中考数学复习第1部分基础过关第四单元三角形课时21锐角三角函数练习无解答
- 格式:docx
- 大小:322.68 KB
- 文档页数:3
2020-2021中考数学锐角三角函数的综合复习附答案一、锐角三角函数1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=2263-(2)=26,∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(3)米.在直角△BEQ中,333+3)=(3)米.∴3(3)3(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.3.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.∵∠BPE=12∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=900.又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=12 BM.∴BF=12PE,即BF1PE2=.(3)如图,过P作PM//AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.4.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP . (1)求证:直线CP 是⊙O 的切线. (2)若BC=2,sin ∠BCP=,求点B 到AC 的距离.(3)在第(2)的条件下,求△ACP 的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC3,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+3∵∠MCF =30° ∴FC =3MF ,即x +203=3 ( x -20) 解得:x =40331- =60+203≈95m答:电视塔MN 的高度约为95m .【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F . (Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标; (Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H . ①求证BDE DBA ∆≅∆; ②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒. 【解析】【分析】(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,5OB =,过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=. 又∵BD BD =,∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时,同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.8.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.9.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .(1)求证:CD 是⊙O 的切线;(2)若AB =6,∠ABE =60°,求AD 的长.【答案】(1)详见解析;(2)92【解析】【分析】 (1)利用角平分线的性质得到∠OAE =∠DAE ,再利用半径相等得∠AEO =∠OAE ,等量代换即可推出OE ∥AD ,即可解题,(2)根据30°的三角函数值分别在Rt △ABE 中,AE =AB·cos30°, 在Rt △ADE 中,AD=cos30°×AE 即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°=6×32=33在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°3339 2 .【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.10.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
锐角三角函数培优练习一、课标导航二、核心纲要1.锐角三角函数的概念(1)定义:在Rt△ABC中,锐角 A的正弦、余弦和正切统称为锐角 A 的三角函数.(2)如下图所示,在Rt△ABC中, ∠C=90°,①正弦:锐角 A 的对边与斜边的比叫做∠A的正弦,记作 sinA,即sinA=ac.②余弦:锐角 A的邻边与斜边的比叫做∠A的余弦,记作 cosA,即cosA=bc.③正切:锐角 A的对边与邻边的比叫做∠A的正切,记作 tanA,即tanA=ab.注:(1)锐角三角函数没有单位.(2)锐角三角函数值只与角的大小有关,与直角三角形的大小和位置无关.(3)sinA是一个整体符号,即表示∠A的正弦,习惯省去角的符号“∠”,但不能写成 sin·A,三个大写字母表示一个角时,角的符号“∠”不能省略,如:sin∠BAC.(4)当0°<∠A<90°时, 0<sinA<1,0<cosA<1,tanA>0.2.特殊角的三角函数(注:特殊角的锐角三角函数值的记忆方法(1)数形结合记忆法如下左图、中图所示,由定义可得各角的三角函数值.(2)增减规律记忆法①sinα的值随α的增大而增大,依次为:√12,√22,√32.②cosα的值随α的增大而减小,依次为:√32,√22,12.③tanα的值随α的增大而增大,依次为:√33,1,√3.3.锐角三角函数之间的关系如下右图所示,在 Rt△ABC中,∠C=90°.(1)互余关系:sinA=cos(90°-∠A)=cosB,cosA=sin(90°-∠A)=sinB.(2)平方关系: sin²A+cos²A=1.(3)倒数关系:tanA·tanB=1.(4)商数关系: tanA=sinAcosA.4.图形sin15°tan15°5.求三角函数值的常用方法①根据特殊角的三角函数值求值.②借助边的数量关系求值.③借助等角求值.④根据三角函数关系求值.本节重点讲解:一个概念,一个特殊值,一个方法.三、全能突破基础演练1.(1)在△ABC中,. ∠C=90∘,cosB=25,AB=15则 BC的长为( ).A.3√21B.3√29C.6D. 23(2)在 Rt△ABC中,∠C=90°,若 BC=1,AB= √5,则 tanA 的值为( ).,则A.