智能控制技术(第2章-专家系统与专家控制系统)
- 格式:ppt
- 大小:857.50 KB
- 文档页数:64
《智能控制技术》考试试题(备注:请将本试卷粘贴在答题本内页)一、概念题(每小题5分,共20分)(1)人工神经网络人工神经网络的研究是人工智能、认知科学、神经生理学、非线性动力学等学科的交叉热点。
2.模糊推理知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
3.专家系统专家系统是一个具有大量专门知识与经验的程序系统,它应用人工智能技术,根据某个领域或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复制问题。
4.递阶控制对递阶结构的大系统所采用的控制方式。
二、简答题(每小题10分,共40分)1.简述智能控制的发展过程,并说明智能控制的特点。
从20世纪60年代至今,智能控制的发展过程通常被划分3个阶段:萌芽期、形成期和发展期。
智能控制具有以下基本特点:1)应能为复杂系统进行有效的全局控制,并具有较强的容错能力。
2)定性策划和定量控制相结合的多模态组合控制。
3)从系统的功能和整体优化的角度来分析和综合系统,以实现预定的目标,并具有自组织能力。
4)同时具有以知识表示的非数学广义模型和以数学表示的数学模型的混合控制过程,系统在信息处理上,既有数学运算,又有逻辑和知识推理。
2.智能控制学科有哪几种结构理论?这些理论的内容是什么?二元结构理论傅京孙曾对几个与自学习控制(learning control)有关的领域进行了研究。
为强调系统的问题求解和决策能力,他用“智能控制系统”来包括这些领域。
他指出“智能控制系统描述自动控制系统与人工智能的交接作用”。
我们可以用式(1.3)和(1.6)以与图1.3来表示这种交接作用,并把它称为二元交集结构。
1.4.2 三元结构理论萨里迪斯于1977年提出另一种智能控制结构,它把傅京孙的智能控制扩展为三元结构,即把智能控制看作为人工智能、自动控制和运筹学的交接,如图1.4所示。
萨里迪斯认为,构成二元交集结构的两元互相支配,无助于智能控制的有效和成功应用。
1、什么是专家系统?它具有哪些特点和优点?1)专家系统:专家系统(Expert System)是一种在特定领域内具有专家水平解决问题能力的程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。
简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
2)专家系统的特点:①启发性:专家系统要解决的问题,其结构往往是不合理的,其问题求解知识不仅包括理论知识和常识,而且包括专家本人的启发知识;②透明性:专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感;③灵活性:专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力;④符号操作:与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。
一个符号是一串程序设计,并可用于表示现实世界中的概念;⑤ 不确定性推理:领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性并存在一定概率的问问题。
止匕外,所提供的有关问题的信息往往是不确定的。
专家系统能够综合应用模糊和不确定的信息与知识,进行推理;⑥为解决特定领域的具体问题,除需要一些公共的常识,还需要大量与所研究领域问题密切相关的知识;⑦ 一般采用启发式的解题方法;⑧在解题过程中除了用演绎方法外,有时还要求助于归纳方法和抽象方法;⑨需处理问题的模糊性、不确定性和不完全性;⑩能对自身的工作过程进行推理(自推理或解释);11采用基于知识的问题求解方法;12知识库与推理机分离。
智能控制理论及应用第1章绪论■《智能控制》在自动化课程体系中的位置《智能控制》是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器。
与《自动控制原理》和《现代控制原理》一起构成了自动控制课程体系的理论基础。
■《智能控制》在控制理论中的位置《智能控制》是目前控制理论的最高级形式,代表了控制理论的发展趋势,能有效地处理复杂的控制问题。
其相关技术可以推广应用于控制之外的领域:金融、管理、土木、设计等等。
■经典控制和现代控制理论的统称为传统控制,智能控制是人工智能与控制理论交叉的产物,是传统控制理论发展的高级阶段。
智能控制是针对系统的复杂性、非线性和不确定性而提出来的。
■传统控制和智能控制的主要区别:➢传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。
