组胚
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
闰盘的名词解释组胚一、引言在生物学中,胚胎是指由受精卵一分为二,然后继续分裂和发育而成的早期生物结构。
而组胚则是胚胎发育的一个阶段,它是胚胎由一细胞的受精卵进化为一个多细胞结构的过程。
本文的主要内容将围绕着”闰盘的名词解释组胚”这个任务展开。
首先,我们将对组胚的定义进行详细解释,并介绍组胚的形成过程和相关的分子调控机制。
接着,我们将探讨组胚在生物学研究中的重要意义,并引用一些实际应用的例子。
最后,我们将总结本文的内容。
二、组胚的定义组胚(blastula)是胚胎发育过程中的一个阶段,它是由受精卵经过一系列细胞分裂和细胞移动后形成的多细胞结构。
在组胚阶段,胚胎呈球状或盘状,由内外两层细胞组织构成。
外层细胞组成外胚层,内层细胞则构成内胚层。
组胚阶段通常发生在受精卵分裂为16至64个细胞之后,具体时间根据物种的不同而有所不同。
三、组胚的形成过程组胚的形成是一个复杂而精确的过程,在多细胞生物的发育过程中起着重要的作用。
以下是一个典型的组胚形成的过程:1.受精卵分裂:受精卵在受精后,细胞开始进行连续而快速的分裂,形成一系列的细胞。
2.细胞移动:在分裂的过程中,细胞开始进行移动,沿着一定的方向进行排列。
这个过程被称为胚胎的腹背轴形成。
3.细胞分化:细胞在组胚阶段逐渐分化为不同的类型。
一般来说,外层细胞分化为外胚层细胞,内层细胞则分化为内胚层细胞。
4.产生体轴:组胚的形成还伴随着体轴的产生。
在体轴形成过程中,一些特定的细胞会发育成为神经板,最终形成中枢神经系统。
四、组胚的分子调控机制组胚的形成过程受到多个信号通路和基因网络的调控。
以下是一些重要的分子调控机制:1.Wnt信号通路:Wnt信号通路是组胚形成过程中的关键调节因子之一。
它在组织和器官的形成中起着重要的作用,并参与细胞命运的决定。
2.FGF信号通路:FGF信号通路通过调节细胞增殖和分化来影响组胚的形成。
它可以促进细胞的迁移和多样化,并在早期胚胎发育中发挥重要的作用。
1、组织:由细胞群和细胞外基质组成。
人体组织可归纳为四大类型,即上皮组织、结缔组织、肌组织和神经组织,它们在胚胎时期的发生来源、细胞构成、形态特点及功能等方面,各具明显特性。
2、内皮:指衬贴在心、血管和淋巴管腔面的单层扁平上皮。
3、间皮:指分布在胸膜、腹膜和心包膜表面的单层扁平上皮。
4、微绒毛:是上皮细胞游离面伸出的微细指状突起。
电镜下表面为细胞膜,内为细胞质,其内可见纵行微丝。
微绒毛可显著扩大细胞表面积,参与物质吸收。
5、纤毛:是细胞游离面伸出的粗而长的突起。
电镜下表面为细胞膜,内为细胞质,其内含有纵向排列的微管。
纤毛具有节律性定向摆动能力,可将黏附的尘埃、细菌等排出。
6、分子筛:疏松结缔组织基质中的透明质酸、硫酸软骨素A等多糖与蛋白质结合成的具有许多微孔隙的结构,称分子筛。
对细菌和大分子物质等的扩散起屏障作用。
7、血浆:是血液中的无定形成分,相当于细胞外基质,占血液容积的55%,其中90%是水,内含血浆蛋白、脂蛋白、酶、无机盐等。
8、血清:是血液体外凝固后析出的淡黄色液体,它相当于结缔组织的基质。
其中除了无纤维蛋白原外,其余成分与血浆相同。
9、网织红细胞:是一种尚未完全成熟的红细胞。
胞质经煌焦油蓝染色后可看到染成蓝色的细网状结构,为残留的核蛋白体。
外周血中网织红细胞的数量可作为了解骨髓造血功能的一种指标。
10、同源细胞群:位于软骨中部的软骨细胞成群分布,2~8个软骨细胞聚集在一起,由同一个幼稚的软骨细胞分裂增殖形成,称同源细胞群。
11、骨基质:简称骨质,即钙化的骨组织的细胞外基质。
由有机成分和无机成分构成。
有机成分包括胶原纤维和无定形基质;无极成分又称骨盐,使骨坚硬。
12、骨单位:又称哈弗系统,是构成密质骨的主要结构,由位于中央的中央管和其周围呈同心圆排列的骨板(哈弗骨板)构成。
13、肌节:为肌原纤维上相邻两条Z线之间的一段结构,一个肌节由1/2明带+暗带+1/2明带组成。
