锂离子蓄电池正极材料LiMn_2O_4高温容量衰减解析
- 格式:pdf
- 大小:198.57 KB
- 文档页数:4
锂离子电池高温循环
锂离子电池高温循环是指锂离子电池在高温环境下进行充放电循环的过程。
高温循环会加速锂离子电池的衰减,主要表现在以下几个方面:
1.容量衰减:高温循环会导致锂离子电池正极材料的活性降低,从而导致容量
衰减。
2.内阻增加:高温循环会导致电解液的分解,从而导致电池内阻增加。
3.安全性降低:高温循环会增加锂离子电池的热失控风险。
锂离子电池高温循环的衰减机制主要包括以下几个方面:
1.正极材料活性降低:高温会导致正极材料的活性降低,主要表现在以下几个
方面:
●正极材料的晶格结构发生变化,从而降低了锂离子在正极材料中的扩散能力。
●正极材料中的活性物质发生分解,从而降低了正极材料的容量。
2.电解液分解:高温会导致电解液的分解,从而产生气体和固体杂质,这些气
体和固体杂质会堵塞电极之间的间隙,从而增加电池的内阻。
3.SEI膜增厚:SEI膜是电解液在电极表面形成的一层固体电解质膜,它可以防
止电解液与电极发生直接反应。
高温会导致SEI膜增厚,从而增加电池的内阻。
锂离子电池高温循环的抑制方法主要包括以下几个方面:
●优化电极材料:开发具有高温稳定性的电极材料,可以有效抑制高温循环引
起的容量衰减。
●改进电解液:开发具有高温稳定性的电解液,可以有效抑制高温循环引起的
电解液分解。
●优化充放电策略:采用合理的充放电策略,可以有效抑制高温循环引起的SEI
膜增厚。
锂电池容量衰减原因分析锂电池容量衰减原因分析随着科技的发展,锂电池已成为许多电子设备的主要能量来源。
然而,随着时间的推移,锂电池的容量会逐渐下降,导致电池续航能力减弱。
这种容量衰减是由多种因素引起的,下面将对其进行分析。
首先,锂电池容量衰减的主要原因之一是化学反应。
在锂电池中,正极和负极之间的化学反应会导致电池容量的减少。
正极材料中的锂离子在充放电过程中会与电解液中的溶液发生化学反应,形成化合物。
随着反应的进行,这些化合物会堆积在电极表面,阻碍锂离子的迁移,从而减少电池的容量。
其次,锂电池容量衰减还与电池的使用环境有关。
高温环境是导致锂电池容量衰减的罪魁祸首之一。
在高温下,电池内部的化学反应会加速,导致电池的寿命缩短。
此外,高温还会引起电池内部的膨胀和变形,从而导致电池的容量减少。
因此,在使用锂电池时要尽量避免高温环境,以延长电池的寿命。
另外,锂电池容量衰减还与过充和过放有关。
过充会导致锂电池内部的化学反应不稳定,从而损坏电池的结构和性能;而过放会导致电池内部的化学反应无法正常进行,减少锂离子的储存量。
因此,正确使用和充电锂电池是延长电池寿命的重要因素。
最后,锂电池的容量衰减还与充电和放电速度有关。
过快的充电和放电会导致电池内部产生过多的热量,从而加速电池容量的衰减。
因此,在充放电过程中要控制好电流的大小,避免过快充放电。
综上所述,锂电池容量衰减是由多种因素共同作用引起的。
化学反应、使用环境、过充和过放以及充放电速度都会对锂电池的容量产生影响。
因此,在使用锂电池时,我们应该注意正确使用和充电,避免高温环境,并控制好充放电速度,以延长锂电池的寿命和续航能力。
锂离子电池正极材料LiMn 2-x Nd x O 4的性能研究y王兴勤*,戴永年,李伟宏(昆明理工大学真空冶金与材料研究所,云南昆明650093)摘要:采用高温固相反应法,合成了具有尖晶石结构的锂离子电池正极材料Li Mn 2O 4,并对其掺杂不同量的Nd,得到Li M n 2-x Nd x O 4(x =0~0.03)。
对材料进行了XRD 、粒度分析及恒电流充放电测试。
试验结果表明,掺杂微量稀土元素Nd 合成的正极材料具有标准尖晶石结构,较好的循环稳定性。
其中Li Mn 0.995Nd 0.005O 4具有较好的电化学性能和循环稳定性,最高容量达到132mAh g -1。
关键词:锂离子电池;尖晶石Li Mn 2O 4;稀土元素;掺杂中图分类号:TM912.9 文献标识码:A 文章编号:0258-7076(2006)-0026-04人们已经对作为市场前景最为看好的新一代可充电电池锂离子电池进行了广泛的研究[1]。
提高电池性能和降低电极材料成本一直是锂离子电池的主要研究方向。
目前作为锂离子电池正极材料研究较多的主要是层状LiC oO 2,LiNiO 2、尖晶石结构的LiMn 2O 4和橄榄石结构的LiFePO 4。
表1为对这几种材料进行比较。
其中尖晶石锰酸锂在各种锂离子正极材料中显示了极大的优越性[2,3]:(1)锰资源丰富,成本低廉;(2)无毒,对环境友好;(3)LiMn 2O 4的热分解温度高,安全可靠;(4)制备过程简单,易于控制;(5)无记忆性;(6)具有双放电平台,脱锂量大。
但尖晶石LiMn 2O 4的结构不稳定,在经多次充放电循环后,容量衰减严重,制约了其商品化。
主要是由于[4]发生了以下电化学反应:Mn3+Mn4++Mn2+而二价锰离子能溶解于电解液中,造成三价锰离子减少。
Mn 3+与Mn4+相比变形性大得多,在循环过程中晶胞的反复收缩与膨胀导致了晶格塌陷,从而多次循环后尖晶石型LiMn 2O 4的结构变形即材料的循环性能降低[5]。
高温环境下锂离子电池性能衰减机理分析高温环境对锂离子电池的性能是有较大影响的,会导致电池的容量衰减、循环稳定性下降等问题。
本文将从电池材料、电极界面稳定性、电解液和电池发热等几个方面分析高温环境下锂离子电池性能衰减的机理。
一、电池材料在高温环境下,电池正负极材料的晶格结构会发生变化,导致容量下降。
首先,正极材料的晶格结构会变得不稳定,活性物质与电解液中的锂离子反应形成稳定化合物。
这会导致电池容量的衰减,因为越多的活性物质与锂离子反应,就会造成更多的锂离子损耗。
同时,锂离子在高温下更容易扩散,容易导致材料结构的变化,进一步影响电池性能。
二、电极界面稳定性在高温环境下,电极界面稳定性会下降,导致电池的循环稳定性降低。
电极界面稳定性受到电解液中的添加剂和锂盐种类的影响。
在高温下,电解液中的添加剂会分解、挥发,导致锂盐浓度不稳定,影响电池的充放电性能。
此外,高温环境下电极与电解液的接触界面会发生变化,增大了电极和电解液之间的电荷传输阻力,进一步影响电池的性能。
三、电解液电解液中的溶剂和溶质也会受到高温的影响,导致电解液的性能下降。
首先,高温会使溶剂和溶质的分子运动加快,导致电解液中的溶剂和溶质的分解和挥发速度加快,这会导致电解液中锂盐浓度的不稳定,进一步影响电池性能。
此外,高温环境下电解液的粘度下降,电荷传输速率加快,导致锂离子迁移速率加快,进一步影响电池的性能。
四、电池发热在高温环境下,锂离子电池容易发生过热现象,进一步加速电池的衰减。
锂离子电池的充放电过程会产生大量的热量,当高温环境下电池散热不良时,热量会积聚在电池内部,导致电池过热。
过高的温度会加速电解液中有机溶剂的挥发,导致电解液中锂盐浓度的不稳定,进一步加剧电池的性能衰减。
综上所述,高温环境下锂离子电池性能衰减的机理是多方面的,包括电池材料的晶格结构改变、电极界面稳定性下降、电解液中锂盐浓度不稳定、电解液性能下降以及电池发热等因素。
针对这些问题,可以通过优化电池材料、设计更稳定的电极界面、改进电解液配方以及优化散热系统等方式来提高锂离子电池在高温环境下的性能和循环稳定性。
收稿日期:2002212213 基金项目:信息产业部专项资金资助(信部产20002878) 作者简介:郑明森(1975—),男,福建省人,博士生,研究方向为应用电化学;导师:林祖赓(1934—),男,福建省人,厦门大学化学系教授、博士生导师,研究方向为应用电化学。
Biography :ZHEN G Ming 2sen (1975—),male ,candidate for Ph D ;tutor :L IN Zu 2geng (1934—),male ,professor.LiMn 2O 4在聚合物锂离子蓄电池中的高温性能郑明森, 金明钢, 董全峰, 尤金跨, 林祖赓(厦门大学宝龙电池研究所,福建厦门361005)摘要:在电解液中的溶解是尖晶石LiMn 2O 4高温不可逆容量损失的主要原因。
聚合物锂离子蓄电池结构特点及聚合物材料与电解液相互作用可以影响高温下尖晶石LiMn 2O 4在电解液中的溶解及扩散行为,降低尖晶石LiMn 2O 4的不可逆容量损失。
使用尖晶石LiMn 2O 4为正极活性材料,利用厦门大学宝龙电池研究所聚合物锂离子蓄电池中试生产线,在特定的工艺条件下制备容量为600mAh 的实验电池。
实验表明,在聚合物锂离子蓄电池中LiMn 2O 4材料高温稳定性明显改善,实验电池在常温下循环200次,容量保持率在80%以上;55℃下循环30次,容量保持率超过92%;70℃下循环10次,容量保持率达到96%。
关键词:聚合物锂离子蓄电池;LiMn 2O 4;高温性能中图分类号:TM 912.9 文献标识码:A 文章编号:10022087X (2003)增20166203H igh 2temperature performance of LiMn 2O 4in polymer Li 2ion batteryZHEN G Ming 2sen ,J IN Ming 2gang ,DON G Quan 2feng ,YOU Jin 2kua ,L IN Zu 2geng(Powerlong Battery Research Instit ute ,Xiamen U niversity ,Xiamen Fujian 361005,Chi na )Abstract :The irreversible capacity loss of spinel LiMn 2O 4used in Li 2ion battery (L IB )at high temperature is mainly caused by the Mn dissolution in liquid electrolytes.However ,the disadvantage arisen from L IB in which the electrolyte is at liquid state can be signally inhibited by employing polymer electrolytes and quasi 2solid state battery.The experimental polymer Li 2ion batteries using spinel LiMn 2O 4as cathode active materials with the ca 2pacity of 600mAh were prepared and their performance were investigated.The result shows that the cycling stability of the batteries is improved.The capacity retention of the batteries after 200cycles at ambient tempera 2ture is more than 80%,while that after 30cycles at 55℃and that after 10cycles at 70℃is 92%and 96%re 2spectively.K ey w ords :polymer Li 2ion battery ;LiMn 2O 4;high 2temperature performance 能源和环境保护是21世纪急须解决的两大问题。
锂离子蓄电池LiMn2O4正极材料容量衰减机理分析伊廷锋;霍慧彬;陈辉;胡信国;高昆【期刊名称】《电源技术》【年(卷),期】2006(30)7【摘要】作为一种新型材料,锂离子蓄电池尖晶石LiMn2O4正极材料已经得到了广泛的应用,但容量衰减成为LiMn2O4商品化的主要障碍.从正极材料的溶解及相变化、电解液的分解、钝化膜的形成、过充电、集流体的腐蚀等方面介绍了影响LiMn2O4正极材料容量衰减的机理.提出了减少LiMn2O4正极材料容量衰减的几种方法,并对LiMn2O4正极材料的发展前景做出了展望.【总页数】5页(P599-603)【作者】伊廷锋;霍慧彬;陈辉;胡信国;高昆【作者单位】哈尔滨工业大学,应用化学系,黑龙江,哈尔滨,150001;哈尔滨工业大学,应用化学系,黑龙江,哈尔滨,150001;哈尔滨工业大学,应用化学系,黑龙江,哈尔滨,150001;哈尔滨工业大学,应用化学系,黑龙江,哈尔滨,150001;哈尔滨工业大学,应用化学系,黑龙江,哈尔滨,150001【正文语种】中文【中图分类】TM91【相关文献】1.锂离子蓄电池正极材料LiMn2O4的掺杂改性 [J], 崔益秀;杨固长;李晓兵;孟凡明2.锂离子蓄电池正极材料LiMn2O4--包覆LiCoO2对LiMn2O4循环性能的影响[J], 陈敬波; 胡国荣; 禹筱元; 彭忠东; 陈艳玲3.锂离子蓄电池正极材料LiMn2O4高温容量衰减解析 [J], 陈彦彬; 刘庆国4.锂离子蓄电池正极材料LiMn2O4的合成 [J], 刘光明; 李美栓; 高虹; 曾潮流; 钱余海5.Pechini预燃烧法合成锂离子蓄电池正极材料LiMn2O4 [J], 徐宁; 刘国强; 曾潮流; 吴维(山文)因版权原因,仅展示原文概要,查看原文内容请购买。
锂离子蓄电池正极材料LiMn2O4高温容量衰减解析陈彦彬; 刘庆国【期刊名称】《《电源技术》》【年(卷),期】2002(026)001【摘要】有关锂离子蓄电池正极材料LiMn2 O4的衰减机理的认识目前尚存在争议。
通过对LiMn2 O4高温循环数据的解析 ,比较了两个电位平台容量衰减的相对速度。
结果表明 ,放电过程中高电位平台容量的衰减速度快于低电位平台 ,而充电过程中低电位平台的衰减速度更快。
循环过程中极化增大所导致的电位平台间的容量转移决定了两平台容量的相对衰减速度 ,极化增大与钝化膜的增厚、电解质的积累性氧化所引起的电导率下降有关。
另外电解质的氧化也呈加速趋势 ,加快了高电位平台放电容量的衰减速度。
几种掺杂材料在循环过程中容量衰减的相对速度与极化增加的相对快慢完全吻合 ,进一步印证了容量衰减与材料溶解、结构变化、钝化膜增厚之间的对应关系。
【总页数】4页(P5-8)【作者】陈彦彬; 刘庆国【作者单位】北京科技大学固体电解质研究室北京 100083【正文语种】中文【中图分类】TM912.9【相关文献】1.锂离子蓄电池LiMn2O4正极材料容量衰减机理分析 [J], 伊廷锋;霍慧彬;陈辉;胡信国;高昆2.锂离子蓄电池正极材料LiMn2O4的掺杂改性 [J], 崔益秀;杨固长;李晓兵;孟凡明3.锂离子蓄电池正极材料LiMn2O4--包覆LiCoO2对LiMn2O4循环性能的影响[J], 陈敬波; 胡国荣; 禹筱元; 彭忠东; 陈艳玲4.锂离子蓄电池正极材料LiMn2O4的合成 [J], 刘光明; 李美栓; 高虹; 曾潮流; 钱余海5.Pechini预燃烧法合成锂离子蓄电池正极材料LiMn2O4 [J], 徐宁; 刘国强; 曾潮流; 吴维(山文)因版权原因,仅展示原文概要,查看原文内容请购买。