智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。
➢传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。
传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂的控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。
智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。
■智能控制与传统控制的特点。
传统控制:经典反馈控制和现代理论控制。
它们的主要特征是基于精确的系统数学模型的控制。
适于解决线性、时不变等相对简单的控制问题。
智能控制:以上问题用智能的方法同样可以解决。
智能控制是对传统控制理论的发展,传统控制是智能控制的一个组成部分,在这个意义下,两者可以统一在智能控制的框架下。
■智能控制应用对象的特点(1)不确定性的模型模型未知或知之甚少;模型的结构和参数可能在很大范围内变化。
(2)高度的非线性(3)复杂的任务要求■自动控制的发展过程■智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?答:智能控制系统的基本结构一般由三个部分组成:人工智能(AI):是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发式推理等功能。
智能控制基础答案【篇一:智能控制基础思考题】xt>复习思考题一重要概念解释 1 智能控制答:智能控制是一门交叉学科,美国学者在运筹学的基础上提出了三元论的智能控制概念,即ic=ac n ai n or 各子集的含义为:ic为智能控制,ai为人工智能,ac为自动控制,or为运筹学。
所谓智能控制,即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境(包含被控对象或被控过程)信息的变化做出适应性反应,从而实现由人来完成的任务。
2 专家系统与专家控制答:专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
专家控制是智能控制的一个重要分支,又称专家智能控制。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
3 模糊集合与模糊关系,模糊推理模糊控制答:模糊集合:给定论域u上的一个模糊集a?是指:对任何元素u?u 都存在一个数?a?u???0,1?与之对应,表示元素u属于集合a?的程度,这个数称为元素u对集合a?的隶属度,这个集合称为模糊集合。
模糊关系:二元模糊关系:设a、b是两个非空集合,则直积a?b???a,b?|a?a,b?b?中的一个模糊集合称为从a到b的一个模糊关系。
模糊关系r?可由其隶属度?r?a,b?完全描述,隶属度?r?a,b?表明了元素a与元素b具有关系r?的程度。
模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
4神经网络?答:人工神经网络(artificial neural network )是模拟人脑思维方式的数学模型。
神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。
第一章复杂系统的特点在传统的控制系统中,控制的任务要求输出为定值,或者要求输出量跟随期望的值变化,因此控制任务比较单一。
而对于复杂的控制任务:如:智能机器人系统、复杂工业过程控制系统、计算机集成制造系统、航天航空控制系统、社会经济管理系统、环境及能源系统等,传统的控制理论都无能为力。
传统控制理论的局限性1.传统的控制理论建立在精确的数学模型基础上——用微分或差分方程来描述。
不能反映人工智能过程:推理、分析、学习。
丢失许多有用的信息2.不能适应大的系统参数和结构的变化自适应控制和自校正控制——通过对系统某些重要参数的估计以克服小的、变化较慢的参数不确定性和干扰。
鲁棒控制——在参数或频率响应处于允许集合内,保证被控系统的稳定。
注:自适应控制鲁棒控制不能克服数学模型严重的不确定性和工作点剧烈的变化。
3.传统的控制系统输入信息模式单一通常处理较简单的物理量:电量(电压、电流、阻抗);机械量(位移、速度、加速度)复杂系统要考虑:视觉、听觉、触觉信号,包括图形、文字、语言、声音等。
智能定义(Albus):按系统的一般行为特性,指在不确定环境中作出合适动作的能力是自动控制(Au tomati c Control)和人工智能(A rtifi cial Intelligen ce)的交集和运筹学(OR)模糊控制与传统控制的区别:传统控制是从被控制对象的数学模型上考虑进行控制;模糊控制是从人类智能活动的角度和基础上去考虑实施控制。