√55B.2√55C. 12D.22.如图28-1-1 所示,菱形 ABCD的边长为10cm, DE⟂AB,sinA=35,则这个菱形的面积为( )cm².A. 40B. 60C. 80D.1003.在平面直角坐标系中,已知点 A(2,1)和点 B(3,0),则 sin∠AOB 的值等于( ).A.√55 B. 52C.√32D. 124.如图28-1-2 所示,在△ABC中,∠ACB=90°,CD⊥AB 于点D,若AC=2√3,AB=3√2,则tan∠BCD的值为( ).A./₂B./₂C.√63 D.√335.点 A(sin30°,-tan30°)关于原点对称的点 A ₁ 的坐标是 .6.在△ABC 中,若∠A 、∠B 满足 |cos (A −15∘)−12|+(sinB −√22)2=0,则∠C= .7.计算: cos 260∘+tan30∘sin60∘−(cos45∘−√2+cos30∘)∘+(sin30∘)−1−√tan45∘+3tan60∘.8.如图28-1-3 所示,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB,垂足为点 D,F 是. ⌢AC 的中点,OF 与AC 相交于点.E,AC=8cm,EF=2cm. (1)求 AO 的长. (2)求 sinC 的值.能力提升9.已知α为锐角,且 12<sinα<√22,则α的取值范围是( ).A.0°<α<30°B.60°<α<90°C.45°<α<60°D.30°<α<45° 10.直线y=2x 与x 轴正半轴的夹角为α,那么下列结论正确的是( ). A.tanα=2 B.cotα=2 C.sinα=2 D.cosα=211.如图28-1-4 所示,在四边形 ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则 tanC 等于( ). A. 34 B. 43C. 35D. 4512.在 Rt △ABC 中,∠C=90°,∠A 、∠B 的对边是a 、b,且满足 a²−ab −b²=0,则tanA=( ). A.1 B.√5+12 C.1−√52 D.1±√5213.小明在学习“锐角三角函数”中发现,将图28-1-5 所示的矩形纸片 ABCD 沿过点B 的直线折叠,使点A 落在 BC 上的点 E 处,还原后,再沿过点 E 的直线折叠,使点 A 落在 BC 上的点 F 处,这样就可以求出67.5°角的正切值是( ). A.√3+1 B.√2+1 C.2.5 D. √514.(1)如图28-1-6 所示,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点都在图中相应的格点上,则 sin ∠A的值为 .(2)如图28-1-7 所示,在边长相同的小正方形组成的网格中,点 A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点 P,则tan ∠APD 的值是 .,AC=2,则cosB 的值为 .15.(1)如图 28-1-8 所示,⊙O是△ABC 的外接圆,AD 是⊙O的直径,若⊙O的半径为32(2)如图28-1-9 所示,已知△ABC 的外接圆⊙O 的半径为1,D、E 分别为AB、AC 的中点,则sin∠BAC的值等于线段的长.16.如图28-1-10所示,在 Rt△ABC中,∠C=90°,AB 的垂直平分线与BC、AB的交点分别为D、E.,求 AC的长和tanB的值.(1)若AD=10,sin∠ADC=45的值(用 sina和cosα的值表示).(2)若 AD=1,∠ADC=α,参考(1)的计算过程直接写出: tanα217.已知a、b、c分别是△ABC中∠A、∠B、∠C的对边,关于x的一元二次方程( a(1−x²)+2bx+c(1+x²)=0有两个相等的实数根,且3c=a+3b.(1)判断△ABC的形状.(2)求 sinA·sinB 的算术平方根.18.当0<α<60时,下列关系式中有且仅有一个正确.A.2sin(α+30∘)=sinα+√3B.2sin(α+30∘)=2sinα+√3C.2sin(α+30∘)=√3sinα+cosα(1)正确的选项是 .(2)如图28-1-11(a)所示,在△ABC中,AC=1,∠B=30°,∠A=α,请利用此图证明(1)中的结论.(3)两块分别含45°和30°的直角三角板按图28-1-11(b)所示方式放置在同一平面内,.BD=8√2,求.S△A D C.中考链接19.(四川乐山改编)如图28-1-12所示,定义:在) Rt△ABC中,锐角α的邻边与对边的比叫做角α的余切,记作co tα,即根据上述角的余切定义,解下列问题:(1)cot30°=.(2)已知tanA=34,其中∠A 为锐角,试求 cotA的值.(3)已知第一象限内的点 A 在反比例函数y=2x 的图像上,第二象限内的点 B 在反比例函数y=kx的图像上,且OA⟂OB,cotA=√33,直接写出k的值.20.(广东湛江改编)阅读下面的材料,先完成阅读填空,再按要求答题:sin30∘=12,cos30∘=√32,则. sin²30°+cos²30°=.①sin45∘=√22,cos45∘=√22,则: sin²45°+cos²45°=.②sin60∘=√32,cos60∘=12,则. sin²60°+cos²60°=.③观察上述等式,猜想:对任意锐角A,都有:sin²A+cos²A=.(1)如图28-1-13 所示,在锐角三角形 ABC中,利用三角函数的定义及勾股定理对∠A 证明你的猜想.(2)已知:∠A 为锐角(cosA>0),且sinA=35,求 cosA.(3)在 Rt△ABC中,∠C=90°,且 sinA、cosA是关于x的方程3x²−mx+1=0的两根,m 为实数,则sin⁴A+cos⁴A=.巅峰突破21.在△ABC中,∠ACB=90°,∠ABC=15°,BC=1,则 AC=( ).A.2+√3B.2−√3C.0.3D.√3−√222.如图28-1-14所示,在等腰直角三角形 ABC中,∠C=90°,D 为 BC 的中点,将△ABC折叠,使 A 点与 D 点重合,若 EF 为折痕,则 sin∠BED 的值为 , DEDF的值为 .基础演练1.(1)C (2)C2. B3. A4. B5.(−12,√33)6.60° 7.1 348.(1)∵F 是AC 的中点。
直角三角形和锐角三角函数【命题趋势】在中考中,直角三角形在中考常结合勾股定理、面积法在选择题、填空题考查.锐角三角形函数常在选择题、填空题考查,并且结合实际问题考查。