锂离子电池正极材料LiMn2O4的电化学性能锂锰氧化物是目前研究得较多的锂离子正极材料,它主要有LiMnO2系列和LiMn2O4系列,其制备方法也较多。
最初的制备方法由Hunter提出的,但所得产物的电化学性能差。
为了提高样品的电化学性能,人们提出了多种液相合成法。
如:离子交换法]、固相-液相法、Pechini法、动态过程法等。
液相合成法反应温度低、时间短,但反应过程复杂,设备要求高,所以目前市场上的锂锰氧化物大多采用固态合成方法。
LiMn2O4在高温下容量易衰减,即使在室温下性能良好的尖晶石LiMn2O4,在高温(50℃)下循环50周次后,其比容量将下降20%左右,而在室温或低温(0℃)时循环50周次后,比容量仅下降不到5%。
为了降低高温容量衰减的速度,可采用富锂或富锰的锂锰氧化物,使所用材料在高温下相对稳定。
可适当降低氧活性物质的比表面积,减少电解液在电极表面的分解。
本文采用溶胶-凝胶法合成富锂型Li1+xMn2O4,运用循环伏安和恒电流充放电法测量其电化学性能。
所制备的样品放电容量大,可逆性好,并保持原来的两步锂离子脱嵌过程。
1 实验部分1.1 药品和仪器硝酸锂LiNO3(AR),乙酸锰Mn(Ac)2•4H2O(AR),柠檬酸C6H8O7•H2O(CP),高氯酸锂LiClO4•3H2O(AR),碳酸二甲酯C3H6O3(CP),碳酸二乙酯C5H10O3(CP),碳酸乙烯酯C3H4O3(CP),锂片Li(AR),PVDF(C2H2F2)n(AR)。
电化学综合测试仪(Model283,美国PARC公司),电池综合测试仪(LK2000B,天津Lanlike公司),手套箱(Unilab1200/700W,德国Braun公司)。
1.2 锂锰氧化物的电化学性能测试文献报道了锂锰氧化物的合成。
将锂锰氧化物、石墨和PVDF按比例85∶10∶5(质量比)混合,用丙酮作溶剂,高速搅拌30~60min,得到凝胶状物,将此物均匀地涂在铝箔上,在轧机上轧成0.12~0.16mm的薄膜,然后在120℃下干燥2h,得面积为1cm2的工作电极。
作者简介:万传云(1971-),女,河南人,上海应用技术学院化学工程系副教授,博士,研究方向:电化学及化学电源。
基金项目:上海市重点学科建设项目(P1501)尖晶石LiMn 2O 4容量衰减的原因及性能改进万传云(上海应用技术学院化学工程系,上海 200235)摘要:分析了尖晶石LiMn 2O 4容量衰减的原因:Jahn 2Teller 效应、Mn 的溶解、有机电解液的分解、Li 和Mn 的错位、自放电及不稳定的两相结构等。
从合成方法、掺杂及表面修饰等角度,介绍了抑制尖晶石LiMn 2O 4容量衰减和提高循环性能的方法。
关键词:锂离子电池; 尖晶石LiMn 2O 4; 容量衰减; 正极材料中图分类号:TM91219 文献标识码:A 文章编号:1001-1579(2007)06-0463-03Main factors inducing capacity fading of spinel LiMn 2O 4and the performance improvementWAN Chuan 2yun(Depart ment of Chemical Engineering ,S hanghai Institute of Technology ,S hanghai 200235,China )Abstract :The factors of spinel LiMn 2O 4capacity fading such as Jahn 2Teller effect ,dissolution of Mn ,decomposition of organicelectrolyte ,dislocation of Li and Mn ,self discharge and unstable structures of two phases were analyzed 1The methods to prevent the capacity fading and increase the cycle performance of spinel LiMn 2O 4were introduced from the points of view of synthesis method ,doping and surface modification 1K ey w ords :Li 2ion battery ; spinel LiMn 2O 4; capacity fading ; cathode material 尖晶石LiMn 2O 4用于锂离子电池,具有原材料丰富、价格低廉及对环境友好等优点,但在充放电过程中,特别是高温环境下存在容量衰减快和循环性能差的问题,使它在在锂离子电池中的实用化进程受到制约[1]。
锂离子电池正极材料LiM n2O4陈敬波1,胡国荣2,禹筱元2,彭忠东2,庞海霞1,Ξ(1.中国地质大学研究生院,湖北武汉 430074;2.中南大学冶金科学与工程学院,湖南长沙 410083)摘 要:阐述了近年来LiMn2O4材料在结构、合成和循环性能的研究情况。
在结构上,论述了LiMn2O4作为正极材料的理论基础和其在充放电过程中的结构变化。
在合成上,论述了合成方法和原材料对性能的影响。
在循环性能上,论述了体相掺杂和表面相掺杂两种改善循环性能的方法。
关键词:锂离子二次电池;正极材料;LiMn2O4中图分类号:TM912.9 文献标识码:A 文章编号:1002-4336(2003)01-0014-05 锂离子电池在便携式电器设备上应用广泛,而且极有可能应用于电动汽车上,是目前电池市场上发展最快的电池之一。
目前,对锂离子电池正极材料的研究主要集中于氧化物上,现阶段正极材料主要为LiCoO2,LiNiO2,LiMn2O4。
锂离子电池正极材料LiCoO2由于制备工艺简单而获得商业化应用。
人们在LiCoO2的晶体结构、化学组成、颗粒粒度及粒度分布等因素对LiCoO2材料性能的影响方面进行了深入地研究,在此基础上使电池的性能得到改善。
但是钴金属资源较贫乏,价格较昂贵,环境污染大,导致电池的价格较高。
为了降低成本,人们普遍加强了对LiNiO2和LiMn2O4的研究。
在LiNiO2的结构中,氧原子构成立方密堆积序列,而Li和Ni 分别占据立方堆积中的八面体的3a与3b位,这种结构的任何错置都会影响LiNiO2的电化学性能。
在制备过程中条件控制发生变化时,LiNiO2很容易呈非化学计量[1]。
当Ni过量时,Ni会占据Li可能占据的位置,从而影响LiNiO2的电化学性能,因此LiNiO2的制备条件较苛刻。
LiMn2O4具有资源丰富、成本低廉、放电电压高、无毒性、无污染等优点,成为取代已商品化的LiCoO2的首选材料,是锂离子电池正极材料的研究热点之一,它的制备研究和电化学性能研究受到人们的普遍重视。
Electrochemical Investigations on Capacity Fading of Advanced Lithium-Ion Batteries after Storing at Elevated TemperatureMao-Sung Wu,*,z Pin-Chi Julia Chiang,and Jung-Cheng LinIndustrial Technology Research Institute,Materials Research Laboratories,Hsinchu 310,TaiwanCapacity fading of advanced lithium-ion batteries after elevated temperature storage was investigated by three-electrode measure-ments.Capacity fading of a battery increases by increasing the state-of-charge ͑SOC ͒during storage,especially at elevated temperatures.The reversible capacity of a battery ͑SOC =100%͒at 60°C decreases from 820to 650mAh ͑79.3%capacity retention ͒after 60days.At room temperature,a battery SOC influences the capacity fading only slightly;after 65days of storage,the reversible capacity decreases from 820to 805mAh ͑98.2%capacity retention ͒.Individual effects by the anode,cathode,and electrolyte on capacity fading are analyzed with three-electrode electrochemical ac impedance.The major contribution,from X-ray photoelectron spectroscopy ͑XPS ͒and energy-dispersive spectroscopy results,comes from cathode degradation as a result of cobalt dissolution at the LiCoO 2surface layer.A minor contribution comes from the continuous reactions between lithiated mesocarbon microbead ͑MCMB ͒electrode and electrolyte components,which in turn thicken the SEI film and consume available lithium ions.From X-ray diffraction and XPS results,high-temperature storage influences only the surface properties of MCMB and LiCoO 2electrodes;bulk properties remain unchanged.©2005The Electrochemical Society.͓DOI:10.1149/1.1896325͔All rights reserved.Manuscript submitted August 17,2004;revised manuscript received December 15,2004.Available electronically April 21,2005.In recent years,a new type of lithium-ion battery,the advanced lithium-ion battery ͑ALB,with laminated aluminum foil exterior ͒,has emerged because of its high energy density,long cycle life,and low self-discharge properties.ALB offers similar energy character-istics as the traditional lithium-ion battery but with a higher flexibil-ity on the wide variety of sizes and shapes in design.1,2In practical application,batteries are operated and stored at vari-ous conditions ͑temperature and humidity ͒.Temperature is a crucial factor in the performance of lithium-ion batteries.Detriments may result from high temperature because it significantly affects capacity fading.3-5Amatucci et al.3report that LiMn 2O 4-based lithium-ion rechargeable batteries suffer from poor storage and cycling perfor-mance at elevated temperatures.A LiMn 1.7Al 0.3O 4-hard carbon bat-tery is deteriorated because of anode film formation between 50and 75°C.The film is generated from the decomposed products of LiPF 6,polymerized ethylene carbonate ͑EC ͒,and Mn ions dissoci-ated from the positive active materials.4Wang et al.5propose a mechanism for irreversible capacity loss of lithium-ion spinel cells ͑coin cell ͒in high-temperature storage.Loss of cyclable lithium ions to the carbonaceous anode because of cathode acid generation is the reason.Another effect of the acid is that spinels form from Mn dissolution,but the formation cannot be accounted for capacity loss,nor does