肌节是骨骼肌纤维结构和功能的基本单位。
体节名词解释组胚
组胚是指在生物发育过程中,由单个受精卵或多个细胞通过细胞分裂形成的、具有一定结构和功能的细胞集合体。
在动物的早期胚胎发育阶段,经过一系列细胞分裂和细胞移动,原始细胞逐渐分化为不同类型的细胞,并按照特定的排列方式组织起来,形成各个器官和组织的原始结构。
这些分化和排列的细胞集合体就被称为组胚。
组胚可以看作是胚胎发育过程中的一个重要阶段,它标志着胚胎进入了多细胞组织形成的阶段。
在组胚阶段,胚胎内部已经开始形成胚芽、原肠道、原神经系统等最初的器官和组织结构。
通过细胞分裂和细胞分化,组胚逐渐演化为更加复杂的胚胎结构,最终形成完整的器官系统和身体结构。
组胚的形成和发展对于生物体的正常发育至关重要。
在组胚阶段,细胞之间的相互作用和调控机制起着关键作用,决定了细胞的命运和分化方向。
同时,组胚也为后续的器官发生和组织形成提供了基础,为生物体的正常结构和功能奠定了基础。
总之,组胚是胚胎发育过程中的一个阶段,指由单个受精卵或多个细胞经过细胞分裂和分化,形成具有一定结构和功能的细胞集合体,为生物体的正常发育和器官形成奠定基础。
组胚试题及答案一、单项选择题1. 组胚是植物生长发育的关键阶段,主要发生在()。
A. 胚乳中B. 胚珠中C. 茎尖中D. 根尖中答案:B. 胚珠中2. 下列哪个器官不是由胚胎的基细胞形成的?A. 茎B. 叶C. 根D. 维管束答案:D. 维管束3. 在种子植物的胚乳中,营养物质主要储存于()中。
A. 胚乳皮层B. 子叶C. 胚乳核D. 胚乳膜答案:B. 子叶4. 组胚体发育过程中,()是最早出现的胚胎器官。
A. 根B. 茎C. 叶D. 花答案:A. 根5. 下列哪个结构不属于胚珠的组成部分?A. 胚乳B. 表皮C. 珠心D. 胚胎鞘答案:D. 胚胎鞘二、填空题1. 组胚是植物生长发育中最早的一个阶段,也是胚胎期的()阶段。
答案:形成2. 胚珠发育的早期阶段称为()期。
答案:原生3. 在种子植物的胚乳中,能源主要以()的形式储存。
答案:脂肪4. 胚乳起源于()受精卵的发育。
答案:没精5. 组胚体发育后形成胚珠的一部分将发育为()。
答案:种皮三、简答题1. 请简述组胚是植物生长发育的关键阶段。
组胚是植物生长发育中最早的一个阶段,也是胚胎期的形成阶段。
在组胚过程中,受精卵经过一系列分裂和增殖,最终形成胚胎。
组胚是种子植物的繁殖方式,也是种子植物与其他植物类型的重要区别之一。
在组胚过程中,胚胎发生器官的形成和分化,为后续的花器官、叶器官和根器官的发育奠定了基础。
2. 请简述胚乳在种子植物中的作用。
胚乳是种子植物胚胎发育的产物,主要起到保护和提供养分的作用。
胚乳中富含脂肪、蛋白质和碳水化合物等营养物质,可以提供胚胎在发育过程中所需的能量和营养物质。
同时,胚乳还可以提供保护胚胎的功能,起到缓冲外界环境变化和抵御害虫侵害的作用。
在种子萌发的过程中,胚乳的养分被利用,为胚芽的生长提供能量和营养,促进种子的正常发芽和生长。
3. 组胚体发育后会形成胚珠的哪些组成部分?组胚体发育后,胚珠将形成以下组成部分:- 胚胎鞘:胚胎鞘是组胚体内最早出现的胚胎器官之一,将发育为胚珠的一部分。
名解软骨与骨1、同源细胞群:软骨细胞具有分裂能力,由同一个软骨细胞分裂而来的2-8个或群分布的细胞2、骨单位:又称哈佛系统,位于内外环骨板之间,数量最多,是骨密质的主要结构单位中央管:骨单位的中轴骨单位骨板:周围为4~20层同心圆排列的骨板粘合线:骨单位表面有一层粘合质,含骨盐多纤维少的骨基质,在骨磨片的横断面上呈折光较强的轮廓线中央管和骨单位关系:骨单位内的骨小管互相通联,最内层的骨小管开口于中央管软骨的分类透明软骨(胶原原纤维)纤维软骨(胶原纤维)弹性软骨(弹性纤维)肌组织1、肌节:相邻两Z线之间的一段肌原纤维,1/2 I+ A +1/2I,其长度随着肌纤维的收缩和舒张而变化,骨骼肌纤维结构和功能的基本单位2、三联体=1根横小管+两侧的终池横小管组成:肌膜向肌浆内凹陷形成的管状结构,其走向与肌纤维长轴垂直,故称T小管位置:人与哺乳动物横小管位于A带与Ⅰ带交界处,分支吻合并环绕每一条肌原纤维功能:传递电兴奋终池:位于横小管两侧的的肌质网扩大呈扁囊3、闰盘:位于Z线水平,呈阶梯状,横向部分有中间连接和桥粒,起连接作用,纵向部分有缝隙连接,起传导电信号作用作用:分泌颗粒,能分泌心钠素等神经组织1、尼氏体结构:为颗粒状或斑块状的嗜碱性物质(LM),平行排列的粗面内质网和游离核糖体(EM)功能:合成结构蛋白和分泌蛋白,神经元功能状态标志2、突触:神经元与神经元之间或神经元或非神经细胞之间的特化的连接结构,传递信息,最常见的的是一个神经元的轴突终末与另一个神经元的树突、树突棘或胞体连接化学突触:由突触前成分、突触间隙、突触后成分构成,以神经递质为传递信息的媒介,单向传导电突触:缝隙连接,以电流作为信息的载体,双向传导3、郎飞结:每两节髓鞘之间的缩窄部分(相邻两个郎飞结之间的一般称节间体)。
在郎飞结处轴突裸露,其轴膜镶嵌有离子通道蛋白,有利于轴膜内外离子交换,与神经冲动的传导有关4、施—兰切迹(髓鞘切迹):如用锇酸固定和染色,则能保存髓磷脂,使髓鞘呈现黑色,并在其纵切面上见到一些漏斗形的斜裂,称髓鞘切迹5、施万细胞:神经膜细胞,是周围神经系统的髓鞘形式细胞功能:参与周围神经系统有髓神经纤维髓鞘的形成,诱导神经再生循环系统1、浦肯野纤维(束细胞):位于心内膜下层较心肌纤维,有1~2个细胞核,细胞质淡,内含丰富线粒体和糖原,肌丝少,较发达闰盘,传导冲动内分泌系统1、赫令体:分泌颗粒在轴突沿途或轴突终末聚集成团构成光镜下均质状的嗜酸性小体呼吸系统1、气—血屏障(呼吸膜)组成:肺泡腔表面活性物质及下方液体层、肺泡上皮、上皮基膜、毛细血管内皮基膜、毛细血管内皮细胞功能:有利于肺泡内的氧气与肺泡隔内的二氧化碳进行气体交换所通过泌尿系统1、滤过屏障(滤过膜):当血液从入球微动脉流经毛细血管时由于毛细血管内压力较高,使血浆中部物质通过有空内皮基膜和足细胞裂空膜滤入肾小囊腔2、球旁复合体:部位:位于肾小体的血管极处,呈三角形组成:球旁细胞+致密斑+球外系膜细胞功能:1、调节血压,维持水,电解质平衡2、促进骨髓造血女性生殖系统1、透明带:凝胶状的糖蛋白由卵泡细胞和卵母细胞共同分泌形成卵泡细胞和卵母细胞均有微绒毛及突起伸入其中作用:传递营养物质,有种属特异性2、黄体:排卵后,残留在卵巢内的卵泡壁连同壁上的血管一起塌陷形成皱襞,在LH作用下,颗粒细胞和膜细胞变大,形成一个体积很大的内分泌细胞团,新鲜时呈黄色组成:颗粒层细胞,粒黄体细胞,多边形,胞体达,染色线,具有分泌类固醇激素的特点,细胞数量多,分泌孕激素内膜细胞,膜黄体细胞,细胞体积小,染色较深,数量较少,与极黄体细胞共同作用分泌雌激素3、门细胞:门细胞成群分布于卵巢门处,其结果与睾丸间质细胞相似主要能分泌雄激素4、月经周期自青春期始,在卵巢分泌孕激素周期性作用下,子宫底部和体部的内膜功能层出现周期变化,即每隔28天左右发生一次剥脱、出血、修复和增生的过程,称月经周期月经期(第1—4天)由于卵巢黄体退化,雌孕激素骤然下降所引起(内膜缺血,功能层坏死脱落,功能层血管破裂出血→形成月经)增生期(第5—14天)卵巢内若干卵泡细胞开始生长发育,故又称卵泡期分泌期(第15—28天)卵巢已排卵,黄体逐渐形成,故又称黄体期问答题肌肉组织1、比较骨骼肌和心肌光电镜结构异同点答:骨骼肌:长圆柱形,多核,位于肌膜下,胞质嗜酸性,含大量肌原纤维,有横纹心肌LM:分支短杆状,连接处有闰盘,核1~2个,椭圆形,位于细胞中央EM 心肌与骨骼肌相比有以下特点:(1)肌原纤维少,粗细不均(2)横小管粗、少,位于Z线水平(3)纵小管不发达,终池小,长形成二联体(4)有闰盘,位于Z线水平。
组胚名词解释组胚是生物学中一个重要的概念,用来描述生物体在发育过程中形成的初始细胞团。
组胚起源于受精卵或一细胞胚胎,通过细胞分裂和分化,最终发展成为一个有功能的多细胞生物。
在生物体的发育过程中,组胚是一个关键的阶段。