【中考考查重点】一、直角三角形的性质于判定二、锐角三角函数三、30°、45°、60°的三角函数值考点一:直角三角形的性质与判定1.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三性质 1. 两锐角之和等于90°2. 斜边上的中线等于斜边的一半3. 30°角所对的直角边等于斜边的一半4. 若有一条直角边等于斜边的一半,则这条直角边所对的锐角等于30°(应用时需先证明)5. 勾股定理:若直角三角形的两直角边分别为a ,b,斜边为c,则cb a 222=+判定1. 有一个角为90°的三角形时直角三角形2. 有两个角的和时90°的三角形是直角三角形3. 一边上的中线等于这条边的一半的三角形是直角三角形4. 勾股定理的逆定理:如果三角形的三边长分别为a,b,c 若满足,那么这个三角形为直角三角形。
面积公式,其中a 是底边常,hs 是底边上的高ch S 21ab 21==cb a 222=+块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 2.(2021•商河县校级模拟)如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°3.(2020•南海区二模)如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3B.4C.5D.6 4.(2021•滨州)在Rt△ABC中,若∠C=90°,AC=3,BC=4,则点C到直线AB 的距离为()A.3B.4C.5D.2.45.(2021•黔东南州)如图,在Rt△ACB中,∠ACB=90°,AC=6,BC=8,若以AC 为直径的⊙O交AB于点D,则CD的长为()A.B.C.D.5 6.(2021•荆州模拟)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB 于D,则CD的值为()A.B.C.D.7.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8.(2021•东胜区二模)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.cm B.13cm C.cm D.cm9.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6考点二:锐角三角函数Rt▲ABC 在Rt▲ABC中,∠C-90°,∠A为▲ABC中一个锐角正弦∠A的正弦:余弦∠A的余弦:正切∠A的正切:30°、45°、60°的三角函数值10.(2021•腾冲市模拟)如图,点A,B,C在正方形网格的格点上,则sin∠BAC等于()A.B.C.D.11.(2020•长春)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=12.(2018•呼和浩特)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B 处测得山顶A 的仰角为33°,在斜坡D 处测得山顶A 的仰角为45°.求山顶A 到地面BC 的高度AC 是多少米?(结果用含非特殊角的三角函数和根式表示即可)13.(2021•徐州)如图,斜坡AB 的坡角∠BAC =13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A ,过其另一端D 安装支架DE ,DE 所在的直线垂直于水平线AC ,垂足为点F ,E 为DF 与AB 的交点.已知AD =100cm ,前排光伏板的坡角∠DAC =28°. (1)求AE 的长(结果取整数).(2)冬至日正午,经过点D 的太阳光线与AC 所成的角∠DGA =32°,后排光伏板的前端H 在AB 上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH 的最小值为多少(结果取整数)? 参考数据:≈1.41,≈1.73,≈2.45.锐角A 三角函数 13°28°32°sin A 0.22 0.47 0.53 cos A 0.97 0.88 0.85 tan A0.230.530.621.(2021•福建模拟)下列各组数据中,能够成为直角三角形三条边长的一组数据是( )A.,,B.32,42,52C.D.0.3,0.4,0.52.(2021•太原三模)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.3.(2021•广州)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为.4.(2020•黔西南州)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B =30°,∠ADC=60°,BC=3,则BD的长度为.5.(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=°.6.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.7.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.8.(2021•玉林)如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.9.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径寸.10.(2021•东莞市校级一模)如图,在△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=11.(2021•饶平县校级模拟)已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.12.(2021•玉州区二模)附加题:观察以下几组勾股数,并寻找规律:①3,4,5.②5,12,13.③7,24,25.④9,40,41.…请你写出有以上规律的第⑤组勾股数:.13.(2020•呼和浩特)如图,一艘船由A港沿北偏东65°方向航行38km到B港,然后再沿北偏西42°方向航行至C港,已知C港在A港北偏东20°方向.(1)直接写出∠C的度数.(2)求A、C两港之间的距离.(结果用含非特殊角的三角函数及根式表示即可)14.(2021•宜城市一模)在抗击“新冠病毒”期间,某路口利用探测仪对过往的物体进行检查,探测仪A测得某物体的仰角∠BAD=35°,俯角∠DAC=45°,探测仪到货物表面的距离AD=3米,求货物高BC的长.(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1)15.