模仿人的控制经验而不是依赖控制对象的模型智能控制的几个重要分支:一、专家系统和专家控制二、模糊控制三、神经网络控制四、学习控制智能控制系统的结构1. 定义a. 实现某种控制任务的智能系统。
智能系统是具备一定智能行为的系统。
若对于一个问题的激励输入,系统具备一定的智能行为,能够产生合适的求解问题的响应。
举例:智能洗衣机b.(Saridis的定义)通过驱动自主智能机来实现其目标而无需操作人员参与的系统举例:智能机器人智能控制系统的特点一混合控制过程,数学模型和非数学广义模型表示;适用于含有复杂性、不完全性、模糊性、不确定性和不存在已知算法的生产过程。
智能控制技术专业解读(精选5篇)智能控制技术专业解读精选篇1智能控制以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论,以及自适应控制、自组织控制和自学习控制等技术。
专家系统是利用专家知识对专门的或困难的问题进行描述的控制系统。
尽管专家系统在解决复杂的高级推理中获得了较为成功的应用,但是专家系统的实际应用相对还是比较少的。
模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型,也可以描述其定性模型。
模糊逻辑可适用于任意复杂的对象控制。
遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。
神经网络是利用大量的神经元,按一定的拓扑结构进行学习和调整的自适应控制方法。
它能表示出丰富的特性,具体包括并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习。
这些特性是人们长期追求和期望的系统特性。
神经网络在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力。
智能控制的相关技术与控制方式结合、或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器,这也是智能控制技术方法的一个主要特点。
智能控制技术专业解读精选篇2单片机系统应用、智能检测传感技术、PLC编程及应用、工业企业供电技术、智能控制技术、电力电子技术、机器人应用技术、Matlab 仿真技术、工业组态与总线技术、机器人操作与编程。
智能控制技术专业解读精选篇3智能控制技术专业是一门融合多门学科知识、极具创新性和拓展性的学科。
在校期间主要学习机械制图与CAD 、机械工程基础、电工电子技术、数控机床电气控制技术、液压与气动、智能制造控制技术概论、Python程序设计、数据库技术、可编程控制器技术、工控网络与组态技术、智能控制系统与工程、工业机器人应用、传感器与智能检测技术、智能生产线数字化设计与仿真、MES系统应用等专业课程。
智能控制技术在工程机械中的应用研究2身份证号码:******************摘要:工程项目施工建设的机械化水平越来越高,在工程机械中引入、运用智能控制技术成为重要发展趋势,也表现出了明显作用价值。
本文即重点围绕工程机械中智能控制技术的有效应用,首先简要介绍了智能控制技术,然后论述了智能控制技术在工程机械中的应用效果,最后以当前工程建设中常用的几种机械设备为例,探讨了智能控制技术如何应用,希望对于未来工程机械创新发展具备参考借鉴作用。
关键词:工程机械;智能控制技术;应用引言当下机械电子工程领域竞争激烈,很多国家都在大力开展该领域的研究,基于此必须要以人工智能技术为抓手,积极探索人工智能技术在该领域的全面应用。
这也是机械电子工程领域重点研究的方向,加强探究,充分挖掘人工智能技术的全面应用,已成为推动机械电子工程领域实现跨越式发展的必要任务。
1智能控制技术概述智能控制技术是现阶段比较受重视的一种高级控制手段,其依托人工智能、信息论、神经生理学以及仿生学等专业知识,形成了可以模拟人工进行自动控制和智能判断的新模式,在实际应用中可以发挥出记忆、学习、分析以及推理等多方面作用,在越来越多的领域发挥出了重要价值。
基于工程机械方面的创新改进来看,智能控制技术的应用同样也是重要发展方向,针对这种智能控制技术的有效融入和运用,工程机械的运行效果和作用价值往往可以得到明显提升,同时也可以解决以往传统滞后机械设备在运行中出现的偏差问题,成为当前越来越受大众欢迎一种新方法和新技术。
从当前工程机械中智能控制技术的应用原理上来看,其有效打破了传统控制手段对于数学模型的过度依赖,能够实现控制对象的优化调控,促使其在调控管理过程中具备人类思维模式,由此可以模拟人工发挥出理想控制作用。
现阶段智能控制技术的研究越来越深入,在工程机械中可供选用的智能控制技术也越来越丰富,其中比较有代表性的技术手段如下。
(1)专家系统。
智能控制技术应用中专家系统是比较重要的代表技术,其主要应用原理是在相应控制系统中纳入大量专家水平的知识和经验,如此也就可以促使相应系统在进行分析和判断时,模拟专家进行问题解决,最终有效保障判断的准确度。