它代表了胚胎发育的最初阶段,通过细胞的相互作用和调控,组胚细胞逐渐分化为不同类型的细胞,并形成各种组织和器官。
组胚的形成和分化是一个复杂而精确的过程,涉及到许多生物学上的重要机制。
首先,组胚的形成依赖于细胞分裂。
一细胞胚胎经过连续的有丝分裂,产生了许多细胞,这些细胞逐渐组合在一起,形成了组胚。
这些细胞之间的相互作用和通信是组胚形成的重要驱动力。
例如,一些细胞会分泌信号分子,影响周围细胞的分化方向,从而形成不同类型的细胞。
其次,组胚细胞在发展过程中会发生分化。
分化是指细胞从相对未定向的状态逐渐成为特定类型的细胞,具有特定的形态和功能。
分化的过程受到遗传和环境因素的调控。
通过调控基因表达和细胞内信号传导通路,细胞可以选择不同的分化路径。
例如,在动物胚胎发育过程中,组胚细胞会分化成表皮细胞、神经细胞、肌肉细胞等不同类型的细胞。
另外,组胚细胞还会发生细胞迁移和细胞死亡。
细胞迁移是指细胞从一个位置移动到另一个位置,以形成不同的细胞层和组织结构。
细胞死亡则是在发育过程中,不需要或有损害的细胞会自我引发死亡,以促进整个胚胎的完整性和正常发育。
这些细胞迁移和细胞死亡的过程是组胚形成的重要组成部分。
最后,组胚的形成需要正确的时序和定位。
在整个发育过程中,细胞的分裂、分化、迁移和死亡都需要在特定的时间和位置发生。
这种时序和定位的准确性是非常重要的,对于生物体的正常形态和功能发挥起着关键的作用。
综上所述,组胚是在生物体发育过程中形成的初始细胞团,通过细胞分裂、分化、迁移和死亡等复杂机制,最终发展成为一个功能完整的多细胞生物。
组胚的研究对于理解生物发育过程和疾病发生机制具有重要意义,也为生物医学研究和临床治疗提供了理论基础。
组胚名词解释1、连接复合体: 在紧密连接、中间连接、缝隙连接及桥粒四种细胞间连接方式中,只要有两种或两种以上的连接方式在一起,则称为连接复合体。
2、微绒毛: 是上皮细胞游离面伸出的微细指状突起,由细胞膜和细胞质组成。
微绒毛内含许多纵行排列的微丝,微绒毛的主要功能是使细胞的表面积增大,有利于细胞的吸收功能。
3、同源细胞群:从软骨周边向软骨中央,软骨细胞逐渐成熟,体积逐渐增大,变成圆形或椭圆形,常成群分布,而且多以2~8个细胞聚集在一起,它们由一个软骨细胞分裂增殖而来,称同源细胞群。
同源细胞群是软骨组织最主要的结构特点。
4、骨单位:是位于内、外环骨板之间,由4~20层呈同心圆排列的哈佛骨板围绕中央管而构成的长柱状结构,是长骨中起支持作用的主要结构。
骨膜内的细胞、纤维、基质和血管、神经等结构经穿通管进入中央管,使骨组织获得营养,排除废物,进行代谢和生长改建。
5、肌原纤维:是细胞内由肌动蛋白和肌球蛋白两种蛋白质构成的肌微丝,与肌纤维纵轴平行成束排列,是肌肉收缩的物质基础。
6、横小管:又称T小管,是骨骼肌和心肌纤维的肌膜向肌浆内凹陷形成的管状结构,其走向与肌纤维长轴垂直,同一平面上的横小管分支吻合,环绕在每条肌原纤维的表面。
横小管可将肌膜的兴奋迅速传到每个肌节。
7、三联体:主要见于骨骼肌纤维内,由一条横小管及其两侧相邻的肌浆网终池组成,横小管膜与肌浆网膜紧密相贴形成三联体结构。
三联体将肌膜的兴奋经横小管和三联体连接传至肌浆网膜,引起钙泵活动,使肌浆网储存的钙离子迅速大量释放到肌浆内,引起肌纤维的收缩。
8、肌节:为肌原纤维上相邻两条Z线之间的一段结构,一个肌节由1/2明带+暗带+1/2明带组成。
肌节是肌原纤维结构和功能的基本单位。
9、尼氏体:是神经元胞质内的强嗜碱性小斑块或颗粒。
电镜下,尼氏体由许多平行排列的粗面内质网和游离核糖体组成。
尼氏体是神经元合成蛋白质的场所,主要合成结构蛋白,合成神经递质所需的酶类和肽类的神经调质。