(2021•贵阳模拟)如图,建筑物AB后有一座小山,∠DCF=30°,测得小山坡脚C点与建筑物水平距离BC=25米,若山坡上E点处有一凉亭,且凉亭与坡脚距离CE=20米,某人从建筑物顶端A点测得E点处的俯角为48°.(1)求凉亭到地面的距离.(2)求建筑物AB的高.(精确到0.1m)(参考数据:≈1.73,sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)1.(2021•福建)如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得∠A=60°,∠C=90°,AC=2km.据此,可求得学校与工厂之间的距离AB等于()A.2km B.3km C.km D.4km 2.(2019•朝阳)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是()A.83°B.57°C.54°D.33°3.(2020•荆门)△ABC中,AB=AC,∠BAC=120°,BC=2,D为BC的中点,AE=AB,则△EBD的面积为()A.B.C.D.4.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C 为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 5.(2021•新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB的中点,则DE的长为()A.1B.2C.3D.4 6.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC 的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°7.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C 都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.8.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸9.(2021•深圳)如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin32°B.15tan64°C.15sin64°D.15tan32°10.(2020•苏州)如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α.(2)量得测角仪的高度CD=a.(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A.a+b tanαB.a+b sinαC.a+D.a+1.(2021•平谷区一模)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3C.∠1=∠4D.∠1=30°2.(2021•河南模拟)将一个含30°角的直角三角板ABC与一个直尺如图放置,∠ACB =90°,点A在直尺边MN上,点B在直尺边PQ上,BC交MN于点D.若∠ABP =15°,AC=6,则AD的长为()A.B.8C.6D.6 3.(2021•坪山区一模)如图,在△ABC中,∠B=90°,C是BD上一点,BC=10,∠ADB=45°,∠ACB=60°,则CD长为()A.10﹣B.10﹣10C.10﹣3D.10﹣10 4.(2021•长沙模拟)如图,Rt△ABC中,∠ACB=90°,∠A=30°,BP平分∠ABC,BP=CP=2,则AB的长为()A.4B.6C.4D.4 5.(2021•广西模拟)如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为()A.4B.6C.8D.10 6.(2021•苏州模拟)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N 在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6 7.(2021•饶平县校级模拟)如图,在三角形ABC中,AB=AC,BC=6,三角形DEF 的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=()A.B.C.D.7 8.(2020•安徽模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC 边的中点,则点E到中线CD的距离EF的长为()A.3B.4C.D.9.(2021•大荔县一模)如图,在△ABC中,∠C=90°,AC=4,BC=2.以AB为一条边向三角形外部作正方形,则正方形的面积是()A.8B.12C.18D.20 10.(2021•岳池县模拟)如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.12 11.(2021•威宁县模拟)如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积为()A.12cm2B.18cm2C.22cm2D.36cm2 12.(2021•浙江模拟)如图,一只蚂蚁绕着圆柱向上螺旋式爬行,假设蚂蚁绕圆柱外壁从点A爬到点B,圆周率π取近似值3,则蚂蚁爬行路线的最短路径长为()A.6cm B.6cm C.2cm D.10cm13.(2021•双阳区一模)某课外数学兴趣小组的同学进行关于测量楼房高度的综合实践活动.如图,他们在距离楼房35米的C处测得楼顶的仰角为α,则楼房AB的高为()A.35sinα米B.35tanα米C.米D.米14.(2021•涪城区模拟)如图,小刚同学为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点5m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为()m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)A.8.2B.9.1C.9.5D.10.3 15.(2021•河南模拟)如图,某小坡前有一幢楼房CD,坡脚A处离楼房底部D的距离为306m,斜坡AB的长度为195m,坡度i=1:2.4,在坡顶B处观测到楼房顶部C 的俯角为20°,则楼房CD的高度是多少?(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364.结果精确到0.1m)。
微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。
