ABQUS-composites复合材料建模
- 格式:pdf
- 大小:3.17 MB
- 文档页数:18
复合材料层合/夹层板热膨胀/弯曲有限元分析本文介绍了有限元软件ABAQUS的有限元建模和仿真分析的过程,并且应用ABAQUS对层合板/夹层板的热膨胀和热弯曲问题进行分析,建模过程中分别采用实体单元和壳单元两种不同单元建模,分别对两种单元建立模型的热膨胀和热弯曲问题仿真分析。
通过与精确解的比较可以得出:实体单元可以更好的应用于复合材料层合/夹层结构的热膨胀和热弯曲问题。
具有一定的工程指导意义。
标签:层合板;夹层板;热膨胀;热弯曲1 引言复合材料具有低密度比强度、高比强度和高比刚度等性能,并且还具有稳定的化学性质、良好的耐磨性和良好的耐热性等优点,已经广泛的应用在航空航天领域。
复合材料无论是在制备还是应用的过程中,都不可避免的与热接触,或者是处于热环境之中。
复合材料层合结构和夹层结构在使用过程中会因温度变化而产生热膨胀,受热后产生的应力、应变会对复合材料的力学性能产生重要影响,在热应力的作用下,可能会导致结构的失效。
因此,复合材料受温度影响而导致的热膨胀和热弯曲问题的分析是十分重要的。
而且这个研究方向是一个非常值得深入的研究方向。
国内外对于热问题的研究在理论方面已经取得了重大进展,但是在实际工程问题分析中,有许多问题应用理论求解时时非常困难的,甚至有的问题无法求解。
随着有限云方法的出现和有限云软件的发展,使得有些工程问题变得简单高效。
本文采用有限云软件ABAQUS对于复合材料层合结构和夹层结构的热膨胀和热弯曲问题进行仿真分析。
2 复合材料层合板/夹层板几何模型的建立2.1 复合材料层合板/夹层板几何模型的建立本文建立的模型是用有限元软件ABAQUS建立的,具体的建模步骤如下:本文建立的复合材料三层板分别采用实体单元和壳单元,两种不同的单元建立的。
首先介绍实体单元有限元模型的建立。
实体单元建立模型时进入Part模块,选择三维,实体,可变性,模型空间“大约尺寸”设置为50,其他参数保持不变,采用实体单元建模的时候,采用的是实体拉伸,点击继续进入草图编辑界面。
ABAQUS自动化建模技术在纤维复合材料微结构建模中的应用任军强,李旭东,周兰,王国梁【摘要】摘要:运用ABAQUS自动化建模技术实现3D-Weave复合材料的微结构几何设计与自动化建模,解决了手工建立复杂几何模型的繁琐问题。
该研究中设计了纤维束截面纤维排列算法,编写ABAQUS内核脚本程序的同时,开发了GU I界面,在界面实现自动化建模及分析计算工作的控制,为纤维复合材料的力学性能分析奠定了坚实的基础。
【期刊名称】甘肃科技【年(卷),期】2010(026)013【总页数】3【关键词】关键词:ABAQUS;二次开发;python;GU I;纤维复合材料1 引言ABAQUS被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学、结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题[1]。
Python是一门优雅而健壮的编程语言,它继承了传统编译语言的强大性和通用性,同时也借鉴了简单脚本和解释语言的易用性,具有十多年的发展历史,成熟且稳定[2]。
它具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。
ABAQUS Scripting接口是 Python编程语言的一个扩展,因此,利用 Python编程语言编写ABAQUS接口可执行的脚本,针对不同的问题开发的一系列程序,所用编程语言均为 Python语言,采用的ABAQUS软件版本为 6.5-1。
自动化建模技术在纤维复合材料微结构设计中有着比较重要的意义。
在使用ABAQUS/CAE建立几何模型的时候常常会遇到一些困难,模型在几何特征上具有在ABAQUS/CAE界面用手工难以实现的特殊性,另外在进行微结构建模时通常会要求模型的海量化,这一要求对于ABAQUS/CAE GU I(图形用户界面—GraphicsUser Interface)来说也是比较困难的,因此本文采取在ABAQUS有限元分析软件中建立编织复合材料微结构的代表性体积单元RVE(Representative volume element)的几何模型的方法来实现。
四 Abaqus 在复合资料领域的优势4.1 复合资料介绍4.1.1 复合资料的应用复合资料有很多特征:1、制造工艺简单2、比强度高,比刚度大3、拥有灵巧的可设计性4、耐腐化,对疲惫不敏感5、热稳固性能、高温性能好因为复合资料的上述长处,在航空航天、汽车、船舶等领域,都有宽泛的应用。
复合资料的大批应用对剖析技术提出新的挑战。
4.1.2 复合资料的构造复合资料是一种起码由两种资料混淆而成的宏观资料,此中的一种资料被称作基体,其余的资料称作纤维。
此中纤维能够包含好多不一样的形式:失散的宏观粒子,随意方向的短纤维,规则摆列的纤维和织物。
4.1.3 典型的复合资料1)单向纤维层合板 ----冲击剖析2)编织复合资料 ---- 挤压剖析3)蜂窝夹心复合资料 ----不行见冲击损害剖析基体和纤维的存在形式以及资料属性关于复合资料的力学行为有着很大的影响。
改变纤维和基体的属性目的就是在于生成一种复合资料拥有以下性质:1)低成本:原型,大规模生产,零件归并,维修,技术成熟。
2)希望的重量:轻重量,比重分派合理。
3)改良的强度和刚度:高强度/高刚度比。
4)改良的表面属性:优秀的耐腐化性,表面抛光性好。
5)希望的热属性:较低的热传导性,热膨胀系数较低。
