八年级数学上学期期中考试试题 (1)
- 格式:doc
- 大小:1.01 MB
- 文档页数:12
章丘区2024-2025学年第一学期期中考试八年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分 共40分一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出四个选项中,只有一项符合题目要求)1.25的算术平方根是( )A .﹣5B .5C .±5D2.下列数中,是无理数的是( )AB .C .0D .﹣13.下列曲线中不能表示y 是x 的函数的是( )A .B .C .D .4.点P 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为4,则点P 坐标为( )A .(3,﹣4)B .(﹣3,4)C .(﹣4,3)D .(4,﹣3)5.直角三角形两直角边长度为5,12,则斜边上的高为( )A .6.B .8C .D .6.已知A (﹣,y 1)、B (﹣,y 2)、C (1,y 3)是一次函数y =﹣3x +b 的图象上三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 12271813601313127.实数a的化简结果是( )A.1B.2C.2a D.1﹣2a8.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是( )A.B.C.D.9.如图,三级相同台阶的每一级的长、宽、高分别为8dm、3dm、2dm.点A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为( )dm.A.12B.10C.17D.2510.如图,已知直线a:y=x,直线b:和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2024的坐标为( ).A.B.C.D.11a++-12y x=-10121011(2,2)-10121012(2,2)-10121011(2,2)-10121012(2,2)第10题第10题图第9题图章丘区2024-2025学年第一学期期中考试八年级数学试题非选择题部分 共110分二、填空题(本大题共5小题,每小题4分,共20分)11.是 的立方根.13.如图,函数y =kx ﹣1的图象过点(1,2),则关于x 的方程kx ﹣1=2的解是.14.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m .则旗杆的高度(滑轮上方的部分忽略不计)为 m .15.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.当甲、乙两车相距50千米时,时间t (小时)的所有可能的值为.2 第13题第14题第15题三、解答题(本大题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)如图,直线l 是一次函数y =kx +b 的图象,且经过点A (0,4)和点B (﹣5,﹣2).(1)求k 和b 的值;(2)求点C 的坐标以及直线l 与两坐标轴所围成的三角形的面积.18.(本小题满分7分)我区某校校园有一块四边形的空地ABCD ,如图所示,为了绿化环境,学校拟对空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,学校欲在此空地上铺草坪。
2023--2024年第一学期八年级第一次综合练习题数学试题2023.10一、选择题(共48分,每题4分)1.杭州第19届亚运会,中国代表团以201枚金牌、111枚银牌、71枚铜牌,总计383枚奖牌的成绩锁定奖牌榜第一的位置,下列关于体育的图形中是轴对称图形的是()A.B.C.D.2.下列几组线段能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,4cm,8cm3.如图,在△ABC中,D,E分别是BC、AD的中点,若S△ABC=4,则△BDE的面积为()A. 2B. 1C. 0.5D. 0.254.下面四个图形中,线段BE是△ABC的高的图是()5.如图,在△ABC中,CD、BE分别是AB、AC边上的高,若∠A=50°,则∠BPC 等于()A.120°B.130°C.140°D.150°6.已知一个多边形的内角和为540°,则这个多边形为()A.三角形B. 四边形C. 五边形D. 六边形7.如图是一副三角尺拼成图案,则∠AEB 的度数为.A.85°B. 75°C. 105°D. 65°8.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,可添加的条件是()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC9.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠DAC=∠BCA B.AC=CA C.∠D=∠B D.AC=BC10.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点11.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm12.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动。
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
人教版八年级上学期期中考试数学试卷(一)一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.△ABC中BC边上的高作法正确的是()A.B.C.D.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°9.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30 B.40 C.50 D.6010.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每题3分,共18分)11.若正n边形的每个内角都等于150°,则n= ,其内角和为.12.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为cm.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A1BC和∠A1CD的平分线交于点A 3,则∠A3= .16.△ABC为等边三角形,在平面内找一点P,使△PAB,△PBC,△PAC均为等腰三角形,则这样的点P的个数为.三、解答题(8+8+9+8+8+9+10+12=72分)17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.20.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.21.如图,∠AOB=30度,OC平分∠AOB,P为OC上一点,PD∥OA交OB于D,PE 垂直OA于E,若OD=4cm,求PE的长.22.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,(1)求∠BPE的度数;(2)若BF⊥AE于点F,试判断BP与PF的数量关系.23.△ABC中,AC=BC,∠ACB=90°,点D,E分别在AB,BC上,且AD=BE,BD=AC.(1)如图1,连DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,求证:∠FED=∠CED;(3)在(2)的条件下,若BF=2,求CE的长.24.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.(1)求S△ABD :S△ACD;(2)求证:在运动过程中,无论t取何值,都有S△AED =2S△DGC;(3)当t取何值时,△DFE与△DMG全等;(4)若BD=8,求CD.参考答案与试题解析一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.△ABC中BC边上的高作法正确的是()A.B.C.D.【考点】K2:三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是D选项.故选D.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则从而求解.依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,=10cm.BC=BD+DE+EC=OD+DE+OE=C△ODE故选C.8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【考点】IK:角的计算.