2021年中考数学 专题21 锐角三角函数及解直角三角形(基础巩固练习,共40个小题)一、选择题(共15小题):1.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A .1013√13B .913√13C .813√13D .713√13【答案】D【解析】解:由勾股定理得:AC =√22+32=√13,∵S △ABC =3×3−12×1×2−12×1×3−12×2×3=3.5,∴12AC ⋅BD =72,∴√13⋅BD =7,∴BD =7√1313,故选:D .2.(2019秋•龙岩期末)如图,AB =AC ,AE =EC =CD ,∠A =60°,若EF =2,则DF =()A.3 B.4 C.5 D.6 【答案】D【解析】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∠ACB=30°,∴∠CED=∠CDE=12∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=12∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.3.(2020•柳州)如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cosB=BCAB=()A.35B.45C.√74D.34【答案】C【解析】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=3,∴BC=√42−32=√7,∴cosB=BCAB =√74.故选:C.4.(2020•杭州)如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB【答案】B【解析】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴sinB=bc,即b=csinB,故A选项不成立,B选项成立;tanB=ba,即b=atanB,故C选项不成立,D选项不成立.故选:B.5.(2019•无锡)已知,在Rt△ABC中,∠C=90°,若sinA=23,BC=4,则AB长为()A.6 B.4√55C.83D.2√13【答案】A【解析】解:如图所示:∵sinA=23,BC=4,∴sinA=BCAB =23=4AB,解得:AB=6.故选:A.6.(2020•玉林)sin45°的值是()A.12B.√22C.√32D.1【答案】B【解析】解:sin45°=√22.故选:B.7.(2020•鸡西)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为( )A .√2B .√52C .√5D .2 【答案】B【解析】解:过A 作AD ⊥BC 于D ,则∠ADC =∠ADB =90°,∵tanC =2=AD DC ,sinB =13=AD AB , ∴AD =2DC ,AB =3AD ,∵AB =3,∴AD =1,DC =12,在Rt △ADC 中,由勾股定理得:AC =√AD 2+DC 2=√12+(12)2=√52,故选:B . 8.(2019•营口)如图,在四边形ABCD 中,∠DAB =90°,AD ∥BC ,BC =12AD ,AC 与BD交于点E ,AC ⊥BD ,则tan ∠BAC 的值是( )A .14B .√24C .√22D .13 【答案】C【解析】解:∵AD ∥BC ,∠DAB =90°,∴∠ABC =180°﹣∠DAB =90°,∠BAC+∠EAD =90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴ABDA =BCAB,∵BC=12AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=√2BC,在Rt△ABC中,tan∠BAC=BCAB =√2BC=√22;故选:C.9.(2019•湘西州)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=57,则BC的长是()A.10 B.8 C.4√3D.2√6【答案】D【解析】解:∵∠C=90°,cos∠BDC=57,设CD=5x,BD=7x,∴BC=2√6x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2√6;故选:D.10.(2019•长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BEBD的最小值是()上的一个动点,则CD+√55A.2√5B.4√5C.5√3D.10【答案】B【解析】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,=2,设AE=a,BE=2a,∵tanA=BEAE则有:100=a2+4a2,∴a2=20,∴a=2√5或﹣2√5(舍弃),∴BE =2a =4√5,∵AB =AC ,BE ⊥AC ,CM ⊥AB ,∴CM =BE =4√5(等腰三角形两腰上的高相等),∵∠DBH =∠ABE ,∠BHD =∠BEA ,∴sin ∠DBH =DH BD =AE AB =√55, ∴DH =√55BD , ∴CD +√55BD =CD+DH , ∴CD+DH ≥CM ,∴CD +√55BD ≥4√5, ∴CD +√55BD 的最小值为4√5.方法二:作CM ⊥AB 于M ,交BE 于点D ,则点D 满足题意.通过三角形相似或三角函数证得√55BD =DM ,从而得到CD +√55BD =CM =4√5. 故选:B .11.(2020•广西)如图,要测量一条河两岸相对的两点A ,B 之间的距离,我们可以在岸边取点C 和D ,使点B ,C ,D 共线且直线BD 与AB 垂直,测得∠ACB =56.3°,∠ADB =45°,CD =10m ,则AB 的长约为( )(参考数据sin56.3°≈0.8,cos56.3°≈0.6,tan56.3°≈1.5,sin45°≈0.7,cos45°≈0.7,tan45°=1)A.15m B.30m C.35m D.40m 【答案】B【解析】解:设AB=xm,在Rt△ABD中,∵∠ADB=45°,∴AB=BD=xm,在Rt△ABC中,∵∠ACB=56.3°,且tan∠ACB=ABBC,∴BC=ABtan∠ACB =xtan56.3°≈23x,由BC+CD=BD得23x+10=x,解得x=30,∴AB的长约为30m,故选:B.12.