it cause degradation of the SEI layer on the carbonaceous anode.Capacity fading of the commercially available LiCoO 2-based lithium-ion batteries cycled at room temperature has been investi-gated by means of electrochemical impedance spectroscopy.Results show that cycled positive electrode contributes more to the fading because of continuous electrolyte oxidation.6Capacity fading of Sony 18650cells cycled at elevated temperatures has been investi-gated by Ramadass et al.,7concluding that the fading was due to a repeated film formation and dissolution over the surface of anode.This repetition increases the rate of lithium loss and increases the anode resistance.In both cases,6,7the external metallic cans are opened for electrode retrieval,and new half-cells are made in glove boxes filled with ultrapure argon to test for the electrodes’separate properties.Reassembly is inconvenient and may cause damage to the electrodes.As mentioned earlier,capacity fading of lithium-ion batteries may result from the anode,the cathode,and the electrolyte.It is difficult to analyze the phenomena with a two-electrode system.If areference electrode may be added,then more mechanisms may be studied and phenomena understood.Therefore,this paper is to in-vestigate the capacity fading of commercial ALB after high-temperature storage using a three-electrode system.Three-electrode electrochemical impedance is used to analyze the individual effects by the anode,the cathode,and the electrolyte.Structural changes in the electrode materials after storage are also studied.ExperimentalComposition of the lithium-cobalt-oxide electrode was 90wt %LiCoO 2͑10m diam,Nippon Chemical ͒,7wt %KS6͑Timcal SA ͒,and 3wt %polyvinylidene fluoride ͑PVDF,Kuraha Chemical ͒binder.Powder was mixed in a solvent of N -methyl-2-pyrrolidone ͑NMP,Mitsubishi Chemical ͒to form slurry.The slurry was coated onto aluminum foil ͑20m in thickness ͒and dried at 140°C.The electrode ͑200m in thickness ͒was then pressed to a resultant thickness of 150m.The mesocarbon microbead ͑MCMB ͒elec-trode,composed of 92wt %MCMB ͑Osaka Gas,25m diam ͒with 8wt %PVDF binder and NMP,was subjected to the same processing steps as the lithium-cobalt-oxide electrode,except that it was coated onto copper foil ͑15m thick ͒.Resultant thickness of the MCMB electrode was 135m ͑before pressing the thickness was 180m ͒.Batteries were assembled in a dry room.The manufacturing pro-cess was as follows:Both electrodes were dried at 120°C for 3h in vacuum and then cut into appropriate sizes for winding with sepa-rator ͑Celgard 2320,20m in thickness ͒.The roll of electrodes and separator was inserted into an aluminum-plastic laminated film case.3.2g of electrolyte was injected and then the case was sealed off at a reduced pressure.Electrolyte was 1M lithium hexafluorophos-phate ͑LiPF 6,Tomiyama Pure Chemical ͒in a mixture of 25%EC ͑Merck ͒,25%propylene carbonate ͑PC,Merck ͒,and 50%diethyl-ene carbonate ͑DEC,Merck ͒by volume.Water content of the elec-trolyte measured via Carl Fischer titration in an argon-filled glove box was less than 10ppm.The fresh battery had external dimen-sions of 3.8ϫ35ϫ70mm.The capacity was about 820mAh and weighed 17.5g.To monitor changes in voltage and impedance of the anode or cathode,a reference electrode was placed in the center of the battery between the two electrodes.A lithium chip was pressed onto one end of a fine copper wire to make the reference electrode.Before stor-age,the three-electrode batteries were cycled between 4.2and 2.75V for three times with a charge/discharge unit ͑Maccor model series 4000͒.The procedure consisted of constant current at 82mA followed by constant voltage at 4.2V until the current tapered down*Electrochemical Society Active Member.zE-mail:ms គwu@Journal of The Electrochemical Society,152͑6͒A1041-A1046͑2005͒0013-4651/2005/152͑6͒/A1041/6/$7.00©The Electrochemical Society,Inc.A1041to 20mA.Discharge current was 82mA.The batteries were charged to different SOCs ͑40,70,and 100%͒and stored open-circuited at room temperature and at 60°C for 1-65days.During storage,in order to determine the reversible capacity,batteries were charged/discharged occasionally for two cycles at 82mA ͑about 0.1C ͒at room temperature.Then the batteries were charged again to the desired SOC ͑s ͒and the storage process continued.Maccor facilitated simultaneous and independent recordings of the total cell voltage and the half-cell voltage for both positive and negative electrodes vs.the reference electrode.Three-electrode im-pedance measurements were taken by means of a potentiostat/galvanostat ͑Schlumberger SI 1286͒and a frequency response ana-lyzer ͑Schlumberger SI 1255͒.Scanning frequencies ranged from 50kHz to 0.01Hz,perturbation amplitude 10mV.Scanning electron microscopy ͑SEM ͒and energy-dispersive spectrometry ͑EDS ͒were done with a field emission SEM ͑FE-SEM,LEO-1530at an accelerating voltage of 15keV and coupled with an EDS ͑LEO-1550͒.Crystal structures of the MCMB and LiCoO 2were identified by X-ray diffraction ͑XRD,XD-5͒with a Cu K ␣target ͑wavelength 1.54056Å͒.Diffraction data were col-lected for 1s at each 0.04°step width over 2,ranging from 10to 90°.Surface properties of the cathode after storage were confirmed by X-ray photoelectron spectroscopy ͑XPS;Perkin Elmer,PHI Quantera SXM ͒with a focused monochromatic Al K ␣radiation ͑1486.6eV ͒.Before any experiment,batteries were fully charged,disassembled in a glove box,washed with DEC,and dried in vacuum at 100°C for 5h.Sample powders of anode and cathode were scraped off the electrodes’current collector.Results and DiscussionCapacity variations of ALB during storage .—Figure 1shows the capacity variation of ALBs during storage at different SOCs and temperatures.Capacity decay at room-temperature storage ͑Fig.1a ͒is negligible as compared with 60°C ͑Fig.1b ͒.At room temperature,a battery’s SOC influences the fading trend slightly.The original capacity of a battery SOC =100%is 820mAh;after 65days of room-temperature storage it decreased to 805mAh ͑98.2%capacity retention ͒.Lowering a battery’s SOC hinders its capacity decay,as one can see from Fig.1a that the capacity remains unchanged for a battery SOC =40%.Therefore,in addition to the storage tempera-ture,a battery’s SOC is a factor in capacity fading.Batteries stored at 60°C show a steeper capacity fading trend,and the decrease is most significant in the first few days ͑Fig.1b ͒.The fading depends strongly on a battery’s SOC;the higher the SOC,the more the fading.Capacity of a fully charged battery ͑SOC =100%͒decreases from 820to 650mAh after 60days at60°C ͑79.3%capacity retention ͒.The fade of a battery SOC =40%is relatively less,from 820to 750mAh ͑91.5%capacity re-tention ͒.The influence of SOC on capacity fading becomes more pronounced with elevating the storage temperature.Three-electrode electrochemical impedance analysis .