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选D.9.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30 B.40 C.50 D.60【考点】KK:等边三角形的性质.【分析】因为每个三角形都是等边的,从其中一个三角形入手,比右下角的以AB为边的三角形,设它的边长为x,则等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2.所以六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,而最大的三角形的边长AF等于AB的2倍,所以可以求出x,则可求得周长.【解答】解:设AB=x,∴等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7 x+18=60cm.故选D10.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每题3分,共18分)11.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.12.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【考点】KF:角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为8 cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A1BC和∠A1CD的平分线交于点A 3,则∠A3= 8°.【考点】K7:三角形内角和定理.【分析】利用角平分线的性质、三角形外角性质,易证∠A1=∠A,进而可求∠A 1,由于∠A1=∠A,∠A2=∠A1=∠A,故∠A3=∠A2=∠A.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=×64°=32°,∵∠A1=∠A,∠A2=∠A1=∠A,∴∠A3=∠A2=∠A=×64°=8°.故答案为:8°.16.△ABC为等边三角形,在平面内找一点P,使△PAB,△PBC,△PAC均为等腰三角形,则这样的点P的个数为10 .【考点】KK:等边三角形的性质;KI:等腰三角形的判定.【分析】根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.【解答】解:如图:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故答案为:10.三、解答题(8+8+9+8+8+9+10+12=72分)17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5 .【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3 =13.5.故答案为:13.5.20.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.【考点】KD:全等三角形的判定与性质;JA:平行线的性质;KJ:等腰三角形的判定与性质.【分析】过点B作BG∥FC,延长FD交BG于点G.由平行线的性质可得∠G=∠F,然后判定△BDG和△CDF全等,根据全等三角形的性质和等量代换得到BE=BG,由等腰三角形的性质可得∠G=∠BEG,由对顶角相等及等量代换得出∠F=∠AEF,根据等腰三角形的判定得出AE=AF.【解答】证明:过点B作BG∥FC,延长FD交BG于点G.∴∠G=∠F.∵点D是BC的中点,∴BD=CD.在△BDG和△CDF中,∴△BDG≌△CDF(AAS).∴BG=CF.∵BE=CF,∴BE=BG.∴∠G=∠BEG.∵∠BEG=∠AEF,∴∠G=∠AEF.∴∠F=∠AEF.∴AE=AF.21.如图,∠AOB=30度,OC平分∠AOB,P为OC上一点,PD∥OA交OB于D,PE 垂直OA于E,若OD=4cm,求PE的长.【考点】KO:含30度角的直角三角形;KF:角平分线的性质;KJ:等腰三角形的判定与性质.【分析】过P作PF⊥OB于F,根据角平分线的定义可得∠AOC=∠BOC=15°,根据平行线的性质可得∠DPO=∠AOP=15°,从而可得PD=OD,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.22.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,(1)求∠BPE的度数;(2)若BF⊥AE于点F,试判断BP与PF的数量关系.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答(2)由△ABD≌△CAE得出对应角相等∠ABD=∠CAE,根据三角形的外角性质得出∠BPF=60°,由含30°角的直角三角形的性质即可得出PF与BP的关系.【解答】解:(1)∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.(2)PF=BP.∵△ABD≌△CAE,∴∠ABD=∠CAE,∵∠BPF=∠BAP+∠ABD,∴∠BPF=∠BAP+∠CAE=∠BAD=60°,∵BF⊥AE,∴∠PFB=90°,∴∠PBF=30°,∴PF=BP.23.△ABC中,AC=BC,∠ACB=90°,点D,E分别在AB,BC上,且AD=BE,BD=AC.(1)如图1,连DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,求证:∠FED=∠CED;(3)在(2)的条件下,若BF=2,求CE的长.【考点】KY:三角形综合题.【分析】(1)根据等腰三角形的性质和SAS可证△BDE≌△ACD,再根据等腰直角三角形的性质即可得到∠BDE的度数;(2)先由EF⊥AB和∠BDE=22.5°,求出∠BED,再由(1)结论推导出∠BCD=∠DEC=67.5°即可.(3)由(1)知CD=DE,根据等腰三角形的性质和角的和差关系可得∠CDE=45°,过D作DM⊥CE于M,根据角平分线的性质以及等量关系即可得到CE的长【解答】解:(2)∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵AC=BC,BD=AC,∴BD=BC,∴∠BCD=∠BDC==67.5°,∴∠ACD=∠ACB﹣∠BCD=90°﹣67.5°=22.5°,在△ADC和△BED中,,∴△ADC≌△BED,∴∠BDE=∠ACD=22.5°,(2)由(1)有∠BDE=22.5°,∵EF⊥AB,∴∠BFE=∠DFE=90°,∴∠DEF=90°﹣∠BDE=67.5°,由(1)有,△ADC≌△BED,∴DC=DE,∴∠DEC=∠BCD=67.5°,∴∠DEF=∠DEC,即:∠FED=∠CED;(3)如图2,由(1)知CD=DE,∴∠DCE=∠DEC=67.5°,∴∠CDE=45°,过D作DM⊥CE于M,∴CM=ME=CE,∠CDM=∠EDM=∠BDE=22.5°,∵EM⊥DM,EF⊥DB,∴EF=ME,∵∠BFE=90°,∠B=45°,∴∠BEF=∠B=45°,∴EF=BF,∴CE=2ME=2EF=2BF=4.24.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.(1)求S△ABD :S△ACD;(2)求证:在运动过程中,无论t取何值,都有S△AED =2S△DGC;(3)当t取何值时,△DFE与△DMG全等;(4)若BD=8,求CD.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】(1)由于AD是角平分线,则DF=DM,S△ABD :S△ACD=AB:AC;(2)由于DF=DM,所以S△AED 与S△DGC之比就等于AE与CG之比,而AE与CG之比为2;(3)只需让EF=MG即可;(4)由可直接求出;【解答】解:(1)∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵,∴;(2)∵,,∴,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,∴AE=2t,CG=t.∴,∴∴在运动过程中,不管t取何值,都有S△AED =2S△DGC;(3)∵∠BAD=∠DAC,AD=AD,DF=DM,∴△ADF≌△ADM.∴AF=AM=10.∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A 点运动,当一个点到达终点时,另一个点随之停止运动,运动时间为t,∴EF=AF﹣AE=10﹣2t,CG=t.