(2020•济南)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m【答案】B【解析】解:∵FD⊥EB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,,∴tan∠E=DFDE=2.8(m),故选:B.∴DE≈1.120.413.(2020•长春)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sinA=BDAB B.cosA=ABADC.tanA=ADBDD.sinA=ADAB【答案】A【解析】解:在Rt△ABD中,∠ADB=90°,则sinA=BDAB ,cosA=ADAB,tanA=BDAD,因此选项A正确,选项B、C、D不正确;故选:A.14.(2020•南充)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√26B.√2626C.√2613D.√1313【答案】B【解析】解:如图,过点B作BD⊥AC于D,由勾股定理得,AB =√32+22=√13,AC =√32+32=3√2,∵S △ABC =12AC •BD =12×3√2•BD =12×1×3,∴BD =√22, ∴sin ∠BAC =BD AB =√22√13=√2626.故选:B . 15.(2020•重庆)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =45m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)( )A .76.9mB .82.1mC .94.8mD .112.6m【答案】B【解析】解:如图,过点D 作DF ⊥AB ,垂足为F ,作DE ⊥BC 交BC 的延长线于点E , 由题意得,∠ADF =28°,CD =45m ,BC =60m ,在Rt △DEC 中,∵山坡CD 的坡度i =1:0.75,∴DE EC =10.75=43,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD=45,即5x=45,∴x=9,∴EC=3x=27(m),DE=4x=36(m)=FB,∴BE=BC+EC=60+27=87(m)=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11(m),∴AB=AF+FB=46.11+36≈82.1(m),故选:B.二、填空题(共10小题):16.(2020•宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.【答案】5【解析】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB=√AD2+BD2=√82+62=10,∵AE=EB,∴DE=1AB=5,2故答案为5.17.(2020•绥化)在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.【答案】17【解析】解:∵在Rt△ABC中,∠C=90°,AB﹣AC=2,BC=8,∴AC2+BC2=AB2,即(AB﹣2)2+82=AB2,解得AB=17.故答案为:17.18.(2020•桂林)如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.【答案】513【解析】解:在Rt△ABC中,cosA=ACAB =513,故答案为:513.19.(2020•鄂尔多斯)计算:√27+(13)﹣2﹣3tan60°+(π−√2)0=.【答案】10【解析】解:原式=3√3+9﹣3√3+1=10.故答案为:10.20.(2020•宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.【答案】48【解析】解:∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.21.(2020•黔南州)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=13,则AD长度是.【答案】10【解析】解:在Rt△ABC中,∵AB=2,sin∠ACB=ABAC =13,∴AC=2÷13=6.在Rt△ADC中,AD=√AC2+CD2=√62+82=10.故答案为:10.22.(2020•广西)如图,在Rt△ABC中,∠ACB=90°,sinA=45,点C关于直线AB的对称点为D ,点E 为边AC 上不与点A ,C 重合的动点,过点D 作BE 的垂线交BC 于点F ,则DF BE 的值为 .【答案】2425 【解析】解:如图,设DF 交AB 于M ,CD 交AB 于N ,BE 交DF 于J .∵∠ACB =90°,∴sinA =BC AB =45,∴可以假设BC =4k ,AB =5k ,则AC =3k ,∵C ,D 关于AB 对称,∴CD ⊥AB ,CN =DN ,∵S △ABC =12×BC ×AC =12×AB ×CN ,∴CN =DN =125k , ∴CD =245k ,∵∠FCD+∠DCA =90°,∠DCA+∠A =90°,∴∠DCF =∠A ,∵DF ⊥BE ,CD ⊥AB ,∴∠BJM =∠DNM =90°,∵∠BMJ =∠DMN ,∴∠D =∠ABE ,∴△DCF ∽△BAE ,∴DF BE =DC BA =245k 5k =2425. 23.(2020•深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan ∠ACB =12,BO OD =43,则S△ABD S △CBD = .【答案】332【解析】解:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM ∥BC ,∴△ABC ∽△ANM ,△OBC ∽△ODM ,∴AB BC =AN NM =tan ∠ACB =12,BC DM =OB OD =43,又∵∠ABC =∠DAC =90°,∴∠BAC+∠NAD =90°,∵∠BAC+∠BCA =90°,∴∠NAD =∠BCA ,∴△ABC ∽△DAN ,∴AB BC =DN NA =12,设BC =4a ,由BC DM =OB OD =43得,DM =3a ,∴AB =2a ,DN =35a ,AN =65a ,∴NB =AB+AN =2a +65a =165a , ∴S △ABDS △BCD =12AB⋅DN 12BC⋅NB =35a 2325a 2=332. 故答案为:332.24.(2020•赤峰)如图,航拍无人机从A 处测得一幢建筑物顶部C 的仰角是30°,测得底部B 的俯角是60°,此时无人机与该建筑物的水平距离AD 是9米,那么该建筑物的高度BC 为 米(结果保留根号).