15-℃为热力学温度的0K 。
热力学温度与摄氏温度单位等大.表示符号为T ,单位为开尔文,符号为K 。
热力学温度是国际单位制中七个基本物理量之一.0K 称为绝对零度,是低温的极限。
③热力学温度与摄氏温度的关系是:273.15 K T t =+,一般地表示为273K T t =+.3.压强(1)定义:气体作用在器壁单位面积上的压力叫做气体的压强.(2)单位:国际单位Pa ,常用单位还有标准大气压atm 、毫米汞柱mmHg . 21 Pa 1 N/m =.51 atm 1.01310Pa =⨯.1 mmHg 133 Pa =.1 atm 76 cmHg 760 mmHg ==.(3)微观解释①气体的压强是由气体中大量做无规则热运动的分子对器壁频繁持续的碰撞产生的,压强就是大量气体分子作用在器壁单位面积上的平均作用力.②气体压强的决定因素气体分子的平均动能与分子的密集程度.分子平均动能越大,分子碰撞器壁对器壁产生的作用力就越大,气体的压强就越大;在分子平均动能一定时,气体分子越密集,每秒撞击器壁单位面积的分子数就越多,气体压强也就越大.③理想气体压强公式2/3p n ε=.式中/n N V =,是单位体积的分子数,表示分子分布的密集程度,ε是分子的平均动能.要点诠释:一定质量的气体,它的温度、体积和压强三个状态参量的变化是相关联的.如果这三个量都不改变,则气体处于一定的状态中;如果三个量中有两个发生改变,或者三个都发生改变,则气体状态发生了改变.要点二、容器静止、匀速运动或加速运动时求封闭气体的压强1.容器静止或匀速运动时求封闭气体的压强(1)连通器原理:在连通器中,同一液体(中间液体不间断)的同一水平液面上的压强是相等的.(2)在考虑与气体接触的液柱所产生的附加压强p gh ρ=时,应特别注意h 是表示液面间竖直高度,不一定是液柱长度.(3)求由液体封闭的气体压强,应选择最低液面列平衡方程.(4)求由固体封闭(如汽缸和活塞封闭)气体的压强,应对此固体(如活塞或汽缸)进行受力分析,列出力平衡方程.要点诠释:若选取的是一个参考液片,则液片自身重力不计;若选取的是某段液柱或固体,则它们自身的重力也要加以考虑.一般的计算步骤为:选取研究对象,分析对象的受力情况,建立力的平衡方程,若可消去横截面积,则进一步得到压强平衡方程.最后解方程得到封闭气体的压强,计算时要注意单位的正确使用.2.容器加速运动时求封闭气体的压强(1)当容器加速运动时,通常选择与气体相关联的液体柱、固体等作为研究对象,进行受力分析,画出分析图示.(2)根据牛顿第二定律列出方程.(3)结合相关原理解方程,求出封闭气体的压强.(4)根据实际情况进行讨论,得出结论.3.气体压强与大气压强因密闭容器中的气体密度一般很小,由气体自身重力产生的压强极小,可以忽略不计,故气体压强由气体分子碰撞器壁产生,与地球引力无关.气体对上下左右器壁的压强大小都是相等的.测量气体压强用压强计.如金属压强计(测较大的压强)和液体压强计(测较小的压强).大气压强却是由于空气受到重力作用紧紧包围地球而对“浸”在它里面的物体产生的压强.由于地球引力作用的原因,大气层的分子密度上方小、下方大,从而使得大气压的值随高度的增加而减小.测量大气压强用气压计,它根据托里拆利管的原理制成,借助于一端封闭,另一端插入槽内的玻璃管中的水银柱高度来测量大气压强,其静止时的读数等于外界大气压强的值要点三、气体的等温变化1.等温变化气体的状态由状态参量决定,对一定质量的气体来说,当三个状态参量都不变时,我们就说气体的状态一定.否则气体的状态就发生了变化.对于一定质量的气体,压强、温度、体积三个状态参量中只有一个量变而其他量不变是不可能的,起码其中有两个量变或三个量都发生变化.一定质量的气体,在温度不变时发生的状态变化过程,叫做气体的等温变化.2.探究气体等温变化的规律(1)实验:见课本P18.(2)数据处理.以压强p 为纵坐标,以体积的1V为横坐标,把以上各组数据在坐标系中描点,得到如图所示图象.要点诠释:①温度控制等温变化本身已明确了控制变量的研究方法,做实验时要缓慢进行,避免做功升温,不要用手直接接触气体部分玻璃管,避免影响温度.②实验数据处理采用1V来处理,化曲线为直线,便于观察规律和图线描绘,这也是物理学研究的方法. 3.玻意耳定律(1)内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =常量,或1122p V p V =.其中11p V 、和22p V 、分别表示气体在12、两个不同状态下的压强和体积.(2)研究对象:一定质量的气体,且这一部分气体保持温度不变.(3)适用条件:压强不太大(与大气压相比),温度不太低(与室温相比).(4)数学表达式:1221p Vp V=,或1122p V p V=,或pV C=(常数).要点诠释:①此定律中的恒量C不是一个普通恒量,它与气体所处的温度高低有关,温度越高,恒量C越大.②由于经常使用1122p V p V=或1221p Vp V=这两种形式,故对单位要求使用同一单位即可.要点四、气体等温变化的p V-图1.气体等温变化的p V-图(1)p V-图象.一定质量的气体发生等温变化时的p V-图象如图所示,图象为双曲线的一支.要点诠释:①平滑的曲线是双曲线的一段。