∴0<t<5.①当M在线段CG上时,MG=CG﹣(AC﹣AM)=t﹣4.当EF=MG时△DFE与△DMG全等时.∴10﹣2t=t﹣4.解得 t=.②当M在线段CG延长线上时,MG=4﹣t.∴10﹣2t=4﹣t.解得t=6(舍去).③当E在BF上时,2t﹣10=t﹣4,解得t=6,符合题意,∴当 t=s或6s时,△DFE 与△DMG 全等.(4)过点A作AN⊥BC交BC于N,如图,由(1)得∴;又∵,∴;又∵BD=8,∴CD=7.人教版八年级上学期期中考试数学试卷(二)一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形 C.直角三角形 D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对B.3对C.4对D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150°D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC ≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE ﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形 C.直角三角形 D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对B.3对C.4对D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150°D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92 °.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC ≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC ≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC ≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9 cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65 °.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE ﹣S△BOD=1,则△ABC的面积为10 .【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,。
2023—2024学年第一学期期中考试八年级数学试题说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题6小题,每小题3分,共18分)1. 下列体育图标是轴对称图形的是( )A. B.C. D.答案:A解析:解:A、沿一条直线折叠,直线两旁的部分能够互相重合,故此选项是轴对称图形,符合题意;B、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;C、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;D、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;故选:A.2. 下列长度的三条线段,能组成三角形的是()A. 1,6,7B. 2,5,8C. 3,4,5D. 5,5,10答案:C解析:解:A、∵,∴不能构成三角形,不符合题意;B、∵,∴不能构成三角形,不符合题意;C、∵,∴能构成三角形,符合题意;D、∵,∴不能构成三角形,不符合题意;故选C.3. 要求画的边AB上的高.下列画法中,正确的是()A. B. C.D.答案:C解析:A中AD是边BC上面的高,故不符合题意;B中不符合三角形高的作图,故不符合题意;C中CD是AB边上的高,故符合题意;D中BD是AC边上的高,故不符合题意;故选C.4. 如图,在中,是高,是中线,若,,则的长为()A. 1B.C. 2D. 4答案:C解析:解:∵,,即,∴∵是中线,即点是的中点,∴,故选:C.5. 已知.下面是“作一个角等于已知角,即作”的尺规作图痕迹.该尺规作图的依据是()A. B. C. D.答案:B解析:解:由题意可知,“作一个角等于已知角,即作”的尺规作图的依据是,故选:B.6. 如图,C为线段上一动点(不与点A,E重合),在同侧分别作正三角形和正三角形,与交于点O,与交于点P,与交于点Q,连接.以下四个结论:①;②;③;④.其中正确的结论个数是()A. 1个B. 2个C. 3个D. 4个答案:D解析:解:①∵等边和和等边,∴,∴,在和中,,∴,∴;故①正确;③∵(已证),∴,∵(已证),∴,∴,在与中,,∴,∴;故③正确;②∵,∴,∴是等边三角形,∴,∴,∴;故②正确;④∵,∴,∵等边,∴,∴,∴,∴.故④正确;综上所述,正确的结论是①②③④.故选:D.二、填空题(本大题6小题,每小题3分,共18分)7. 在平面直角坐标系中,关于x轴对称的点的坐标为______.答案:解析:解:关于x轴对称的点的坐标为,故答案为:.8. 如图,一块三角形玻璃板破裂成①,②,③三块,现需要买另一块同样大小的一块三角形玻璃,为了方便,只需带第______块碎片比较好.答案:③解析:解:由图可知,带③去可以利用“角边角”得到与原三角形全等的三角形.故答案为:③.9. 正五边形的一个外角的大小为__________度.答案:72解析:解:正五边形的一个外角的度数为:,故答案为:72.10. 将一副直角三角板如图放置,使含角的三角板的短直角边和含角的三角板的一条直角边重合,则______度.答案:75解析:解:如图,,∴(对顶角相等),故答案为:75.11. 如图,在中,,是的平分线,于点E,.则的面积为______.答案:9解析:解:如图,过点D作于点F,∵是的平分线,,,∴,∴的面积为.故答案为:912. 若,,,D为坐标平面内不和C重合的一点,且与全等,则D 点坐标为______.答案:或或解析:解:如图,∵,与全等,∴关于x轴对称的点满足条件,∵,,∴D点坐标或也满足条件,故答案为:或或.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.(2)如图,,点B、F、C、E在同一条直线上,若,,求的长.答案:(1)8;(2)4解析:解:(1)设它的边数为n,,解得,答:它的边数为8.解:(2)∵,∴.∴,即.∵,,∴.∴.14. 已知a、b、c为△ABC三边长,且b、c满足+=0,a为方程|a﹣3|=2 的解,求△ABC 的周长.答案:17解析:(b-5)2+=0,∴,解得,∵a为方程|a-3|=2的解,∴a=5或1,当a=1,b=5,c=7时,1+5<7,不能组成三角形,故a=1不合题意;∴a=5,∴△ABC的周长=5+5+7=17,15. 如图,已知,.求证:.答案:证明见解析.解析:证明:在和中,,.16. 在中,,的垂直平分线交于点D,交于点E.(1)求证:是等腰三角形;(2)若,的周长为,求的周长.答案:(1)见解析(2)小问1解析:解:∵的垂直平分线交于点D,∴,∴是等腰三角形;小问2解析:解:∵的垂直平分线交于点D,,∴,∵的周长为,∴,∴的周长.17. 如图,三角形ABC与三角形DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.答案:详见解析.解析:图①中,过点A和BC,EF的交点作直线l;图②中,过BC,EF延长线的交点和AC,DF延长线的交点作直线l.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,在图中建立平面直角坐标系,使与关于y轴对称,点B的坐标为.(1)在图中画出平面直角坐标系;(2)①写出点B关于x轴的对称点的坐标;②画出关于x轴对称的图形,其中点A的对称点是,点C的对称点是.答案:(1)见解析(2)①.②见解析小问1解析:解:如图.小问2解析:解:①∵点B的坐标为∴;②如图.19. 如图,,于点E,于点F,.(1)求证:;(2)求证:.答案:(1)见解析(2)见解析小问1解析:∵,∴.即,∵,且,∴.小问2解析:∵,∴,∴.20. 如图,在.(1)求证:;(2)分别以点A,C为圆心,长为半径作弧,两弧交于点D(点D在的左侧),连接.求的面积.答案:(1)见解析(2)16小问1解析:在中,∵,∴.∵,∴.∴;小问2解析:过点D作的延长线于点E,由作图得,,∴为等边三角形,∴,∴,∴,在中,∵,,∴,∴的面积.五、解答题(本大题共2小题,每小题9分,共18分)21. 我们定义:如图1,在四边形中,如果,,对角线平分,我们称这种四边形为“分角对补四边形”.