6)独到的电属性:拥有较高的绝缘强度,无磁性。
7)空间适应性:大零件,特别的几何构型。
4.1.4 复合资料的有限元模拟依据不一样的剖析目的,能够采纳不一样的复合资料模拟技术:1)微观模拟:将纤维和基体都分别模拟为可变形连续体。
2)宏观模拟:将复合资料模拟为一个正交各向异性体或是完整各向异性体。
3)混淆模拟:将复合资料模拟为一系列失散、可见的纤维层合板。
4)失散纤维模拟:采纳失散单元或是其余模拟工具进行模拟。
5)子模型模拟:关于研究增强纤维四周点的应力集中问题比较有效。
微观模拟:纤维 -基体的单胞模拟混淆模拟:层合板的混淆模拟Abaqus 中复合资料的单元技术Abaqus 中复合资料的单元技术主要为三种:分层壳单元、分层实体单元以及实体壳单元。
第7章 ABAQUS 复合材料平板稳定性7.3 复合材料平板稳定性计算复合材料具有比强度和比模量高、性能可设计和易于整体成形等诸多优异特性被广泛应用于航天、航空和航海等领域。
下面的以碳纤维树脂基复合材料的层压板为例介绍层压板的建模分析方法。
7.3.1 问题提出本例以层压板为例,600mm ×400mm 复合材料平板,四边简支,在一短边受100N/mm 压缩载荷作用下,进行平板稳定性分析。
板的铺层顺序为:[45/-45/90/0]s ,每层的厚度为0.125mm ,材料属性如表1所示。
表1 复合材料的材料参数表1E2E 3E 12υ 13υ 23υ 12G 13G 23G 144.7GPa 9.65GPa 9.65GPa 0.30 0.30 0.45 5.2GPa 5.2GPa 3.4GPa7.3.2 创建几何部件首先,打开【ABAQUS/CAE 】启动界面,在弹出的【Start Session 】对话框中单击【Create Model Database 】下的【With Standard/Explicit Model 】按钮,启动【ABAQUS/CAE 】。
进入【Part 】模块,单击【Create Part 】,进入如图1界面,选【Modeling Space :3D 】,类型Type: Deformable ,Base Feature: Shape: Shell ,Base Feature: Type: Planar ,Approximate size :1000(草图界面大小,根据所画草图的大小确定),单击【Continue 】按钮进入草图界面。
常按【Create Construction: Oblique Line Thru 2 Points 】弹出【Create Construction: Horizontal Line Thru Point 】单击,选中原点或在界面下方输入坐标“0,0”,建立水平横轴;继续常按【Create Construction: Horizontal Line Thru Point 】弹出【Create Construction: Vertical Line Thru Point 】,同理建立竖轴;单击【Add Constraint 】,弹出【Constraints 】界面单击其中【Fixed 】项,按住Shift 建,然后选中刚建立的横轴和竖轴,单击下方的【Done 】按钮完成对横轴和竖轴的约束。
Abaqus碳纤维复合材料结构1. 概述碳纤维复合材料是一种具有优异性能的先进材料,它在航空航天、汽车工业、体育器材等领域得到了广泛应用。
在工程设计中,对碳纤维复合材料结构的性能和可靠性进行准确的评估至关重要。
Abaqus是一种常用的有限元分析软件,能够对复材结构进行准确的模拟和分析,因此对于碳纤维复合材料结构的研究至关重要。
2. 碳纤维复合材料的特点碳纤维复合材料由高强度的碳纤维和塑料基体组成,具有重量轻、强度高、刚性大、耐腐蚀、抗疲劳等优点。
然而,碳纤维复合材料的非均匀性和复杂的结构使得其性能表现和预测变得更加复杂。
需要借助有限元分析等方法进行深入研究。
3. Abaqus对碳纤维复合材料结构的模拟Abaqus作为有限元分析软件,具有强大的建模和分析能力,能够对碳纤维复合材料的结构进行准确的模拟。
通过Abaqus可以建立复材层合板、复材蜂窝结构、复材夹芯板等常见的复材结构模型,并进行受力性能、疲劳寿命、断裂行为等方面的分析和预测。
4. Abaqus在碳纤维复合材料结构中的应用Abaqus在碳纤维复合材料结构领域有着广泛的应用,例如在航空航天领域,可以利用Abaqus对飞机机翼、机身等结构的复材部件进行受力和疲劳寿命分析;在汽车工业领域,可以利用Abaqus对碳纤维复合材料车身、悬挂系统等部件进行强度和刚度分析;在体育器材制造领域,可以利用Abaqus对碳纤维复合材料网球拍、高尔夫球杆等产品的性能进行模拟和预测。
这些实际应用表明Abaqus在碳纤维复合材料结构研究中的重要性和价值。
5. Abaqus在碳纤维复合材料结构研究中的挑战和展望尽管Abaqus在碳纤维复合材料结构研究中取得了显著的成果,但仍然面临一些挑战,如对复材材料本身非线性、破坏行为、界面效应等方面的准确建模和模拟;另外,随着复材结构的复杂化和应用领域的拓展,需要Abaqus不断更新和完善其建模和分析能力,以满足不断增长的复材结构仿真需求。
纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19。
3。
1节).假设未损伤材料为线弹性材料。
因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。
Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。