—Early re-searchers believed that impedance of a battery is contributed by different factors,such as the electrolyte,the passivation film,charge transfer,lithium-ion diffusion in electrodes,etc.8-13Three-electrode electrochemical impedance spectroscopy ͑EIS ͒has been developed to analyze the individual effects of each component on capacity paring the Nyquist plot with an equivalent circuit model identifies the sources of impedance.Figure 2a shows both the measured and the simulated impedance spectra of a full battery before and after 15days of storage at 60°C ͑batteries are fully charged,SOC =100%͒.With respect to the ref-erence lithium electrode,impedance of the anode ͑Fig.2b ͒,and cathode ͑Fig.2c ͒are also shown in the figure.Before any measure-ment,the spectra of individual anode and cathode are summed up to check the method validity by ensuring that the resultant combined spectra are to be equal to the full battery spectra ͑Fig.2a ͒.The nearly overlapping curves prove its applicability and reliability.Cor-responding equivalent circuits of the anode and cathode are pre-sented in Fig.3.R e resembles the ohmic electrolyte resistance.R 1,Figure 1.Capacity variations of ALB with different SOCs during storage at ͑a ͒room temperature and ͑b ͒60°C.Figure 2.Measured and simulated impedance spectra of the ͑a ͒full battery,͑b ͒anode,and ͑c ͒cathode before and after 15days storage at 60°C.͑Bat-teries are fully charged,SOC =100%.͒Figure 3.The corresponding equivalent circuit used for the analysis of the impedance spectra of ͑a ͒anode and ͑b ͒cathode.11A1042Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒R 2,and R 3are the different-layer SEI-film resistances.C 1,C 2,and C 3are the corresponding capacitance to R 1,R 2,and R 3.R CT is the charge-transfer resistance and C DL is the double-layer capacitance.W is the Warburg impedance.The semicircle in the high-frequency range,corresponding to the surface film resistance,is composed of smaller semicircles.Each contributes resistance and capacitance from different layers of the SEI.In the low-frequency range,the semicircle resembles the charge-transfer resistance,and the linear section resembles the solid-state lithium-ion diffusion.11In general,the presence of such a linear portion implies that diffusion of lithium ions is the semi-infinite diffusion condition.Semi-infinite diffusion in host materials is slower than in the electrolyte solution;therefore,the linear portion is assumed to be the semi-infinite diffusion in solid materials.Literature has shown many different corresponding cir-cuits to simulate the anode and cathode precisely.10-13In order to have a higher precision in modeling,different circuits have been simulated,shown in Fig.3.There are three R-C combinations in parallel to resemble anode SEI,but only one in the cathode circuit.Simulation results are identical to the experimental measurements.From Fig.2,changes in the cathode spectra are quite different from that of the anode after storage.The two electrodes have different resistance and surface chemistry,and therefore are affected differ-ently by high temperature.Individual contribution from each of the electrolyte resistance,film resistance,and charge-transfer resistance in anode and cathode are presented,respectively,in Fig.4.During high-temperature stor-age,changes in the anode resistance are smaller than that of the cathode.In the anode ͑Fig.4a ͒,resistance changes are larger in the surface film ͑the sum of R1,R2,and R3͒and charge-transfer than in the electrolyte.Both resistances are increased with time,especially the film resistance.Electrolyte is believed to decompose partially and continuously on the MCMB surface to thicken the SEI film,and this process is accelerated above room temperature.14As the SEI film thickens,lithium-ion migration in the film may be delayed and results in increased film resistance.The thickened film covers the active sites on the MCMB surface and blocks lithium ions from intercalating/deintercalating into the layer structure and charge-transfer resistance increases.Resistance of the electrolyte does not change because the decomposition amount is small ͑compared with the total electrolyte amount in a test battery ͒and therefore has little effect.In the cathode ͑Fig.4b ͒,resistance change patterns are similar;electrolyte resistance remains unchanged,and both the resistance of surface film and charge transfer are increased.The increase in film resistance comes from the formation of SEI on the surface of theLiCoO 2electrode.However,unlike the anode,the major contribu-tion to cathode impedance is the charge-transfer resistance,which increases most significantly with storage at 60°C.Charge-transfer resistance generally depends strongly on the surface properties of electrode materials.Therefore,a possible source for the increased charge-transfer resistance is the structural collapse of the LiCoO 2electrode surface during high-temperature storage.The deteriorated surface may block lithium ions from intercalating/deintercalating into the layer structure and increases the charge-transfer resistance.When the anode and cathode componential resistances are com-pared,the resistance that is most high-temperature-storage affected and controlled is the charge-transfer resistance of the cathode.With the three-electrode system,individual resistances of the ALB com-ponents may be studied separately,so improvements on the electro-chemical performance of each and even of the whole battery are possible.As the cathode resistance contributes primarily to the total cell resistance after high-temperature storage,it is also interesting to investigate the changes in the diffusion resistance of cathode after storage.In general,at low frequencies,the electrochemical interca-lation process is controlled by the semi-infinite diffusion.Ideally Z Јvs.Z Љis a 45°straight line ͑Warburg region ͒.15-17The slope of the straight line in the Warburg region yields the Warburg prefactor ͑͒.Apparent diffusion coefficients of lithium intercalation can be cal-culated according to the following equation 16,17=RTn 2F 2A ͱ2ͩ1C LiD Li0.5͓ͪ1͔where C Li is the concentration of Li ion incorporated inside a com-posite electrode,D Li is the apparent diffusion coefficient,A the geo-metrical area of the composite electrode,n the number of electrons transferred,F is Faraday’s constant,R the ideal gas constant,T absolute temperature,and is the angular frequency.The real part of the complex impedance ͑Z Ј͒obtained from the cathode before and after 15days storage at 60°C plotted vs.