(1)特例感知:如图1,在“分角对补四边形” 中,当时,根据教材中一个重要性质直接可得,这个性质是______;(填序号)①垂线段最短:②垂直平分线的性质;③角平分线的性质;④三角形内角和定理(2)猜想论证:如图2,当为任意角时,猜想与的数量关系,并给予证明;(3)探究应用:如图3,在等腰中,,平分,求证:.答案:(1)③(2),见解析(3)见解析小问1解析:解:∵平分,,,∴,∴根据角平分线的性质定理可知,故答案为:③;小问2解析:解:,理由如下:如图2中,作交延长线于点E,于点F,∵平分,,,∴,∵,,∴,∵,∴,∴;小问3解析:证明:如图3,在上截取,连接,∵,,∴,∵平分,∴,∵,∴,即,由(2)结论得,∵,∴,∴,∴,∴.22. 如图,是经过顶点C的一条直线,,E,F分别是直线上两点,且.(1)若直线经过的内部,且E,F在射线CD上.①如图1,若,证明②如图2,若,请添加一个关于α与关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线经过的外部,,请提出关于,三条线段数量关系的合理猜想,并简述理由.答案:(1)①见解析;②时,①中的结论仍然成立,理由见解析(2),理由见解析小问1解析:①∵,∴,∴,在和中,∴,∴;②时,①中的结论仍然成立,理由如下:,∴,∴,在和中∴,∴;小问2解析:解:,证明:∵,∴,∴,在和中,∴,∴,∵,∴.六、解答题(本大题共12分)23. 课本再现:我们知道:三角形三个内角的和等于,利用它我们可以推出结论:三角形的外角等于与它不相邻的两个内角的和.定理证明:(1)为证明此定理,小红同学画好了图形(如图1),写好了“已知”和“求证”,请你完成证明过程经,已知:如图1,是的一个外角.求证:.知识应用:(2)如图2,在中,,点D在BC边上,交AC于点F,,求的度数.(3)如图3,直线与直线相交于点O,夹角为锐角,点B在直线上且在点O右侧,点C在直线上且在直线上方,点A在直线上且在点O左侧运动,点E在射线CO上运动(不与点C、O重合).当时,平分,平分交直线于点G,求的度数.答案:(1)见解析;(2);(3)或解析:解:定理证明:(1)如图1中,∵,,∴.知识应用:(2)如图2中,∵,∴,∵,∴;(3)①当点E在点O的上方时,如图3-1:∵,∴,∵平分,平分,∴,,由三角形外角的性质可得:,,∴,∴,即.②当点E在点O的下方时,如图3-2:由题意知,,,,,,综上所述,或.。
2024-2025学年山东省济南市天桥区八年级(上)期中数学试卷(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的算术平方根是()A.±3B.-3C.√3D.32.下列四个数中,是无理数的是( )A.π2B.227C.√﹣83D.√43.在平面直角坐标系中,点(4,-3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列运算正确的是( )A.√2+√3=√5B.2√2-√2=1C.√2x2√2=3√2D.√8÷√2=25.已知直线y=-x+2经过M(1,y1),N(3,y2)两点,则y1与y2的关系为()A.y1+y2=4B.y1>y2C.y1=y2D.y1<y26.在半面直角坐标系中,若点A(-a,b)在第三象限,则函数y=ax+b的图象大致是( )7.已知{x=3y=﹣2是方程ax+y=7的一个解,那么常数a的值是()A.5B.﹣5C.3D.﹣38.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:"今三人共车,两车空;二人共车,九人步.问人与车各几何?"意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.{x=3(y+2)x=2y﹣18B.{x=3(y﹣2)x=2y﹣18C.{x=3(y+2)x=2y+9D.{x=3(y﹣2)x=2y+99.如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以B点为圆心,AB长为半径画弧,交数轴于点D,则D点表示的数是()A.3﹣√5B.√5C.√5﹣3D.3﹣√3(第9题图)(第10题图)10.如图1,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MN:y=x-4沿x轴的①点A 的坐标为(1,0);②矩形ABCD 的面积是8;③a 的值为2√2;④b 的值为10A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分)11.如果有序数对(1,4)表示第一单元4号住户,那么第三单元6号住户用有序数对表示为 。
人教版八年级上学期期中考试数学试卷(一)一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a24.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.25.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣247.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于010.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= .12.(3分)计算:20152﹣2014×2016= .13.(3分)若a m=2,a n=3,则a2m+n= .14.(3分)已知a+=4,则a2+= .15.(3分)当x 时,(x﹣3)0=1.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)【解答】解:点(﹣2,3)关于y轴对称的点的坐标是(2,3),故选:B.3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a2【解答】解:A、2a﹣3a=﹣a,正确,不合题意;B、(﹣ab)3=﹣a3b3,正确,不合题意;C、a6÷a2=a4,正确,不合题意;D、a•a2=a3,错误,故此选项符合题意.故选:D.4.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.2【解答】解:过P作PE⊥OB于E,∵∠AOP=∠BOP,PD⊥OA,∴PE=PD,∵PC∥OA,∴∠CPO=∠POA=15°=∠BOP,∴∠ECP=∠BOP+∠CPO=30°,∵∠PEC=90°,∴PE=PC=×6=3,即PD=PE=3.故选:C.5.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.【解答】解:∵(﹣x+a)(x﹣3)=﹣x2+(3+a)x﹣3a,∴3+a=0,解得:a=﹣3,故选:B.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣24【解答】解:∵9x2+mxy+16y2是一个完全平方式,∴m=±24,故选:C.7.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°【解答】解:∵AB=AC,AD=AE,∠B=50°,∠AEC=120°,∴∠AED=∠ADE=60°,∠EAC=60°﹣∠C=60°﹣50°=10°,∴∠DAC=60°+10°=70°.故选:B.8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°【解答】解:∵BE⊥AC,AD=DC,∴BA=BC,∴∠ABD=∠CBD=∠ABC=36°,在△ADB和△CDE中,,∴△ADB≌△CDE,∴∠E=∠ABD=36°,故选:B.9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于0【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:D.10.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥A B于M,作ON⊥BC于N,连接OA,∵在△AB C中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF =S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:A.二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= 2x﹣1 .【解答】解:(6x2﹣3x)÷3x,=6x2÷3x﹣3x÷3x,=2x﹣1.故答案为:2x﹣1.12.(3分)计算:20152﹣2014×2016= 1 .【解答】解:20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1.故答案是:1.13.(3分)若a m=2,a n=3,则a2m+n= 12 .