组胚名词解释微绒毛:为细胞表面指状突起.在上皮细胞中位于游离面,电镜下可见其表面为细胞膜,中轴细胞质内含纵行微丝.微绒毛可扩大细胞表面的接触面积,促进细胞的吸收功能.吸收功能活跃的上皮细胞表面微绒毛发达,光镜下可见此处为纹状缘或刷状缘.纤毛:上皮细胞游离面伸出的能摆动的突起,常见于呼吸道女性生殖管道(如输卵管等)等部位的上皮处.电镜下可见其表面为细胞膜,内为细胞质.细胞质内有纵行微管,其中周边为九组双连微管,中央为两条双联微管.纤毛根部为基体,基体微管与纤毛微管相连.纤毛可通过微管的滑动而定向滑动,以推送细胞表面的物质.连接复合体:各种细胞连接常可同时存在.只要有两种或两种以上相邻在一起,即可称为连接复合体.组织液:是从毛细血管动脉端渗入细胞间质内的液体,经毛细血管静脉端或毛细淋巴管回流入血液或淋巴.体内细胞通过组织液和血液进行物质交换,取得营养物质,释放出代谢产物.分子筛:以蛋白多糖复合体的立体构型为主体.糖蛋白在基质中形成许多有微隙的结构,称为分子筛.分子筛具有屏障作用,小于起孔径的物质(如氧气二氧化碳)及营养物质可以自由通过;而大于其孔径的物质(如细菌)不能通过.同源细胞群:位于软骨中部,由一个幼稚的软骨细胞分裂增生而成的细胞群,称为同源细胞群.每群含2~8个软骨细胞.哈弗斯系统:哈弗斯骨板与哈弗斯管共同组成的系统.哈弗斯骨板介于内外环骨板之间,是骨干密质骨的主要部分,它们以哈弗斯管为中心呈同心圆排列.哈弗斯管内有血管神经及少量的结缔组织.血象:临床上将血细胞,血小板的形态数量比例和血红蛋白的含量的测定称为血象.肌原纤维:光镜下,可见骨骼肌纤维肌浆内含大量细丝状结构,与肌纤维长轴平行排列,即肌原纤维.电镜下可见肌原纤维是由许多粗细两种肌丝有规律地平行排列而成,每条肌原纤维上有明暗相间的横纹.肌节:两条相邻Z线见的一段肌原纤维称为肌节,每个肌节包括1/2I带+A带+1/2I带是骨骼肌纤维收缩和舒张功能的基本结构单位.闰盘:闰盘即心肌纤维的连接结构.光镜下,在HE染色标本中呈横行或阶梯状粗线.电镜下,润盘位于Z 线水平,由相邻心肌纤维的突起嵌合而成,在横向连接的部分有中间连接和桥粒,在纵向连接部分有缝隙连接,便于细胞间信息传导,保证心肌纤维同步收缩.三联体:在人和哺乳动物骨骼肌肌原纤维的I带与A带交界处,肌膜向肌浆内凹陷形成横小管:它与肌原纤维的长轴垂直,称横小管.肌纤维内特化的滑面内质网即肌浆网,在想邻横小管之间呈相互吻合的纵行小管网环绕肌原纤维.横小管两测,肌浆网呈环行扁囊称终池.每条横小管与其两侧的终池共同组成骨骼肌三联体.尼氏体:光镜下,可见神经原胞质内含许多嗜碱性块状或颗粒状的物质称尼氏体,.电镜下为丰富的粗面内质网和核糖体.神经原纤维:在银染标本上可见神经原胞质内含许多交织成网状的结构称神经原纤维,电镜下其由微丝或微管集合成束而成,散在分布在细胞质中.神经纤维:是由神经元的轴突或长树突和包在其外表面的神经胶质细胞(施万细胞或少突胶质细胞构成).根据有无髓鞘分为有髓鞘神经纤维和无髓鞘神经纤维两种.血脑屏障:血液和脑组织之间的屏障结构,由连续毛细血管内皮(细胞之间有紧密连接),完整的基膜和神经胶质细胞突起形成的胶质界膜组织.W-P小体:位于血管内皮细胞中的长杆状结构,有膜包裹,内含许多直径15nm的平行细管,具有贮存vWF 因子的功能.淋巴小结是由B细胞为主(B细胞占95%,其余为巨噬细胞,滤泡树突细胞,辅助性T 细胞)密集而成的球状淋巴组织.功能活跃的淋巴小结中心浅染,称生发中心,是聚集抗原并引起B细胞增殖的部位.血-胸腺屏障:为血液与胸腺皮质间的屏障结构.主要由以下5层组成:1 连续毛细血管内皮2 内皮基膜3 血管周间隙,间隙中可有巨噬细胞等4 胸腺上皮细胞的基膜5 最外面包裹一层连续的胸腺上皮细胞单核吞噬细胞系统:是具有共同来源(幼单核细胞)和共同功能(趋化性运动,强烈吞噬)的散布于全身的细胞系统.包括:巨噬细胞,破骨细胞,肝巨噬细胞,交错突细胞,小胶质细胞等垂体门脉系统:垂体上动脉从结节部上端进入神经垂体漏斗,并形成袢形窦状毛细血管网,称一级毛细血管网.这些毛细血管网再返回结节部汇集成数条垂体门微静脉,下行入远侧部,再形成窦状毛细血管网,称第二级毛细血管网,由此构成垂体门脉系统.小肠绒毛:小肠粘膜层的上皮和固有层向肠腔伸出众多的指状突起称小肠绒毛.中央乳糜管:在小肠绒毛中轴内有一条或两条毛细淋巴管,称为中央乳糜管.