−1/2is shown in Fig.5͑batteries are fully charged,SOC =100%͒.When comparing these two plots,lithium-ion concentration is assumed to be the same be-cause the electrodes are charged to the same state;composition of the materials,geometrical area,and the density are the same too.The change in Warburg prefactor value is only attributed to the diffusion coefficient.Warburg prefactors for the fresh and high-temperature-aged cathode obtained from the slopes are 0.00072⍀s −1/2and 0.0011⍀s −1/2,respectively.A small Warburg prefactor value may lead to high utilization of the electrodeunderFigure 4.Individual contribution from each of the electrolyte resistance,film resistance,and charge-transfer resistance in the ͑a ͒anode and ͑b ͒cath-ode.͑Batteries are fully charged,SOC =100%.͒Figure 5.Real part of the complex impedance ͑Z Ј͒obtained from the cath-ode ͑a ͒before and ͑b ͒after 15days of storage at 60°C plotted vs.−1/2.͑Batteries are fully charged,SOC =100%.͒A1043Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒high-rate discharge conditions ͑diffusion control ͒.After high-temperature storage,the cathode surface layer structure has changed and the destructed layers may reduce the amount of diffusion path-ways,decreasing the utilization of active materials.In order to show the significant changes in charge-transfer resis-tance,impedance spectra of the cathode are measured while passing through with a C/10current.Generally,discharging a battery during impedance scanning,the battery’s charge-transfer resistance de-creases with increasing the current value,because of the increasing driving force in the electrode kinetics.Figure 6shows the EIS after different storage periods at 60°C by passing a C/10current through.The EIS spectrum of a battery after 3day storage ͑Fig.6a ͒shows significant changes.Charge-transfer resistance changes from 0.03to 0.0245⍀with the addition of C/10current.The decrease in charge-transfer resistance shows that an imposing current acceler-ates electrochemical reactions on the electrode surface.However,the battery after 30day storage at 60°C ͑Fig.6b ͒shows no signifi-cant changes.Charge-transfer resistance changes only from 0.1365to 0.1339⍀with the addition of C/10current.When a bat-tery with an original higher charge-transfer resistance is applied with a C/10current density,electrochemical reactions are not enhanced significantly.Electrochemical reactions are improved by increasing the driving force,i.e.,increased the implied currents,so to decrease the charge-transfer resistance.It may be concluded that the charge-transfer resistance of a LiCoO 2electrode after high-temperature storage for a period of time has increased significantly.Surface properties and bulk structures of the MCMB and LiCo O 2electrodes .—It has been reported that LiCoO 2is unstable at an open-circuit potential ͑OCP ͒higher than 4.2V vs.Li/Li +due to a possibility of cobalt dissolution from LiCoO 2.18Dissolved cobalt ions therefore should be deposited onto MCMB surfaces in fully charged batteries because the reduction potential of cobalt is much higher than the potential for lithium ions to intercalate into MCMB during charging.19EDS,XPS,and XRD are used to observe the changes in surface properties and bulk structure of the electrodes after storage.Figure 7shows the EDS patterns of fully charged MCMB electrodes during storage at different temperatures after 25days.The battery stored at 60°C shows a cobalt peak,indicating the presence of cobalt on the MCMB electrode surface.After high-temperature storage,the LiCoO 2surface structure has deteriorated,and cobalt is dissociated and deposited onto the MCMB surface during charging.Cathode surface deterioration is responsible for the increased charge-transfer resistance ͑Fig.4b ͒.High storage tempera-ture and high SOC of a battery may be the reasons for the acceler-ated dissolution rate of cobalt.The XPS technique was chosen to observe the changes on sur-face properties after high-temperature storage.The Co 2p XPS spec-tra of the fully charged cathode electrodes at different storing tem-peratures after 25days is shown in Fig.8.There are two main peaks of binding energies,corresponding to Co 2p 1/2͑around 795eV ͒and Co 2p 3/2͑around 780eV ͒.20The two XPS spectra have a similar shape except a shift in their binding energy.The binding energy of cathode after high-temperature storage shifts to a higher value and has a shoulder on the high-energy side of the Co 2p 1/2component.This difference indicates that the oxidation state of cobalt in the cathode after storage is higher than that of a fresh cathode.Previous publications show that when the amount of Co 4+ions increases in a redox system of lithium-cobalt-oxide ͑Co 4+/Co 3+͒,the XPS peaks of Co shift toward the high-energy side.20Accordingly,as both the lithium and oxygen contents are kept constant in the lithium-cobalt-oxide electrode,an increase of the cobalt oxidation state increases the amount of cobalt dissolution,suitably explaining the XPSdata.Figure 6.EIS of cathode after ͑a ͒3-day and ͑b ͒30-day storage at 60°C.EIS is measured while passing a current ͑C/10͒through.͑Batteries are fully charged,SOC =100%.