【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.14.(3分)已知a+=4,则a2+= 14 .【解答】解:∵a+=4,∴(a+)2=16,∴a2+2+=16,∴a2+=14.故答案为14.15.(3分)当x ≠3 时,(x﹣3)0=1.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有①②③④.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.【解答】①证明:连接NP,MP,在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②证明:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∠ADC=60°,故此选项正确;③证明:∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④证明:∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=1:3,故此选项正确;故答案为:①②③④.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x ﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)【解答】解:(1)(x+4)2﹣(x+3)(x﹣3)=x2+8x+16﹣(x2﹣9)=8x+25;(2)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.【解答】解:(1)原式=2a(a2﹣6a+9b2)=2a(a﹣3b)2;(2)原式=[3(2x﹣y)+2(x+2y)][3(2x﹣y)﹣2(x+2y)]=(8x+y)(4x ﹣7y);(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2);(4)原式=x2﹣4x﹣5=(x﹣5)(x+1).21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= 1 .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD【解答】解:(1)如图所示:此时DA=DB;(2)如图所示:∵∠C=90°,∠A=15°,AD=BD,∴∠A=∠ABD=15°,∴∠CDB=30°,∵BC=1,∴AD=BD=2,∴S=×1×2=1.△ABD故答案为:1.22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.【解答】解:原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=(x2﹣2xy)÷2x=x﹣y当x=1,y=2时,原式=﹣2=﹣23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.【解答】证明:∵AD平分∠BAC交BC于D,DE⊥AB于E,∠C=90°,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),同理可得Rt△FCD和Rt△BED,∴AC=AE,CF=BE,∴AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.【解答】证明:(1)∵CF⊥AE,BG⊥AE,∴∠BGF=∠CFG=90°,∴∠1+∠GMB=∠2+∠CME,∵∠GMB=∠CME,∴∠1=∠2,∵点D为边BC的中点,∴DB=CD,在△BHD和△CED中,,∴△BHD≌△CED(ASA),∴DF=DH;(2)∵∠CFD=120°,∠CFG=90°,∴∠GFH=30°,∵∠BGM=90°,∵△HGF是直角三角形,HD=DF,∴DG=HF=DH,∴△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.【解答】解:(1)过点B作BD⊥OD,∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE;(3)作AE⊥OC,则AF=OE,∵∠CBO+∠OCB=90°,∠OCB+∠ACO=90°,∴∠ACO=∠CBO,在△BCO和△ACE中,,∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.∴=1.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P的坐标为.113.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC= .14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE, AB=BE,∠A=92°,则∠CED= .三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI 一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.的坐标为(﹣1,﹣2).12.(4分)点P(﹣1,2)关于x轴对称点P1【解答】解:点P(﹣1,2)关于x轴对称点P的坐标为(﹣1,﹣2),1故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2 ,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm .【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED= 88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm, cm, cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).(3)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.人教版八年级上学期期中考试数学试卷(三)一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于度.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= .13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 度.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= .三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A 1B1.C118.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为.(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?五、解答题:(每题12分,共24分)23.(12分)如图:在等边三角形ABC中,AE=CD,(1)求证:△ABE≌△CAD;(2)过B点作BQ⊥AD于Q,求证:BP=2PQ.24.(12分)实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)【解答】解:点(﹣4,﹣2)关于y轴对称的点的坐标是(4,﹣2),故选:B.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9【解答】解:如图,满足条件的点P有8个,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于360 度.【解答】解:三角形的外角和等于360°.故答案是:360.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= 5 .【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故答案是:5.13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 540 °.【解答】解:如图,∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+α+β+γ+θ=900°,∵α+β=180°,γ+θ=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=900°﹣180°﹣180°,=540°.故答案为:540.