主要转运小肠上皮吸收的脂肪.细胞内分泌小管:胃底腺壁细胞游离面的细胞膜向细胞质内凹陷形成的迂曲的小管细胞内分泌小管.胰岛:是由内分泌细胞组成的细胞团,分布于胰腺腺泡之间.主要细胞有A B D PP四类细胞,胰岛分泌的激素进入血液,调节碳水化合物等的代谢.泡心细胞:胰腺闰管的一端上皮细胞插入腺泡腔内,称泡心细胞,其为扁平或立方形细胞,染色浅淡.肝小叶:是肝的结构和功能单位,为多角形棱柱体,每个肝小叶的中央有一条中央静脉贯穿,其周围是肝细胞组成的肝板和肝血窦.肝板内有盲端在中央静脉一侧的胆小管网.窦周隙:肝血窦内皮细胞与肝细胞之间的间隙称为窦周隙.窦周隙是肝细胞与血液之间进行物质交换的重要场所.门管区:肝小叶间的结缔组织内含小叶间动脉,小叶间静脉和小叶间胆管,称门管区.胆小管:是相邻肝细胞连接面局部细胞膜凹陷形成的细管.以盲端起于中央静脉周围的肝板内,互相吻合成网,在肝小叶周围通如小叶间胆管.肾单位:是肾形成尿液的结构和功能单位,由肾小体和肾小管组成.按照肾小体的分布位置,可将肾单位分为浅表肾单位和髓旁肾单位.滤过膜:又称滤过屏障,由血管球毛细血管的有空孔,基膜和足细胞裂孔膜三层结构组成.足细胞:是构成肾小囊脏层细胞.细胞体积较大,胞体凸向肾小囊腔.电镜下可见足细胞从胞体伸出几个大的初级突起,后者又分出许多指状的次级突起.相邻次级突起相互呈指状穿插,呈栅栏状,紧贴于毛细血管基膜外.突起之间的裂隙称裂空孔,裂孔上覆盖有薄膜,称裂孔膜.该膜参与滤过膜的构成.肺泡隔:即相邻两个肺泡之间的薄层结缔组织,内含丰富的连续型毛细血管和弹性纤维气血屏障:是指肺泡气体与血液间气体分子进行交换所通过的结构。
名词解释(内脏)1.皱襞plica粘膜与粘膜下层共同向消化管腔内的突起,可以是环形(小肠)、纵形(食管)或不规则形(胃)。
有的是恒定结构,有的该段消化管扩张时可消失。
2.浆膜serosa由薄层结缔组织与间皮共同构成的薄膜,包括胸膜、腹膜、心包膜和睾丸鞘膜,覆盖在体腔表面或内脏器官外表面。
3.胃底腺fundic gland分布于胃体和胃底部,是胃粘膜中数量最多,功能最主要的腺体,主要由主细胞和壁细胞构成,分泌胃蛋白酶原和盐酸内因子4.中央乳糜管central chyle在小肠绒毛中轴固有层内有1~2 条毛细淋巴管,称为中央乳糜管。
主要转运肠上皮吸收的脂肪。
5.肝小叶acini hepatis是肝的结构和功能的基本单位,小叶中央为中央静脉,肝细胞以中央静脉为中心放射状排列成肝板,肝板之间为肝血窦。
肝细胞相邻面的细胞膜局部凹陷,形成胆小管。
6.肝血窦hepatic sinusoid位于肝板之间的血流通道,腔大不规则,窦壁为一层不连续的内皮,窦腔含血液,肝巨噬细胞等。
7.肝巨噬细胞位于肝血窦内,形态不规则,胞质嗜酸,能吞噬和清除血液中的异物、细菌和病毒等有害物质,参与吞噬衰老的红细胞和血小板。
8.窦周隙sinus gap指肝血窦的内皮细胞与肝细胞之间的狭小间隙,含有一种散在贮脂细胞,是肝细胞与血液之间进行物质交换的场所。
9.肝门管区hepatic portal area是指相邻几个肝小叶之间的区域,含有较多的结缔组织,并有小叶间胆管、小叶间动脉和小叶间静脉通过。
10.胆小管bile duct是相邻肝细胞连接面的局部质膜向内凹陷并对接而成的精细小管,在肝板内连结呈网状管道,可收集胆汁。
11.泡心细胞centro-acinar cells胰腺闰管的一端上皮细胞插入腺泡腔内,称为泡心细胞。
其为扁平或立方形细胞,染色浅。
12.胰岛pancreas islet胰腺外分泌部中散在的内分泌细胞团,细胞之间有大量有孔毛细血管。
心内膜:由内皮和内皮下层组成。
内皮为单层扁平上皮,表面光滑,有利于血液流动。
内皮下层由结缔组织构成,分为内外两层,内层为细密结缔组织,外层为疏松结缔组织。
肥大细胞:细胞较大,圆形或卵圆形。
核小而圆,胞质内充满嗜碱性分泌颗粒,内含肝素、组胺、嗜酸性粒细胞趋化因子等。
肥大细胞沿小血管分布,在皮肤、呼吸道、消化管结缔组织内较多。