͒Figure 7.EDS pattern of MCMB electrodes at fully charged states after 25days of storage at ͑a ͒room temperature,and ͑b ͒60°C.Figure 8.Co 2p XPS peaks of cathodes with different storage temperature at fully charged state after 25days of storage at ͑a ͒room temperature,and ͑b ͒60°C.A1044Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒According to Amatucci et al.,18LiCoO 2starts structural deterio-ration when the voltage charged is higher than 4.20V ͑vs.Li/Li +͒.Lithium ions may not be able to intercalate/deintercalate into the cathode,leading to a decrease in battery capacity.The OCP of com-mercial lithium-ion batteries in fully charged state ͑SOC =100%͒is around 4.2V,referring to an OCP of LiCoO 2electrode higher than 4.2V vs.Li/Li +.Therefore,in practical usages,capacity fading of high-temperature storage lithium-ion batteries is inevitable.Figure 9shows the XRD pattern of MCMB and LiCoO 2elec-trodes ͑SOC =100%͒after storing at different temperatures.Changes in the patterns of MCMB are small ͑Fig.9a ͒,referring to a very little changed MCMB in its bulk structure.The only noticeable change occurs on the surface film,according to the ac impedance data ͑Fig.4a ͒.Similar results are found in the LiCoO 2electrode:high-temperature storage has little effect on the bulk structure,with the only difference being in its surface chemistry.From XPS data,cobalt dissolution occurs at the cathode.From EDS,these dissoci-ated cobalt ions are deposited on the anode.Cobalt dissolution af-fects the surface structure of lithium-cobalt-oxide electrodes,and affects the surface film of MCMB electrodes.A generality may be concluded that capacity fading of ALBs after high-temperature stor-age is not caused by structural changes of the materials but the surface phenomena on both the MCMB and LiCoO 2electrodes.OCP and charge/discharge curve of ALB after high temperature storage .—During storage,batteries are charged/discharged occa-sionally for two cycles at 82mA ͑about 0.1C ͒to determine their reversible capacity.After two cycles,batteries are charged to their original SOCs and the storage process continues.During the two-cycle capacity-determining step,batteries are charged at room tem-perature and OCP measured.Figure 10shows the OCP variations of the MCMB and LiCoO 2electrodes after 60°C storage at their fully charged states ͑SOC =100%͒.OCP of the MCMB electrode in-creases with the storage time,from 0.01to 0.06V after 25days.A fully charged MCMB electrode self-discharges and loses lithium ions during storage,leading to an increase in its OCP ͑OCP is de-pendent on the lithium-ion concentration in a particular electrode ͒.The loss is mainly attributed by the SEI.As partial dissolution and decomposition of the SEI film possibly thins itself,slowly becoming more porous and less protective,the film becomes incapable of pre-venting electrons from tunneling through anymore.14Intercalated lithium ions may continuously diffuse out from the interior of the MCMB electrode through the damaged SEI to react with the elec-trolyte;consequently,a decrease in the lithium-ion concentration in the MCMB electrode ͑higher OCP ͒has resulted.In LiCoO 2,OCP increases from 4.20to 4.25V after 25days of storage at 60°C.Increase in OCP indicates a decreased lithium-ionconcentration in LiCoO 2electrode,and the decrease results from the consumption of lithiated lithium ions with electrolyte.In both elec-trodes,lithium-ion concentration decreases because reversible lithium ions from LiCoO 2are decreased after high-temperature stor-age;in which anode SEI and surface structural deterioration of LiCoO 2͑cobalt dissolution ͒are the two major sources.Generally,high temperature accelerates the continuous decomposition-formation process of the SEI and accelerates the surface structure deterioration.When a battery is fully charged ͑SOC =100%͒,MCMB has high reactivity with the electrolyte,and LiCoO 2has a low structural stability which favors the cobalt dissolution.Figure 11shows the charge/discharge curves of a MCMB elec-trode before and after 25days of storage.Below 0.2V ͑vs.Li/Li +͒,there are three significant oxidation-reduction plateaus ͑marked 1,2,3͒,each representing the formation and decomposition of lithiated carbons.According to previous studies on lithiation of carbon fiber and graphite,these oxidation-reduction plateaus correspond to the potentials of two-phase coexistence.21-23Charge/discharge curves before and after storage are almost identical,different only in poten-tial plateau 3.Due to a shortage in the reversible lithium ions,con-sumed by anode SEI and cobalt dissolution from cathode,the bat-tery after storage can never be fully charged back to its original capacity,and the difference in plateau yer structuresofFigure 9.XRD patterns of ͑a ͒MCMB and ͑b ͒LiCoO 2electrodes after storage at room temperature and 60°C ͑SOC =100%͒.Figure 10.OCP variations of MCMB and LiCoO 2electrodes after 60°C storage at fully charged state ͑SOC =100%͒.Figure 11.Charge/discharge curves of the MCMB electrode before and after 25days of storage.A1045Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒MCMB remain unchanged after storage͑Fig.11͒,corresponding to the XRD pattern͑Fig.9͒.The only difference is in the surface char-acteristics.ConclusionsCapacity fading of an ALB after storage depends on the battery’s SOC and its storage temperature.The relationships are directly pro-portional.Capacity of the battery SOC=100%decreases from 820to650mAh after60days of storage at60°C.Three-electrode electrochemical ac impedance technique is used to analyze the indi-vidual effects by the anode,cathode,and electrolyte on capacity fading.After storage,changes in the anode resistance are smaller than that of the cathode.In anode,changes in electrolyte resistance are small.Both thefilm and charge-transfer resistance increase slightly with storage time.But a different resistance result has been obtained for the cathode.After high-temperature storage,the surface layer structure has changed.The binding energy of cathode after high-temperature storage shifts to a higher value and has a shoulder on the high-energy side of the Co2p1/2component,indicating the cobalt dissolution.The destructed cathode layers therefore reduce the amount of diffusion pathways for lithium ions and decrease the utilization of the active material.A major contribution to capacity fading is the cathode degradation due to cobalt dissolution from the surface layer.Lithium-ion concentration decrease in both the