另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能.本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。
损伤与失效模型的通用框架Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制.材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失.刚度逐渐减弱的过程采用损伤力学建模.为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。
如图19.1。
1—1中所示,应力应变图显示出明确的划分阶段。
材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b—c段)。
超过c点后,材料的承载能力显著下降直到断裂(c-d段).最后阶段的变形仅发生在样品变窄的区域。
C点表明材料损伤的开始,也被称为损伤开始的标准。
超过这一点之后,应力—应变曲线(c-d)由局部变形区域刚度减弱进展决定.根据损伤力学可知,曲线c—d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力—应变规律曲线。
图19。
1。
1-1 金属样品典型的轴向应力—应变曲线因此,在Abaqus中失效机制的详细说明里包括四个明显的部分:●材料无损伤阶段的定义(如图19.1.1—1中曲线a—b—c-d‘)●损伤开始的标准(如图19.1.1—1中c点)●损伤发展演变的规律(如图19。
1.1-1中曲线c-d)●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19。
基于ABAQUS的三维四向编织复合材料参数化有限元建模姜慧;李旭东;王刚【摘要】三维编织复合材料广泛应用于航空航天、生物医学工程以及汽车工业等领域.在已有RVE模型的基础上提出了完整的单胞模型,并以ABAQUS软件为平台,使用Python语言编程建立三维编织复合材料增强相RVE模型.在ABAQUS环境下再现了编织体的几何信息,为后续的分析计算工作奠定了基础.【期刊名称】《甘肃科技》【年(卷),期】2012(028)009【总页数】3页(P56-58)【关键词】有限元建模;三维四向编织;ABAQUS;RVE【作者】姜慧;李旭东;王刚【作者单位】兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室,甘肃兰州 730050;兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室,甘肃兰州 730050;兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室,甘肃兰州 730050【正文语种】中文【中图分类】TB332三维编织复合材料是三维编织技术和现代复合材料相结合的产物,其具有厚度方向强度及剪切性能高等优异的结构完整性性能,结构设计灵活,倍受工程界和学术界的关注,逐渐应用于航空、航天、民用建筑及医疗等领域[1]。
随着计算机运行速度的提高,计算机模拟技术正以其高效率、低成本的优势,成为现代科研、设计与制造过程中不可缺少的技术手段。
通过计算机模拟的手段来实现对现代先进材料的设计、制备以及性能预测,已成为国内外较普遍的研究方式。
计算机仿真的前提条件就是要在计算机上建立合理的三维编织复合材料的编织结构模型。
目前,国内外已有这方面的研究,主要运用有限元软件ANSYS,通过APDL 程序编程绘图,或用计算机绘图软件绘制如Solidworks、3DMAX[2-3]。
ABAQUS被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学、结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题[4]。
以ABAQUS软件为平台,使用Python语言编程建立三维编织复合材料增强相RVE模型。
abaqus复合材料
第一天主要讲解如何使用Abaqus对不同类型复合材料结构进行基本建模分析,通过基础班的课程学习,学员能够掌握Abaqus复合材料结构建模分析的基本方法,包括复合材料壳单元、连续壳单元、实体单元建模,显式/隐式分析,静力学与动力学问题的求解等,能够掌握基本层压板、复杂层压板、加筋板、夹层板等多种复合材料结构的建模与分析。
课堂上针对常见的复合材料建模错误以及一些错误的认识都会做详细的介绍。
第二天主要讲解复合材料失效理论、面内渐进损伤分析、层间/界面渐进损伤分析等内容;通过第二天课程的学习,学员能够掌握Abaqus 初始损伤分析、面内渐进损伤分析、基于Cohesive内聚力模型的层间/界面渐进损伤分析、基于VCCT虚拟裂纹闭合技术的层间/界面裂纹扩展分析以及VUMAT子程序开发与应用等。
同时会讲解显式准静态分析方法及注意事项,另外还专门为培训学员准备了许多的复合材料辅助建模插件来提高建模效率。
第三天主要讲解多种复合材料子程序的开发、Puck失效理论子程序实现、材料非线性表征、率相关特定表征等方面的内容。
通过该课程学习,能够掌握复合材料UVARM子程序、USDFLD子程序、VUSDFLD 子程序、UMAT子程序、VUMAT子程序的开发,能够基于VUMAT子
程序进一步针对Puck失效理论、材料非线性、率相关性进行深入开发。