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为30°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠CBE=∠ABC﹣∠EBA=30°,故答案为:30°.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 15 度.【解答】解:∵等边三角形ABC中,BD是AC边上的中线,∴∠ABD=ABC=30°,∠ADB=90°,∵BD=BE,∴∠BDE=∠BED==75°,∴∠EDA=15°.故答案为:15.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= 9 .【解答】解:在Rt△ADE中,∠A=60°,∴∠A DE=30°,又AE=1,∴AD=2AE=2,∵D为AB的中点,∴AB=AC=4,∴CE=AC﹣AE=4﹣1=3,∵EF∥AB,∴∠EFC=∠B=60°,又∠C=60°,∴△EFC为等边三角形,∴EF=FC=EC=3,∴△EFC的周长=3+3+3=9.三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).18.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为4或5或3 .(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为3,2.5 .【解答】解:(1)以AB为腰的等腰三角形的面积:×2×3=3;面积为:4或5或3;(2)以AB为底的等腰三角形的面积:2×3﹣×3×1﹣×1×2×2=2.5,故答案为3,2.5.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.【解答】证明:∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在Rt△ABC和△RtDEF中,,∴△RtABC≌Rt△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)÷2=70°;又∵BD⊥AC垂足为D,∴∠DBC=90°﹣∠ACB=90°﹣70°=20°.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.【解答】(1)证明:∵∠BAC=30°,D为角平分线上一点,∴∠BAD=∠CAD,∵DF∥AC,∴∠CAD=∠FDA,∴∠BAD=∠FDA,∴FA=FD,即△ADF是等腰三角形;(2)解:作DH⊥AB于H,∵DF∥AC,∴∠BFD=∠BAC=30°,∴DH=DF=5,∵D为角平分线上一点,DE⊥AC,DH⊥AB,∴DE=DH=5cm.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?【解答】解:∵△ABC和△BED都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°,∴∠ABE=∠CBD=60°﹣∠CBE,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD=4,∵△BED是等边三角形,。
八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
2024-2025学年度第一学期联盟试卷(一)八年级 数学注意事项:1.请准备好必要的答题工具在答题卡上作答,在试卷上作答无效.2.本试卷共三大题,23小题,满分120分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分)1. 第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,如图所示巴黎奥运会项目图标中,轴对称图形是( )A. B. C. D.【答案】B【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B .2. 如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAE 的度数是( )A. 90°B. 108°C. 120°D. 135°【答案】B 【详解】解:正五边形的内角和=(52)180540−×°=°, ∴∠BAE=5401085=°°,故选:B .3. 在平面直角坐标系中,点()6,2P −关于x 轴的对称点的坐标是( )A. ()6,2−−B. ()6,2C. ()2,6−D. ()6,2−【答案】A【详解】解:点()6,2P −关于x 轴的对称点的坐标是()6,2−−,故选A .4. 如图,在ABC 和DEF 中,A D ∠=∠,AC DF =,要使得ABC DEF ≌△△,还需要补充一个条件,则下列错误的条件是( )A. BF CE =B. //AC DFC. B E ∠=∠D. AB DE =【答案】A 【详解】解: 在ABC 和DEF 中,已有,A D AC DF ∠=∠=, ∴要使ABC DEF ≅△△,只需增加一组对应边相等或对应角即可,即需增加的条件是AB DE =,DFE B E ∠=∠∠=∠,观察四个选项可知,只有选项A 符合,故选择:A .5. 已知等腰三角形的两边长分别为5cm 、2cm ,则该等腰三角形的周长是( )A. 7cmB. 9cmC. 12cm 或者9cmD. 12cm【答案】D【详解】若2cm 为腰长,5cm 为底边长,∵2+2=4<5,不能组成三角形,∴不合题意,舍去;若2cm 为底边长,5cm 为腰长,则此三角形的周长为:2+5+5=12cm .故选D .6. 小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A. 1mB. 1.6mC. 1.8mD. 1.4m【答案】D 【详解】解:90BOC ∠=° ,90BOD COE ∴∠+∠=°,90BDO ∠=°,90CEO ∠=°, 90BOD OBD ∴∠+∠=°,90COE OCE ∠+∠=°,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=−=+−=+−=.故选:D .7. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ’、BB 的中点,只要量出A ’B ’的长度,就可以知道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两点确定一条直线C. 两角及其夹边分别相等的两个三角形全等D. 两点之间线段最短【答案】A【详解】解: 点O 为AA ′、BB ′的中点,OA OA ∴′=,OB OB ′=,由对顶角相等得AOB A OB ′′∠=∠,在AOB 和A OB ′′△中,OA OA AOB A OB OB OB ′′= ∠=∠′′ =, ()SAS AOB A OB ′′∴△≌△,AB A B ′′∴=,即只要量出A B ′′的长度,就可以知道该零件内径AB 的长度,故选:A .8. 如图,在ABC 中,62B ∠=°,34C ∠=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 50°B. 45°C. 40°D. 35°【答案】A 【详解】解:根据作图可知,MN 垂直平分AC ,∴AD CD =,∴34DAC C ∠=∠=°,∵18084BAC B C ∠=°−∠−∠=°,∴843450BAD BAC DAC ∠=∠−∠=°−°=°,故A 正确.故选:A .9. 元旦联欢会上,3 名同学分别站在 ABC 三个顶点的位置上.游戏时,要求在他们中间放一个凳子,该先坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三条角平分线的交点C. 三边中线的交点D. 三边上高的交点【答案】A【详解】解:∵ABC 的垂直平分线的交点到ABC 三个顶点的距离相等,∴凳子应放置的最适当的位置时在ABC 的三边垂直平分线的交点,故选:A .10. 如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE 的长为( )A. 2cmB. 36cm 13C. 12cm 5D. 3cm【答案】C 【详解】解:如图,过点D 作DF BC ⊥于F ,∵BD 是ABC ∠的平分线,DE AB ⊥,∴DE DF =,∵18cm AB =,12cm BC =, ∴1118122623ABC DE S DF =×+×= , 即6111812223DE DE ×+×=, 解得()12cm 5DE =. 故选:C .