【答案】12√3【解析】解:根据题意可知:在Rt △ADC 中,∠CAD =30°,AD =9,∴CD =AD •tan30°=9×√33=3√3,在Rt △ADB 中,∠BAD =60°,AD =9,∴BD =AD •tan60°=9√3,∴BC=CD+BD=3√3+9√3=12√3(米).答;该建筑物的高度BC为12√3米.故答案为:12√3.25.(2020•乐山)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)【答案】2√3【解析】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=BDBC,∴sin60°=BD4=√32,∴BD=2√3(m),故答案为:2√3.三、解答题(共15小题):26.(2020•青海)计算:(13)﹣1+|1−√3tan45°|+(π﹣3.14)0−√273. 【答案】√3【解析】解:原式=3+|1−√3|+1﹣3=3+√3−1+1−3=√3.27.(2020•呼伦贝尔)计算:(−12)﹣1+√83+2cos60°﹣(π﹣1)0.【答案】0【解析】解:原式=−2+2+2×12−1=0,故答案为:0.28.(2020秋•龙口市期末)计算:√(sin30°−tan45°)2cos 245°−tan60°•cos30°. 【答案】−12【解析】直接利用特殊角的三角函数值代入得出答案.解:原式=√(12−1)2(√22)−√3×√32 =1212−32=1−32=−12.29.(2020秋•莱州市期末)计算:2sin45°−√(cos60°−sin60°)2+tan60°2.【答案】=2√2+12【解析】直接利用特殊角的三角函数值代入得出答案.解:原式=2×√22−|12−√32|+√32=√2−√32+12+√32=2√2+12.30.(2020秋•崇明区期末)计算:tan60°+2cos30°+cot45°2sin30°−sin245°.【答案】2√3+12【解析】直接利用特殊角的三角函数值分别代入得出答案.解:原式=√3+2×√32+12×12−(√22)2=√3+√3+1−12=2√3+12.31.(2020秋•普陀区期末)计算:cos30°﹣2sin245°+22sin60°+tan45°.【答案】=3√32−2【解析】直接利用特殊角的三角函数值以及二次根式的性质化简得出答案.解:原式=√32−2×(√22)22×√32+1=√32−2×12√3+1=√32−1+√3−1 =3√32−2.32.(2020秋•肇州县期末)计算:(1)2sin30°一3tan45°•sin45°+4cos60°; (2)sin45°cos30°−tan60°+cos45°•sin60°.【答案】(1)3−3√22;(2)=−√612.【解析】(1)把特殊角的三角函数值代入原式,根据二次根式的加减混合运算法则计算;(2)把特殊角的三角函数值代入原式,根据二次根式的混合运算法则计算. 解:(1)2sin30°一3tan45°•sin45°+4cos60° =2×12−3×1×√22+4×12=1−3√22+2=3−3√22; (2)sin45°cos30°−tan60°+cos45°•sin60°=√22√32−√3+√22×√32=√2−√3+√64 =−√63+√64=−√612.33.(2020•盐城)如图,在△ABC中,∠C=90°,tanA=√3,∠ABC的平分线BD交AC3于点D,CD=√3,求AB的长?【答案】AB的长为6,【解析】解:在Rt△ABC中,∠C=90°,tanA=√33∴∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,又∵CD=√3,=3,∴BC=CDtan30°在Rt△ABC中,∠C=90°,∠A=30°,=6.∴AB=BCsin30°答:AB的长为6.34.(2020•西宁)如图1,通海桥是西宁市海湖新区地标建筑,也是我省首座大规模斜拉式大桥,通海桥主塔两侧斜拉链条在夜间亮灯后犹如天鹅之翼,优雅非凡.某数学“综合与实践”小组的同学利用课余时间按照如图2所示的测量示意图对该桥进行了实地测量,测得如下数据:∠A=30°,∠B=45°,斜拉主跨度AB=260米.(1)过点C作CD⊥AB,垂足为D,求CD的长(√3取1.7);(2)若主塔斜拉链条上的LED 节能灯带每米造价800元,求斜拉链条AC 上灯带的总造价是多少元?【答案】(1)CD =91(米);(2)斜拉链条AC 上的LED 节能灯带造价是145600元. 【解析】解:(1)∵CD ⊥AB 于点D , ∴∠ADC =∠BDC =90°, 设CD =x ,在Rt △ADC 中,∠ADC =90°,∠A =30°, ∴tan30°=CDAD ,即xAD =√33, ∴AD =√3x ,在Rt △BDC 中,∠B =45°, ∴CD =BD =x , ∵AB =AD+BD . ∴√3x +x =260, ∴x =√3+1,∴x =130(√3−1)=130×0.7=91, ∴CD =91(米).(2)在Rt△ADC中∠ADC=90°,∠A=30°,∴AC=2CD(直角三角形中30°角所对的直角边等于斜边的一半),∴AC=182,∵LED节能灯带每米造价为800元,∴800×182=145600(元),答:斜拉链条AC上的LED节能灯带造价是145600元.35.(2020•眉山)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米的发射塔AB,如图所示.在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山BC的高度.【答案】小山BC的高度为(10+40√3)米【解析】解:设BC为x米,则AC=(20+x)米,由条件知:∠DBC=∠AEC=60°,DE=80米.在直角△DBC中,tan60°=DCBC =DCx,则DC=√3x米.∴CE=(√3x﹣80)米.在直角△ACE中,tan60°=ACCE =√3x−80=√3.解得x=10+40√3.答:小山BC的高度为(10+40√3)米.36.(2020•吉林)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【答案】塔AB的高度约27m【解析】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BF=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=AF,DF∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.37.