MCMB and LiCoO2electrodes after storage suggests less reversible lithium ions,mainly due to the continual SEI formation/ decomposition on MCMB electrode,and to the surface structural deterioration of LiCoO2electrode͑cobalt dissolution͒.From the XRD results,high-temperature storage affects only the surface prop-erties of electrodes,the original bulk properties remain unchanged. Charge/discharge curves of MCMB electrodes demonstrate a short-age of reversible lithium ions,and most importantly,an undamaged internal structure.AcknowledgmentsThis work was supported by the Ministry of Economic Affairs of Taiwan under Contract no.93-EC-17-A-08-R7-0312.The authors also thank Dr.J.T.Lee for assistance with sample preparation and XPS analysis.The Industrial Technology Research Institute assisted in meeting the pub-lication costs of this article.References1.N.Takami,T.Ohsaki,H.Hasebe,and M.Yamamoto,J.Electrochem.Soc.,149,A9͑2002͒.2.N.Takami,M.Sekino,T.Ohsaki,M.Kanda,and M.Yamamoto,J.Power Sources,97-98,677͑2001͒.3.G.G.Amatucci,C.N.Schmutz,A.Blyr,C.Sigala,A.S.Gozdz,rcher,andJ.M.Tarascon,J.Power Sources,69,11͑1997͒.4.K.Araki and N.Sato,J.Power Sources,124,124͑2003͒.5. E.Wang,D.Ofer,W.Bowden,N.Iltchev,R.Moses,and K.Brandt,J.Electro-chem.Soc.,147,4023͑2000͒.6. D.Zhang,B.S.Haran,A.Durairajan,R.E.White,Y.Podrazhansky,and B.N.Popov,J.Power Sources,91,122͑2000͒.7.P.Ramadass,B.Haran,R.White,and B.N.Popov,J.Power Sources,112,614͑2002͒.8. A.Funabiki,M.Inaba,Z.Ogumi,S.Yuasa,J.Otsuji,and A.Tasaka,J.Electro-chem.Soc.,145,172͑1998͒.9.M.S.Wu,P.C.Chiang,J.C.Lin,and Y.S.Jan,Electrochim.Acta,49,1803͑2004͒.10.M.S.Wu,P.C.Chiang,and J.C.Lin,J.Electrochem.Soc.,152,A47͑2005͒.11. D.Aurbach,J.Power Sources,89,206͑2000͒.12.S.Zhang,M.S.Ding,K.Xu,J.Allen,and T.R.Richard,Electrochem.Solid-StateLett.,4,A206͑2001͒.13. C.R.Yang,J.Y.Song,Y.Y.Yang,and C.C.Wan,J.Appl.Electrochem.,30,29͑2000͒.14.T.Zheng,A.S.Gozdz,and G.G.Amatucci,J.Electrochem.Soc.,146,4014͑1999͒.15. C.Ho,I.D.Raistrick,and R.A.Huggins,J.Electrochem.Soc.,127,343͑1980͒.16.T.S.Ong and H.Yang,Electrochem.Solid-State Lett.,4,A89͑2001͒.17. A.J.Bard and L.R.Faulkner,Electrochemical Methods;Fundamentals and Ap-plications,p.328,John Wiley&Sons,Inc.,New York͑1980͒.18.G.G.Amatucci,J.M.Tarascon,and L.C.Klein,Solid State Ionics,83,167͑1996͒.19.S.Komaba,N.Kumagai,and Y.Kataoka,Electrochim.Acta,47,1229͑2002͒.20.J.C.Dupin,D.Gonbeau,H.Benqlilou-Moudden,P.Vinatier,and A.Levasseur,Thin Solid Films,384,23͑2001͒.21.T.Ohzuku,Y.Iwakoshi,and K.Sawai,J.Electrochem.Soc.,140,2490͑1993͒.22.N.Takami,A.Satoh,M.Hara,and T.Ohsaki,J.Electrochem.Soc.,142,2564͑1995͒.23.N.Takami,A.Satoh,M.Hara,and T.Ohsaki,J.Electrochem.Soc.,142,371͑1995͒.A1046Journal of The Electrochemical Society,152͑6͒A1041-A1046͑2005͒。
【干货】锂离子电池容量衰减变化及原因分析来源:锂电联盟会长一、锂离子电池容量衰减现象分析正负极、电解液及隔膜是组成锂离子电池的重要成分。
锂离子电池的正负极分别发生锂的嵌入脱出反应,其正负极的嵌锂量成为影响锂离子电池容量的主要因素。
因此,必须维持锂离子电池正负极容量的平衡性,才能确保电池具备最佳性能。
通常来说,锂离子电池常用有机溶剂和电解质(锂盐)组成的电解质溶液,该电解质溶液应当具备足够的导电性、稳定性,并且能够与电极实现相容。
对于隔膜来说,其性能是决定电池内阻及界面结构的主要因素,对电池容量衰减变化情况有着直接的影响。
若隔膜的质量和性能优越,将会显著提升锂离子电池的容量和综合性能。
一般情况下,隔膜在电池中主要起着分隔电池正极和电池负极的作用,避免正负极发生接触而导致电池短路,同时还能够放行电解质离子,以充分发挥电池效用。
锂离子电池中的化学反应不仅仅包括锂离子嵌入和脱出过程中的氧化还原反应,还包括诸如负极表面SEI膜的生产和破坏、电解液的分解以及活性材料的结构变化和溶解等副反应,这些副反应都是造成锂离子电池容量衰减的原因。
电池循环过程中发生容量衰减和损失是必然现象,因此,为了提高电池容量和性能,国内外各领域的学者充分研究了锂电池容量损失的机理。
目前,可知引起锂离子电池容量衰减的主要因素包括正负极表面形成SEI钝化膜、金属锂沉积、电极活性材料的溶解、阴阳极氧化还原反应或副反应的发生、结构变化及相变化等。
当前,对锂离子电池容量衰减变化及其原因仍然在不断研究的过程中。
二、过充电2.1 负极过充反应能够作为锂离子电池负极的活性材料种类较多,以碳系负极材料,硅基、锡基负极材料、钛酸锂负极材料等为主要材料。
不同类型的碳材料具有不同的电化学性能,其中,石墨具有导电性能较高、层状结构优良、结晶度高的优势,较为适合锂的嵌入和脱出,同时石墨材料价格实惠、存量较多,因此,应用较为广泛。
当锂离子电池首次充放电时,溶剂分子会在石墨表面发生分解反应,并形成名为SEI的钝化膜,这一反应会引发电池容量损失,并且属于不可逆的过程。
收稿日期:2001204218 作者简介:陈彦彬(1969—),男,河南省人,高级工程师,博士,主要研究方向为化学电源与电极材料、电镀及电解质溶液化学。
Biography :CHEN Yan 2bin (1969—),male ,senior engineer ,Ph D.锂离子蓄电池正极材料LiMn 2O 4高温容量衰减解析陈彦彬, 刘庆国(北京科技大学固体电解质研究室,北京100083)摘要:有关锂离子蓄电池正极材料LiMn 2O 4的衰减机理的认识目前尚存在争议。
通过对LiMn 2O 4高温循环数据的解析,比较了两个电位平台容量衰减的相对速度。
结果表明,放电过程中高电位平台容量的衰减速度快于低电位平台,而充电过程中低电位平台的衰减速度更快。
循环过程中极化增大所导致的电位平台间的容量转移决定了两平台容量的相对衰减速度,极化增大与钝化膜的增厚、电解质的积累性氧化所引起的电导率下降有关。
另外电解质的氧化也呈加速趋势,加快了高电位平台放电容量的衰减速度。
几种掺杂材料在循环过程中容量衰减的相对速度与极化增加的相对快慢完全吻合,进一步印证了容量衰减与材料溶解、结构变化、钝化膜增厚之间的对应关系。
关键词:锂离子蓄电池;LiMn 2O 4尖晶石;容量;电解质;自放电中图分类号:TM 912.9 文献标识码:A 文章编号:10022087X (2002)0120005204Analysis of the capacity fading of LiMn 2O 4a s cathode material forLi 2ion batterie s at high temperatureCHEN Yan 2bin ,L IU Qing 2guo(L aboratory of Soli d Elect rolyte ,Beiji ng U niversity of Science and Technology ,Beiji ng 100083,Chi na )Abstract :The dispute of capacity 2fading mechanism for spinel LiMn 2O 4as the cathode material used in Li 2ion battery is still remaining.The fading rates at each voltage plateau were compared by analyzing the cycling data of the spinel LiMn 2O 4.The results show that the capacity 2fading rate at the upper voltage plateau is more rapid 2ly than that at the lower voltage plateau during discharge.However ,the fading rate at the upper voltage plateau is slower than that at the lower voltage plateau in charging process.The relative fading rate is lied on the capaci 2ty shift between the two voltage plateaus ,which is caused by the polarization increasing during cycling process.The polarization increasing is related to the passivated 2film thickening and the conductivity decreasing due to the accumulative oxidation of electrolyte.In addition ,the fading rate of discharge capacity at the upper voltage plateau is also increased by the accelerating trend of electrolyte oxidation.The related capacity 2fading rate of se 2veral doped materials during cycling process is in accordance with the related rate of polarization increasing.Thus ,the corresponding relations among the capacity fading ,the material dissolving ,the structure modifying and the passivated 2film thickening are confirmed.K ey w ords :Li 2ion batteries ;spinel LiMn 2O 4;capacity ;electrolyte ;self 2discharge 目前以LiCoO 2为正极材料的锂离子蓄电池以其比能量高、循环寿命长的优点在便携式电器中得到成功应用,但由于钴资源有限、价格昂贵,正极材料的成本占电池总成本的1/3以上,因此其大规模应用受到限制。
三元锂离子电池高温存储容量衰减原因三元锂离子电池是目前应用最广泛的电池之一,具有高能量密度和长循环寿命等优点。
然而,在高温环境下存储,其容量会出现衰减现象,这给其应用带来了一定的困扰。
下面我将从几个方面来介绍三元锂离子电池高温存储容量衰减的原因。
高温会导致三元锂离子电池中正极材料的结构变化,从而影响电池的容量。
在高温下,正极材料中的锂离子会与电解液中的溶剂发生反应,形成一种称为“界面固体电解质膜”(SEI)的物质。
这种物质具有一定的导电性,会导致电池的内阻增加,进而降低电池的容量。
高温还会加速电池中正极材料与电解液之间的反应,导致电池容量的衰减。
在正常工作状态下,电池中的锂离子在正负极之间来回迁移,完成电池的充放电过程。