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 如图,ABC 中,4AB AC ==,P 是BC 上任意一点,过P 作PD AC ⊥于D ,PE AB ⊥于E ,若12ABC S =△,则PE PD +=_________【答案】6【详解】解:连接AP ,由图可得,ABCABP ACP S S S =+△△△, ∵PD AC ⊥于D ,PE AB ⊥于E ,12ABC S =△, ∴()1111442122222AB PE AC PD PE PD PE PD ×+×=××+××=+=, ∴6PE PD +=.故答案为:6.12. 小明将两把完全相同的长方形直尺如图放置在AOB ∠上,两把直尺的接触点为P ,边OA 与其中一把直尺边缘的交点为C ,点C 、P 在这把直尺上的刻度读数分别是2、5,则OC 的长度是______.【答案】3cm【详解】解:过P 作PN OB ⊥于N ,由题意得:PM PN =,PC OB ∥,PM OA ⊥,PO ∴平分AOB ∠,COP NOP ∴∠=∠,∵PC OB ∥,CPO NOP ∴∠=∠,COP CPO ∴∠=∠,OC PC ∴=, C 、P 在这把直尺上的刻度读数分别是2、5,()523cm PC ∴=−=,OC ∴长度是3cm .故答案为:3cm .13. 如图,在Rt △ABC 与Rt △DCB A =∠D =90°,请你添加一个条件(不添加字母和辅助线),使Rt △ABC ≌Rt △DCB ,你添加的条件是______.【答案】AB =DC【详解】解:添加条件是AB =CD .理由是:∵∠A =∠D =90,AB =CD ,BC =BC ,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =CD .14. 如图,亮亮想测量某湖A ,B 两点之间的距离,他选取了可以直接到达点A ,B 的一点C ,连接CA ,CB ,并作BD AC ∥,截取BD AC =,连接CD ,他说,根据三角形全等的判定定理,可得ABC DCB △≌△,所以AB CD =,他用到三角形全等的判定定理是______.的【答案】SAS【详解】解:∵BD AC ∥,∴ACB DBC ∠=∠,在ACB △与DBC △中,AC BD ACB BDC BC CB = ∠=∠ =, (SAS)ACB DBC ∴ ≌,AB CD ∴=, 故答案为:SAS .15. 如图,在等边ABC 中,BF 是AC 上中线且4BF =,点D 在线段BF 上,连接AD ,在AD 的右侧作等边ADE ,连接EF ,则AE EF +的最小值为 ____________________.【答案】4【详解】解:ABC 、ADE 都是等边三角形,AB AC ∴=,AD AE =,60BAC DAE ∠=∠=°,BAD CAE ∴∠=∠,()SAS BAD CAE ∴ ≌,ABD ACE ∴∠=∠,AF CF = ,30ABD CBD ACE ∴∠=∠=∠=°,∴点E 在射线CE 上运动(30ACE ∠=°), 作点A 关于CE 的对称点M ,连接FM 交CE 于E ′,此时AE E F ′′+的值最小,即AE E F ME E F FM ′′′′+=+=,CA CM = ,260ACM ACE ∠=∠=°, ACM ∴ 是等边三角形,ABC 是等边三角形,(AAS)ACM ACB ∴≌ ,4BF FM ∴==,即:AE EF +的最小值是4,故答案:4.三、解答题(本题共8小题,共75分)16. 如图,点B 、E 、C 、F 在同一直线上,90A D ∠=∠=°,BE CF =,AC DF =.求证:B DEF ∠=∠.【答案】见解析【详解】证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在Rt ABC △和Rt DEF △中,AC DF BC EF = =, ∴()Rt Rt HL ABC DEF ≌△△,∴B DEF ∠=∠.17. 学习完《利用三角形全等测距离》后,数学兴趣小组同学就“测量河两岸A 、B 两点间距离”这一问题,设计了如下方案. 课题测量河两岸A 、B 两点间距离为测量工具 测量角度的仪器,皮尺等 测量方案示意图测量步骤 ①在点B 所在河岸同侧的平地上取点C 和点D ,使得点A 、B 、C 在一条直线上,且CD BC =;②测得100,65DCB ADC ∠=°∠=°;③在CD 的延长线上取点E ,使得15BEC ∠=°;④测得DE 的长度为30米.请你根据以上方案求出A 、B 两点间的距离AB .【答案】A 、B 两点间的距离AB 为30米【详解】解:100,65DCB ADC ∠=°∠=° ,18015CAD DCB ADC ∴∠=°−∠−∠=°.15E ∠=° ,CAD E ∴∠=∠.在DCA △和BCE 中,CAD E ACD ECB CD BC ∠=∠ ∠=∠ =(AAS)DCA BCE ∴△△≌,AC EC ∴=.BC CD = ,AC BC CE CD ∴−=−,30AB DE =∴=米,即A 、B 两点间的距离AB 为30米.18. 如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请写出ABC 关于x 轴对称的111A B C △的各顶点坐标;(2)请画出ABC 关于y 轴对称的222A B C △;(3)在x 轴上求作一点P ,使点P 到A 、B 两点的距离和最小,请标出P 点,并直接写出点P 的坐标______.【答案】(1)点()11,1A −,()14,2B −,()13,4C −(2)见解析 (3)()2,0【解析】【小问1详解】解:ABC 与111A B C △关于x 轴对称,∴点()11,1A −,()14,2B −,()13,4C −.【小问2详解】如图,222A B C △即为所求.【小问3详解】如图,点P 即为所求,点P 的坐标为(2,0).故答案为:(2,0).19. 图1是一个平分角的仪器,其中OD OE FD FE ==,.(1)如图2,将仪器放置在ABC 上,使点O 与顶点A 重合,D ,E 分别在边AB AC ,上,沿AF 画一条射线AP ,交BC 于点P .AP 是BAC ∠的平分线吗?请判断并说明理由.(2)如图3,在(1)的条件下,过点P 作PQ ⊥AB 于点Q ,若69PQ AC ==,,ABC 的面积是60,求AB 的长.【答案】(1)AP 是BAC ∠的平分线,理由见解析(2)11AB =【解析】【小问1详解】解:AP 是BAC ∠平分线理由如下:在ADF △和AEF △中,AD AE AF AF DF EF = = =,∴()SSS ADF AEF △△≌∴DAF EAF ∠=∠,∴AP 平分BAC ∠.【小问2详解】解: ∵AP 平分BAC ∠,PQ AB ⊥,∴APC △的高等于PQ ,∵6PQ =.∴69227APC S =×÷=△,∵33ABP ABC APC S S S =−=△△△∴2332611ABP AB S PQ =÷=×÷=△.的20. 如图,△ABC 中,∠A <60°,AB =AC ,D 是△ABC 外一点,∠ACD =∠ABD =60°,用等式表示线段BD 、CD 、AC 的数量关系,并证明.【答案】ACBD CD =+,证明见解析 【详解】ACBD CD =+. 证明:如图,延长BD 至E ,使BE AB =,连接AE ,CE .ABE ∴ 是等腰三角形.·60ABD =∠ ,ABE ∴ 是等边三角形.AE AB BE ∴==,60AEB ∠=. AB AC = ,AE BE AC =∴=.ACE AEC ∴∠=∠.60ACD =∠ ,ACD AEB ∴∠=∠.ACE ACD AEC AEB −∠=∠−∠∴∠.即ECD CED ∠=∠.CD DE ∴=.BE BD DE BD CD ∴=+=+.AC BD CD =∴+.21. 已知:如图,AC ∥BD ,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①作BE 平分∠ABD 交AC 于点E ;②在BA 的延长线上截取AF=BA ,连接EF ;(2)判断△BEF 的形状,并说明理由.【答案】(1)①见解析;②见解析;(2)△BEF 直角三角形;证明见解析.【详解】解:(1)①如图,点E 即为所求;②如图,AF ,EF 即为所求;(2)∵BE 平分∠ABD ,∴∠ABE=∠EBD .∵AC ∥BD ,∴∠EBD=∠AEB ,∴∠ABE =∠AEB ,∴AE=AB .∵AB=AF∴AE=AF ,∴∠AFE =∠AEF ,∵∠ABE +∠AEB+∠AFE +∠AEF=180°∴∠AEB+∠AEF=90°即∠BEF =90°∴△BEF 是直角三角形.22. 已知:在ABC 中,D 是BC 的中点.是【问题解决】(1)如图1,若6AB =,4AC =,求AD 的取值范围.小明的做法是:延长AD 至点M ,使AD MD =,连接BE ,证明ACD MBD △≌△,小明判定全等的依据为:______.【类比探究】(2)如图2,在BC 的延长线上存在点M ,BAC BCA ∠=∠,CM AB =,求证:2AM AD =.