反映了在等温情况下,一定质量的气体的压强与体积成反比的规律.②图象上的点,代表的是一定质量气体的一个状态.③这条曲线表示了一定质量的气体由一个状态过渡到另一个状态的过程,这个过程是一个等温过程,因此该曲线也叫等温线.(2)1pV-图象。
一定质量的气体的1pV-图象如图所示,图线为延长线过原点的倾斜直线.2.对p V-图象的理解(1)一定质量的气体,在不同温度下的等温线是不同的,对于一定质量的气体,温度越高时,气体的压强p与体积V的乘积必然越大,在p V-图象上,图线的位置也就相应地越高.由玻意耳定律pV C =(恒量),其中恒量C 不是一个普通恒量。
它随气体温度的升高而增大,温度越高,恒量C 越大,等温线离坐标轴越远.如图所示4条等温线的关系为:4321t t t t >>>.(2)等温线的形状为双曲线,它描述了一定质量的气体在温度不变时,气体的压强p 和体积V 之间的关系.根据图线的形状可知,p 与V 成反比.(3)1p V-图线的形状应当是其延长线能够过原点的直线,但它也反映了一定质量的气体在发生等温变化时,压强p 与体积V 的反比关系,1p V -图线的斜率越大,对应的温度越高.(4)pV T ∝。
对等温线上任一点作两坐标轴的平行线围成的“矩形面积”,表示该状态下的pV 值.“面积”越大,pV 值就越大,对应的T 值也越大,即温度越高的等温线离坐标轴越远.要点五、解题的方法技巧1.应用玻意耳定律解题的一般步骤(1)首先确定研究对象,并判断是否满足玻意耳定律的条件.(2)然后确定始末状态及状态参量(1122p V p V 、、、).(3)最后根据玻意耳定律列方程求解(注意统一单位).(4)注意分析隐含的已知条件,必要时还应由力学或几何知识列出辅助方程.(5)必要时还应分析解答结果是否正确合理.2.力、热综合题的解题思路(1)将题目分解为气体状态变化问题和力学问题两部分.(2)对气体状态变化问题应用玻意耳定律列方程.(3)对力学问题应用力学规律和原理列方程.(4)联立方程求解.要点诠释:在解题过程中,一般情况下,气体的压强和体积的变化是联系两部分知识的“桥梁”.3.汞柱移动问题的解法当被封闭气体的状态发生变化时,将引起与之关联的汞柱、活塞发生移动,是否移动以及如何移动的问题可以通过假设推理法来解决.(1)假设推理法:根据题设条件,假设发生某种特殊的物理现象或物理过程,运用相应的物理规律及有关知识进行严谨的推理,得出正确的答案.巧用假设推理法可以化繁为简,化难为易,快捷解题.(2)温度不变情况下的液柱移动问题的特点是:在保持温度不变的情况下改变其他题设条件,从而引起封闭气体的液柱的移动(或液面的升降,或气体体积的增减).解决这类问题通常假设液柱不移动或液面不升降,或气柱体积不变,然后从此假设出发,运用玻意耳定律等有关知识进行推论,求得正确解答.【典型例题】类型一、气体的状态参量例1.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙两容器中气体的压强分别为p p 甲乙、,且p p 甲乙<,则( ).A .甲容器中气体的温度高于乙容器中气体的温度B .甲容器中气体的温度低于乙容器中气体的温度C .甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能D .甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能【思路点拨】由理想气体状态方程判断AB 对错;由温度是分子平均动能的标志判断CD 对错。
【答案】B 、C【解析】由理想气体状态方程可得:V 一定,p 越大,T 越大,即压强与热力学温度成正比,故A 错,B 对.温度是分子平均动能的标志,故C 对,D 错.举一反三:【变式1】已知某物体的温度升高了,那么下列哪些说法是正确的?( )A .该物体内所有分子的动能都增大了B .该物体内所有分子的势能都增大了C .该物体内分子平均动能增大了D .该物体内热量增多了【答案】C【解析】温度是分子平均动能的标志.在某一温度下,物体内的各个分子运动的速度各不相同,分子的动能也就各不相同,有的大,有的小,温度只是反映了平均值,温度升高,只是分子平均动能增大,不是所有分子的动能都增大,故A 错,C 对;分子势能只与分子距离有关、与温度无关,温度升高,分子势能不一定增大。