肥大细胞在受到刺激后合成白三烯等参与过敏反应。
真皮:位于表皮下方,分为乳头层和网织层,二者无明确界限。
乳头层是紧靠表皮的疏松结缔组织,含丰富的毛细血管和游离神经末梢。
网织层为致密结缔组织,内有胶原纤维和弹性纤维赋予皮肤较大的弹性和韧性。
被覆上皮:被覆上皮覆盖于身体表面,衬贴在体腔和有腔器官表面,具有保护、吸收、分泌、排泄等功能。
红细胞:在扫描电镜下呈双凹圆盘状,成熟红细胞无核,也无任何细胞器,胞质内充满血红蛋白。
红细胞平均寿命为120天,新生未完全成熟红细胞内残留部分核糖体,用煌焦油蓝染色呈细网状,故称网织红细胞。
成骨细胞功能;成骨细胞合成和分泌骨基质的有机成分,还释放基质小泡。
促进类骨质钙化,成骨细胞还分泌多种细胞因子,调节骨组织的形成和吸收,促进骨组织钙化。
上皮内杯状细胞:形似高脚杯,底部狭窄,顶部膨大,充满分泌颗粒,颗粒内含黏蛋白,与水结合形成黏液,有润滑和保护上皮的作用。
平滑肌:广泛分布于消化道、呼吸道、血管等中空性器官的管壁。
光镜下,平滑肌纤维呈长梭形,细胞中央有一杆状或椭圆形的核,常呈扭曲状,胞质嗜酸性,无横纹。
电镜下,可见大量密斑、密体、中间丝、细肌丝、粗肌丝。
放射冠:卵泡细胞为柱状,呈放射状排练,称放射冠。
未角化的复层扁平上皮:衬贴在口腔和食管等腔面的复层扁平上皮,浅层细胞有核,含角蛋白少,称未角化的复层扁平上皮。
大肠结构:包括黏膜表面光滑,无绒毛。
黏膜下层在结缔组织内有血管、淋巴管。
肌层由内环行、外纵行两层平滑肌组成。
外膜胰腺外分泌部腺泡:为纯浆液性复管泡状腺。
1.闰盘:闰盘即心肌纤维的连接结构。
光镜下,在HE染色标本中呈横行或阶梯状粗线。
电镜下,闰盘位于Z线水平,由相邻心肌纤维的突起嵌合
而成,在横向连接的部分有中间连接和桥粒;在纵向连接部分由缝隙连接,此结构利于化学信息和电冲动交流,使心肌纤维同步舒锁称为统一功能整体。
2.肌节:两条相邻Z线间的一段肌原纤维称为肌节,每个肌节包括1/2I带+A带+1/2I带,是肌纤维收缩的结构与功能单位。
3肠绒毛:位于小肠表面,由黏膜上皮和部分固有层向肠腔突起而成的细小的指状或叶状突起。
4.门管区:位于肝小叶之间的结缔组织,具有小叶间动脉、小叶间静脉和小叶间胆管的区域。
肝小叶:肝脏组织结构和功能的基本单位。
肝小叶呈多面棱柱状,在肝小叶中央有一纵行中央静脉,肝细胞以中央静脉为中心,向四周略呈放射状排列而形成肝细胞素(板),肝细胞素之间是肝血窦,相邻两肝细胞之间有胆小管。
5.肾单位:由肾小体和它相连的肾小管组成。
肾小体位于皮质浅部,数量多,体积小,髓襻较短,不进入髓质。
肾小管分为近端小管、细段和远端
小管三段,其长度、管径和细胞的形态结构有明显的区别,以适应其功能上的侧重。
9.副皮质区:又称深层皮质,位于皮质深部,为后层弥散淋巴组织,主要含T淋巴细胞,属胸腺依赖区。
10.动脉淋巴鞘:是指围绕在中央动脉周围的厚层弥散淋巴组织。
由大量的T细胞和少量的巨嗜细胞构成。
11.边缘区:在脾实质的白髓与红髓之间的移动区,是循环池的淋巴细胞离开血液进入脾脏实质的部位。
12.黄体:位于卵巢的皮质内,成熟卵泡排卵后,由卵泡膜内膜细胞和卵泡的颗粒层细胞演化形成,分别叫膜性黄体细胞(细胞小、染色深)和粒
性黄体细胞(细胞大、染色浅),其间夹有毛细血管;外围包裹着卵泡膜的外膜。
黄体属于内分泌腺,分泌孕酮和雌激素。
13.原条:随着囊胚的继续发育,位于胚盘明区前部和两侧的细胞,向后部和中央集中,结果在明区后2/3处,形成一条细胞带,称为原条。
14.胎盘:是胎儿与母体选择性进行物质交换的结构,由胎儿胎盘和母体胎盘共同组成。
16.肺小叶:由一个细支气管连同它的各级分支和肺泡组成,是肺的结构单位。
肺小叶呈锥形,尖端朝向肺门,底面向着肺表面,肺小叶之间有结
缔组织分隔。
18.突触:是神经元与神经元之间,或神经元与效应细胞之间的一种特化的细胞连接,通过它的传递作用实现细胞与细胞之间的通信,是传递信息
的重要结构。
1、简述淋巴结的组织结构和功能?