【变式迁移】(3)如图3,90BAM NAC ∠=∠=°,AB AM =,AC AN =,试探究线段AD 与MN 的关系,并证明.【答案】(1)SAS ;(2)见解析;(3)2,MN AD MN AD =⊥,证明见解析 【详解】(1)解:∵D 是BC 的中点,∴BD CD =,∵,,D BD CD ADC M M A DB D =∠==∠,∴()ADC MDB SAS ≌,其中判定全等的依据为SAS ,故答案为:SAS ;(2)解:延长AD 到E ,使AD DE =,连接BE ,∵D 是BC 的中点,CD BD ∴=,在ADC △和EDB △中DC DB ADC EDB DA DE = ∠=∠ =, (SAS)ADC EDB ∴△≌△,,BE AC BCA EBD ∴=∠=∠,,,BAC BCA ACM ABC BAC EBA EBD ABD ∠=∠∠=∠+∠∠=∠+∠ ,ACM EBA ∴∠=∠,在ACM △和EBA △中,AC EB ACM EBA CM BA = ∠=∠ =, (SAS)ACM EBA ∴ ≌,2AM AE AD ∴==.(3)解:2,MN AD MN AD =⊥, 证明如下:如图,在AD 的延长线上截取DH AD =,连接CH ,则2AH AD =,∵D 是BC 的中点,CD BD ∴=,(SAS)CDH BDA ∴ ≌,,CH AB AHC BAE ∴=∠=∠,,90AB AM BAH =∠=° ,,90CH AM AHC ∴=∠=°,90ACH CAH ∴∠+∠=°,90NAC ∠=° ,90NAM CAH ∴∠+∠=°,NAM ACH ∴∠=∠,(SAS)NAM ACH ∴ ≌,,90MN AH AMN AHC ∴=∠=∠=°, 2,MN AD MN AD ∴=⊥.23. 在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:【模型探究】已知,在ABC 中,AB BC =,点P 是ABC 外部一点,过点P 作射线AE .(1)如图1,若ABC 是等边三角形,AE 经过BAC ∠内部,60BPA ∠=°,求证:60APC ∠=°. 小宁的做法是:在AE 上截取BQ BP =,构造“手拉手模型”,得出结论.请你帮助小宁完成证明:【模型应用】(2)如图2,已知30BAC BPA ∠=∠=°.当AE 经过BAC ∠内,求APC ∠的度数. 【拓展提高】(3)如图3,已知30BAC BPA ∠=∠=°.当AE 在AC 下方,求APC ∠的度数.【答案】(1)证明见解析部分;(2)120°;(3)60APC ∠=°【详解】(1)证明:如图1,在AE 上取一点Q ,使BQ BP =,∵60BPA ∠=°,∴BPQ 是等边三角形,∴60QBP BPQ BQP ∠=∠=∠=°, ∵ABC 是等边三角形,∴60ABC ∠=°,∴ABC QBP ∠=∠, ∴ABC QBC PBQ QBC ∠−∠=∠−∠,即ABQ CBP ∠=∠, 在BAQ 和BCP 中,AB BC ABQ CBP BQ BP = ∠=∠ =∴()BAQ BCP SAS ≌,∴180********BPCAQB BQP ∠=∠=°−∠=°−°=°, 1206060APC BPC BPQ ∴∠=∠−∠=°−°=°; (2)解:如图2,在AE 上取一点,M BM BP =,30,BAC BPA AB BC ∠=∠=°= , 30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,18030150BPC BMA ∴∠=∠=°−°=°, 15030120APC ∴∠=°−°=°;(3)解:如图3.在PA 延长线上取一点M ,使得BM BP =,30,BAC BPA AB BC ∠=∠=°= ,30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,30BPC M ∴∠=∠=°,303060APC BPM BPC ∴∠=∠+∠=°+°=°.。
福建省泉州第三中学2011-2012学年八年级数学上学期期中考试试题 人教新课
标版 班级 姓名 座号 一、选择题(1273'=⨯')
1.9的算术平方根是( )
A .3-
B .3
C .3±
D .81
2.下列运算不正确的是( )
A .835a a a =⋅
B .()632a a =
C .()()1238104.2108103⨯=⨯⨯
D .()()22444y x y x y x -=+-
3.在7,9-,2π
,60105.0,327,723
中,无理数个数为( )
A .1个
B .2个
C .3个
D .4个
4.1210可写成( )
A .431010⋅
B .2101010+
C .()4310
D .()6610
5.下列说法正确的是( )
A .多项式222b ab a --可以分解成()2b a -
B .()2b a -与22b a -相等
C .122++x x 不能运用完全平方公式因式分解
D .多项式22318248xy y x x ++可分解为()2322y x x +
6.若92++ma a 是一个完全平方式,那么( )
A .6=m
B .6-=m
C .6±=m
D .3±=m
7.计算()()2297-+-x x 的结果是( )
A .2-
B .x 216-
C .162-x
D .2
二、填空题(04104'=⨯')
8.计算:=3)2(a ;=--)32(3y x x .
9.直接写出因式分解的结果:
(1)=-xy x 2 ;
(2)=+-442a a .
10.比较大小:23_________32 (填“> , = , < ”).
11.若53=x ,23=y ,则=+y x 3 .
12.若一个正数的两个平方根是12-a 和2-a ,这个正数是 .
13.大于3且小于13的所有整数的和 .
14.如果()()6++x t x 的积不含x 的一次项则=t .
15.33322,9,4,1••••••
……符合这个规律的第六个数是 . 16.若t y x =-,则()=-2
33y x . 17.已知多项式1422
3--x x 除以一个多项式m 得商式为x 2,余式为1-x ,则多项式m 为 .
泉州三中2011年秋季初二年期中考试
数 学 答 题 卷
一、选择题(1273'=⨯') 题号 1 2 3 4 5 6 7
答案
二、填空题(04104'=⨯')
8. 9.(1) (2)
10. 11. 12. 13.
14. 15. 16. 17.
三、解答题
18.计算(每小题5分,共20分)
(1)24233)()2(x x x ÷⋅; (2))231
21(62+--⋅-a a a ;
(3)2)1(2)3)(12(----x x x ; (4))()23()(32342x x x x x -÷-+-
19. 因式分解(每小题5分,共20分):
(1)m m 93-; (2)36122+-x x
(3)()2249a b a -+ (4))2(4)2(2m m n -+-;
20.(6分)先化简后求值:()⎪⎭
⎫ ⎝⎛--+-12327373m m m m ,其中3-=m .
21.(6分)已知054222=+-++b b a a ,求()()b a b a +-的值.
22.(6分)已知83+=x y ,且y 的算术平方根为4,求x .
23.(7分)已知n m y x
125--与m n y x 34211--+的积与y x 7是同类项,试求出92--m n 的值.
24.(7分)两位同学将一个二次三项式进行因式分解时,一名同学因为看错了一次项系数而分解成)9)(1(2--x x ,另一位同学因为看错了常数项而分解成了)4)(2(2--x x ,请求出原多项式并将它因式分解.
25.(8分)数学家发明了一个魔术盒,当任意实数对()b a ,插入其中时会得到一个新的实数12
++b a ,例如把()2,3-••放入其中,就会得到()81232=+-+,现将实数()
2,3••放入其中得到实数m ,再将实数对()2,•m•
放入其中后得到什么数?
26.(9分)阅读下面材料,并解答下列问题:
在形如N a b
=的式子中,我们已经研究过两种情况:①已知a 和b ,求N ,这是乘方运算;②已知b 和N ,
求a ,这是开方运算. 现在我们研究第三种情况:已知a 和N ,求b ,我们把这种运算叫作对数运算.
定义:如果N a b =(••N ••a •a 0,1,0>≠>),则b 叫作以a 为底的N 的对数,记作N b a log =. 例如:因为823=,所以38log 2=;因为8123=-,所以38
1log 2-=. (1)根据定义计算:①=81log 3 ;②=3log 3 ;
③=1log 3 ;④如果416log =x ,那么=x .
(2)设M a x =,N a y =,则y N a =log (•N •M•••a •
a ,,1,0≠>均为正数). 用M a log ,N a log 的代数式分别表示MN a log 及N M a
log ,并说明理由.
附加题(0125'=⨯')
(1)1的平方根是 . (2)=327 .。