然而,在高温环境下,电解液中的溶剂会发生分解,产生一些不稳定的物质,这些物质会与正极材料发生反应,导致正极材料的结构发生改变,进而影响电池的容量。
高温还会加速电池中的自放电过程,导致电池容量的损失。
在高温环境下,电池中的正负极之间的隔膜会发生热分解,形成一些导电性物质,这些物质会导致电池的自放电速度加快,从而降低了电池的容量。
高温还会导致电池中的锂离子迁移速率变慢,影响电池的容量。
在正常工作状态下,锂离子需要通过电池中的电解液来完成正负极之间的迁移。
然而,在高温环境下,电解液的黏度会增加,导致锂离子的迁移速率变慢,进而影响了电池的容量。
高温存储会导致三元锂离子电池容量衰减的原因主要包括正极材料的结构变化、正负极之间的反应、自放电过程加速以及锂离子迁移速率变慢等。
为了解决这个问题,我们可以采取一些措施,如优化电池的结构设计、改进电解液的配方以及降低电池的工作温度等,以提高三元锂离子电池在高温环境下的性能和容量。
锂离子电池正极材料LiMn2O4高温性能的应用研究冼海燕; 张中太; 赵丰刚; 程晓燕【期刊名称】《《电源技术》》【年(卷),期】2011(035)010【总页数】5页(P1193-1197)【关键词】锂离子电池; 锰酸锂; 掺杂; 高温循环【作者】冼海燕; 张中太; 赵丰刚; 程晓燕【作者单位】东莞新能源科技有限公司广东东莞523080【正文语种】中文【中图分类】TM912.9锂离子电池是20世纪90年代发展起来的一种新型的绿色环保电池。
因其工作电压高、质量轻、比能量大、自放电小、循环寿命长、污染小等突出优点,已成为本世纪移动电话、笔记本电脑、数码相机等便携电子设备的首选电源。
随着电动汽车等车用锂离子电池的发展,锂离子电池的成本及安全性能成为开发锂离子电池的重点。
尖晶石锰酸锂(LiMn2O4)材料具有资源丰富,易制备,成本低,安全性能好,环保,放电平台高等突出的优点,其低廉的成本和优越的安全性,使其在规模化发展环保电动车的道路上有着广阔的前景。
但LiMn2O4在高温下的循环性能较差(特别是55℃),容量衰减较快制约了锰酸锂规模化发展。
如何克服尖晶石型LiMn2O4高温循环容量衰减现象成为目前研究的重点。
对锰酸锂高温容量衰减的机理,目前有多种说法,而且还在不断的探讨当中。
从目前的机理中对比各种解释,影响最大的因素应该是充放电过程发生的Jahn-Teller效应而引起的结构变化和缺陷[1-3]和活性物质在电解液中的Mn溶解带来的容量损失[4-5]。
许多研究技术人员对电解液体系在锰酸锂电池体系的高温性能的改善做了不少研究,如K.Amine[6]等,S.S Zhang[7]等,Bi-Tao Yu[8]等的实验报道,可知LiBOB电解质对锰酸锂体系的高温性能有较大帮助。
本文主要是通过研究Al元素掺杂来改善锰酸锂的高温性能,探讨高温改善的可能原因,同时在锰酸锂体系中添加LiBOB作为电解质,为改善锰酸锂的高温性能提供好的应用方案。
正极材料Li_xMn_2O_4容量在循环过程中的损失机理研究周振平;赵世玺;柳震;郝华;刘韩星
【期刊名称】《材料导报》
【年(卷),期】2001(15)5
【摘要】正极材料Li_xMn_2O_4是近几年锂离子电池研究的热点,但其在循环过程中的容量衰减是制约锂离子电池商品化的关键。
Li_xMn_2O_4的溶解、晶型转变、过充和过放是导致正极材料Li_xMn_2O_4循环过程中容量损失的关键因素,概述了近几年在这方面的研究进展,并提出了当前解决问题的一些途径。
【总页数】4页(P30-33)
【关键词】锂离子电池;正极材料;容量损失;锰酸锂;循环过程
【作者】周振平;赵世玺;柳震;郝华;刘韩星
【作者单位】武汉理工大学材料复合新技术国家重点实验室
【正文语种】中文
【中图分类】TM912;TM24
【相关文献】
1.正极材料LixMn2O4容量在循环过程中的损失机理研究 [J], 周振平;赵世玺;柳震;郝华;刘韩星
2.高镍系三元层状氧化物正极材料容量衰减机理的研究进展 [J], 李想;葛武杰;王昊;瞿美臻
3.锌离子电池正极材料V2O5的储能机理和容量衰减原因 [J], 黄永烽;黄文婷;刘文
宝;刘岳峰;刘伟;徐成俊
4.锂离子电池正极材料Li_xMn_2O_4研究进展 [J], 夏君磊;赵世玺;张仁刚;刘韩星
5.锂离子电池正极材料Li_xMn_2O_4的研究进展 [J], 申海燕
因版权原因,仅展示原文概要,查看原文内容请购买。
收稿日期:2001204218 作者简介:陈彦彬(1969—),男,河南省人,高级工程师,博士,主要研究方向为化学电源与电极材料、电镀及电解质溶液化学。
Biography :CHEN Yan 2bin (1969—),male ,senior engineer ,Ph D.锂离子蓄电池正极材料LiMn 2O 4高温容量衰减解析陈彦彬, 刘庆国(北京科技大学固体电解质研究室,北京100083)摘要:有关锂离子蓄电池正极材料LiMn 2O 4的衰减机理的认识目前尚存在争议。
通过对LiMn 2O 4高温循环数据的解析,比较了两个电位平台容量衰减的相对速度。
结果表明,放电过程中高电位平台容量的衰减速度快于低电位平台,而充电过程中低电位平台的衰减速度更快。
循环过程中极化增大所导致的电位平台间的容量转移决定了两平台容量的相对衰减速度,极化增大与钝化膜的增厚、电解质的积累性氧化所引起的电导率下降有关。
另外电解质的氧化也呈加速趋势,加快了高电位平台放电容量的衰减速度。
几种掺杂材料在循环过程中容量衰减的相对速度与极化增加的相对快慢完全吻合,进一步印证了容量衰减与材料溶解、结构变化、钝化膜增厚之间的对应关系。
关键词:锂离子蓄电池;LiMn 2O 4尖晶石;容量;电解质;自放电中图分类号:TM 912.9 文献标识码:A 文章编号:10022087X (2002)0120005204Analysis of the capacity fading of LiMn 2O 4a s cathode material forLi 2ion batterie s at high temperatureCHEN Yan 2bin ,L IU Qing 2guo(L aboratory of Soli d Elect rolyte ,Beiji ng U niversity of Science and Technology ,Beiji ng 100083,Chi na )Abstract :The dispute of capacity 2fading mechanism for spinel LiMn 2O 4as the cathode material used in Li 2ion battery is still remaining.The fading rates at each voltage plateau were compared by analyzing the cycling data of the spinel LiMn 2O 4.The results show that the capacity 2fading rate at the upper voltage plateau is more rapid 2ly than that at the lower voltage plateau during discharge.However ,the fading rate at the upper voltage plateau is slower than that at the lower voltage plateau in charging process.The relative fading rate is lied on the capaci 2ty shift between the two voltage plateaus ,which is caused by the polarization increasing during cycling process.The polarization increasing is related to the passivated 2film thickening and the conductivity decreasing due to the accumulative oxidation of electrolyte.In addition ,the fading rate of discharge capacity at the upper voltage plateau is also increased by the accelerating trend of electrolyte oxidation.The related capacity 2fading rate of se 2veral doped materials during cycling process is in accordance with the related rate of polarization increasing.Thus ,the corresponding relations among the capacity fading ,the material dissolving ,the structure modifying and the passivated 2film thickening are confirmed.K ey w ords :Li 2ion batteries ;spinel LiMn 2O 4;capacity ;electrolyte ;self 2discharge 目前以LiCoO 2为正极材料的锂离子蓄电池以其比能量高、循环寿命长的优点在便携式电器中得到成功应用,但由于钴资源有限、价格昂贵,正极材料的成本占电池总成本的1/3以上,因此其大规模应用受到限制。
而LiMn 2O 4以其电化学性能良好、价格低、资源丰富等优势而具有很好的应用前景。
然而,该材料也面临着期待解决的技术难题,那就是高温性能问题。
LiMn 2O 4的高温容量衰减现象已受到材料工作者和锂电池界的普遍关注,有关衰减机理方面的研究也有不少文献报道,其主要原因包括[1~10]:锰的溶解、结构的变化、活性粉体的断裂、钝化膜的形成、Jahn 2Teller 效应、电解液的氧化等。
但各研究者的结果及观点尚不一致。
首先就两个电位平台衰减速度的相对快慢存在分歧。
Xia 等人[6]报道,无论在高温还是室温下,高电位平台(4.15V )的容量衰减在材料的整个衰减中起主导作用,原因是循环过程中该区不稳定的两相结构逐渐变成稳定的单相结构;而Robertson [7]和Huang [8]等人则报道,容量衰减主要发生在低电位平台(4.05V ),其原因是三价锰的含量较高,溶解速度也相应较快。
其次,Thackery [11]及Liu [12]等报道了室温下发生Jahn 2Teller 效应的数据,但目前尚没有高温下有关Jahn 2Teller 效应的报道。
再者,有关电解液分解在LiMn 2O 4材料容量衰减中的作用并没有得到明确。
我们对自己合成的尖晶石材料在高温条件下进行了循环性能的测试,通过对循环曲线的解析可以得到各电位平台的容量,并加以对比。
研究中发现了一些有趣的现象,得到了一些有价值的结论。
1 实验 本实验采用固相反应法合成LiMn 2O 4尖晶石样品。
将工业级的Li 2CO 3与EMD 球磨混合均匀并置于刚玉坩埚中,先后在800℃的空气中及850℃氧气氛下分别焙烧20h ,之后缓慢冷却至室温。
用XRD 衍射方法分析材料的结构及相组成,所用设备为日本产Regaku 衍射仪,以石墨为单色器,衍射线为Cukal ,步长为0.02°。
材料的循环性能测试在两电极模拟电池中进行。
正极组成的质量比为LiMn 2O 4∶乙炔黑∶PTFE =85∶10∶5,负极采用容量过量的锂片,电解液为Merck 公司生产的1mol/L LiPF 6/EC 2DMC (1∶1体积比),隔膜采用Celgard 2300。
实验电池的装配在充满流动干燥空气的手套箱中进行,组装后的电池置于(55±0.5)℃的恒温箱中,并用蓝电电池测试系统(LAND B TI 10)以0.2C 的电流在3.40~4.35V 间对电池进行循环性能的测试[13,14]。
2 结果与讨论 XRD 衍射表明,所有峰线均为LiMn 2O 4立方尖晶石(属Fd3m 空间群)衍射的衍射线,衍射线的相对强度也与J CPDS 卡片相一致[12],所合成的样品为标准尖品石结构。
LiMn 2O 4的高温循环性能测试采用恒电流法以0.2C 的电流在55℃下进行。
不仅充放电容量随循环次数的增加而降低,循环效率也略有所降低(从97.4%降至96%)。
值得说明的是该材料的室温循环性能远优于高温条件,尤其是循环效率几乎达到100%。
图1 不同循环次数充放电曲线的对比Fig.1 Comparison of charge/dischargecurves in different cycles 图1为LiMn 2O 4不同循环周次的充放电曲线,根据该图尚难于比较各电位平台的容量衰减速度。
为此,我们将充放电曲线对容量微分d V /d Q ,然后将其对容量作图(d V /d Q 对Q ),可将两平台的容量分开(如图2所示)。
这样得到的数据误差不足±0.3mAh/g ,结果重现性较好。
根据这些平台容量的数据,便可以分析比较两个电位平台的容量衰减过程。
图3和图4分别给出两个电位图2 微分电位2比容量曲线Fig.2 Curve of d V /d Q vs.sepecific capacity平台的充放电容量和循环效率。
从图3中可以看到两个明显的特征。
首先,初次充电容量远大于放电容量,循环效率很低,表明在该电位区活性物质表面形成了钝化膜。
另一个有趣的特征是,尽管首次放图3 低电位平台(4.05V )的充放电容量及循环效率Fig.3 Variation of capacity and cyclicefficiency with cycle number at the lower voltage 2plateau电容量低于充电量,但放电容量(Q d 21)衰减较慢,且在循环14周次之后超过充电容量(Q c 21),并且两者之差进一步增大,库仑效率相应增大甚至远远超过100%,这与通常条件下整个电池的循环情况明显不同,表明放电过程中部分容量由高电位平台转图4 高电位平台(4.15V )的充放电容量及循环效率Fig.4 Variation of capacity and cyclic efficiency with cycle number at the upper voltage 2plateau移至低电位平台,而充电过程则相反。
可以推测,由于高电位平台的斜率d Q /d V 大于低电位平台,因此放电过程的容量转移将相应地大于充电过程。