答:组织结构:(1)被膜及小梁:淋巴结位于淋巴回路的通路上,大小不等,形状不一,呈圆形或椭圆形或长圆形。
一侧有一凹陷称为门面,是血管、神经和输出淋巴管通过的地方。
淋巴结表面有薄层被膜,被膜的结缔组织伸入其内部形成大小不等的小梁。
小梁互相连接成网,构成淋巴结的粗支架,连同血管、神经一起形成淋巴结的间质。
(2)实质:包括皮质和髓质俩部分。
皮质位于被膜的下方,小梁与梁之间,由淋巴小结、副皮质区和皮质淋巴窦构成。
髓质位于淋巴结的中央,由髓索和髓窦构成、髓窦与皮窦相通。
功能:淋巴结是淋巴细胞定居和增殖的场所,免疫应答的发生地,淋巴液过滤的部位,淋巴细胞再循环的重要组成环节。
淋巴结是免疫细胞居住的场所,发生初级免疫应答的场所,参与淋巴细胞的再循环,过滤淋巴液的作用。
3、结合肝小叶结构,简叙肝血液循环特征和意义?
答:正常的肝脏接受门静脉、肝动脉双重血供,其中门静脉是肝的功能性血管,主要收集消化道的静脉血,血液中含有丰富的营养物质,能为肝细胞的功能活动提供丰富的营养来源;肝动脉是肝的营养性血管,为动脉血,血液中含有丰富的氧,能为肝细胞的功能活动提供丰富的氧。
门静脉和肝动脉的分支从肝小叶的边缘缓慢的流向肝小叶的中央静脉,便于血液和肝细胞之间进行物质交换。
4、简叙小肠绒毛的组织结构特点和功能?
答:小肠黏膜上皮和固有层共同向肠腔突出形成小肠绒毛。
其表面为上皮,中轴为固有层结缔组织。
上皮为单层柱状,由吸收细胞、杯状细胞及少量内分泌细胞组成。
吸收细胞游离面有许多微绒毛,其表面尚有一层细胞衣,由细胞膜内镶嵌蛋白的胞外部分构成,其中有双糖酶和肽酶,还有吸附的胰蛋白酶、胰淀粉酶等,是消化吸收的重要部位。
微绒毛扩大吸收细胞的表面积,有利于食物的消化吸收,中轴固有层内位细密结缔组织,含有孔毛细血管、中央乳糜管和少量平滑肌。
吸收细胞吸收的葡萄糖、氨基酸进入毛细血管运输,甘油-酯与脂肪酸在吸收细胞内合成甘油三酯,再形成乳糜微粒,进入中央乳糜管运输,平滑肌收缩也有利于物质的吸收和运输。
6、简述小肠绒毛结构及其吸收营养物质(单糖,氨基酸)的途径?
答:位于小肠表面,由黏膜上皮和部分固有层向肠腔突起而成的细小的指状或叶状突起。
吸收途径:氨基酸的吸收是主动转运的过程。
在小肠上皮细胞刷状缘上存在不同种类的氨基酸转运系统,分别选择性地转运中性、酸性和碱性氨基酸。
这些转运系统多数与钠的转运耦联,机制与单糖转运相似,但也存在非钠依赖性的氨基酸转运。
单糖的吸收是消耗能量的主动过程,它可逆浓度差进行,能量来自钠泵,属继发性主动转运。
肠粘膜上皮细胞膜上有钠泵,腔膜面上还有可与Na+和葡萄糖结合的转运体。
由于钠泵的运转,造
成细胞膜外即肠腔液中Na+的高势能,当Na+通过与转运体结合顺浓度差进入细胞时,由此释放的能量可用于葡萄糖分子逆浓度差进入细胞。
之后,葡萄糖再以易化扩散的方式扩散到细胞外,然后进入血液。
因此钠和钠泵对单糖的吸收是必需的。
7、结合肾单位的组织结构,阐述原尿和终尿的形成?
原尿:滤过的液体中除不含血细胞和大分子的蛋白质外,其余成分均与血浆接近,渗透压,酸碱度也都与血浆大体相似,为原尿。
终尿:原尿生成后进入肾小管被称为小管液,小管液经过肾小管和集合管的重吸收与分泌作用,最后排出体外的液体被称为终尿。
8、何谓受精?受精有何意义?
答:是两性配子结合形成合子的过程,为个体发育的起点。
受精过程一般是不可逆的,其意义在于:①受精使卵子的缓慢代谢转入代谢旺盛,从而启动细胞不断分裂,受精是使卵内所贮存的发育信息,从处于“掩盖”的不活动状态,诱发成为活动状态,使mRNA释放出来,从而激发蛋白质合成机制启动,导致受精卵发育。
②精子与卵子结合,恢复了二倍体核型,维持了物种的稳定性。
③受精决定性别。
④受精卵的染色体来自亲本,加之生殖细胞在成熟分裂时,曾发生染色体联合和片段交换,遗传物质发生重新组合,新个体具有亲代不完全相同的性状,使物种得以进化。
10、简述肝小叶的组织结构和生理功能?
答:肝小叶是肝结构和功能的基本单位,呈多面棱柱状。
在肝小叶中央有一纵行中央静脉。
肝细胞以中央静脉为中心,向四周略呈放射状排列,形成肝细胞素(板)。
肝细胞素之间是肝血窦。
肝血窦腔内有枯否细胞,具有吞噬功能。
相邻两肝细胞之间有胆小管。
胆小管可将肝细胞分泌的胆汁汇集至肝小叶周边的小叶间胆管内。