(2020•通辽)从A处看一栋楼顶部的仰角为α,看这栋楼底部的俯角为β,A处与楼的水平距离AD为90m.若tanα=0.27,tanβ=2.73,求这栋楼高.【答案】这栋楼高BC为270米【解析】解:在Rt△ABD中,BD=tanα•AD=0.27×90=24.3(米),在Rt△ACD中,CD=AD•tanβ=90×2.73=245.7(米),∴BC=BD+CD=24.3+245.7=270(米),答:这栋楼高BC为270米.38.(2020•凉山州)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:asin∠A =bsin∠B=csin∠C=2R;(2)若∠A=60°,∠C=45°,BC=4√3,利用(1)的结论求AB的长和sin∠B的值.【答案】(1)见解析;(2)sin∠B=AC2R =2(√2+√6)8=√2+√64.【解析】(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,∴sinA=sinE=BCBE =a2R,∴asinA=2R,同理:bsin∠B =2R,csin∠C=2R,∴asin∠A =bsin∠B=csin∠C=2R;(2)解:由(1)得:ABsinC =BCsinA,即ABsin45°=4√3sin60°=2R,∴AB=4√3×√22√32=4√2,2R=√3√32=8,过B作BH⊥AC于H,∵∠AHB=∠BHC=90°,∴AH=AB•cos60°=4√2×12=2√2,CH=√22BC=2√6,∴AC=AH+CH=2(√2+√6),∴sin∠B=AC2R =2(√2+√6)8=√2+√64.39.(2020•宜宾)如图,AB和CD两幢楼地面距离BC为30√3米,楼AB高30米,从楼AB的顶部点A测得楼CD的顶部点D的仰角为45°.(1)求∠CAD的大小;(2)求楼CD的高度(结果保留根号).【答案】(1)∠CAD=75°;(2)CD=(30+30√3)米. 【解析】解:(1)过A作AE⊥CD于点E,则AB=EC=30米,AE=BC=30√3米,在Rt△AEC中,tan∠CAE=CEAE =√33,则∠CAE=30°,则∠CAD=30°+45°=75°;(2)在Rt△AED中,DE=AE=30√3米,CD=CE+ED=(30+30√3)米.40.(2020•随州)如图,某楼房AB顶部有一根天线BE,为了测量天线的高度,在地面上取同一条直线上的三点C,D,A,在点C处测得天线顶端E的仰角为60°,从点C 走到点D,测得CD=5米,从点D测得天线底端B的仰角为45°,已知A,B,E在同一条垂直于地面的直线上,AB=25米.(1)求A与C之间的距离;(2)求天线BE的高度.(参考数据:√3≈1.73,结果保留整数)【答案】(1)A与C之间的距离是30米;(2)天线BE的高度为27米. 【解析】解:(1)由题意得,在Rt△ABD中,∠ADB=45°,∴AD=AB=25米,∵CD=5米,∴AC=AD+CD=25+5=30(米),即A与C之间的距离是30米;(2)在Rt△ACE中.∠ACE=60°,AC=30米,∴AE=30•tan60°=30√3(米),∵AB=25米,∴BE=AE﹣AB=(30√3−25)米,∵√3≈1.73,∴BE≈1.73×30﹣25=27米.即天线BE的高度为27米.。
锐角三角函数
1.(2016·乐山)如图12,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,则下列结论不正确的是(
A.sin B=AB AD
B.sin B=BC AC
C.sin B=AC AD
D.sin B=AC
CD
2.(2016·襄阳)如图13,△ABC 的顶点是正方形网格的格点,则sin A 的值为(
A.21
B.55
C.1010
D.552
3.(2016·甘肃武威)如图14,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan
α=2
3,则t 的值是___________.
4.(2016·新疆)如图15,某校数学兴趣小组为测得校园里旗杆AB 的高度,在操场的平地上选择一点C ,测得旗杆顶端A 的仰角为30°,再向旗杆的方向前进16米,到达点D 处(C ,D ,B 三点在同一直线上),又测得旗杆顶端A 的仰角为45°,请计算旗杆AB 的高度.(结果
5.如图16是一座人行天桥的示意图,天桥的高度是10米,CB ⊥DB ,坡面AC 的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=3∶3.若新
坡角下需留3米宽的人行道,问离原坡脚(A 点处)10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732
6.如图17,在Rt △ABC 中,∠ACB=90°,AC=BC=3,点D 在边AC 上,且AD=2CD ,DE ⊥AB ,
垂足为点E ,连接CE ,求:(1)线段BE 的长;(2)∠ECB 的余切值.
1.(2016年)如图18,在平面直角坐标系中,点A 坐标为(4,3),那么cos α的值是( )
A.43
B.34
C.53
D.54
2.(2013年)在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sin A=___________.
3.(2016年)如图19,Rt △ABC 中,∠B=30°,∠ACB=90°,
CD ⊥AB 交AB 于D ,以CD 为较短的直角边向△CDB 的同侧作Rt △DEC ,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt △FGC ,∠FCG=90°,继续用同样的方法作Rt △HCI ,∠HCI=90°,若AC=a ,求CI 的长.
4.(2014年)如图20,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,在B 处测得树顶C 的仰角为60°(A ,B ,D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度.(结果精确到0.1
m.参考数据:2≈1.414,3 1.732
5.(2012年)如图21,小山岗的斜坡AC 的坡度是tan α=4
3,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB.(结果取整数.参考数据:sin 26.6°≈0.45,cos 26.6°≈0.89,tan 26.60.50。