中考数学试题-2018年中考模拟试卷数学 最新
- 格式:doc
- 大小:347.04 KB
- 文档页数:5
2018年中考数学模拟试题(试卷满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.﹣7的绝对值是( ) A .7 B .﹣7C .71 D .-712.9的平方根是( )A .3B .﹣3C .±3D .81 3. 下列命题正确的是( )A.内错角相等B. -1是无理数C.1的立方根是±1D. 两角及一边对应相等的两个三角形全等 4. 下列计算,正确的是( )A .a 2•a 2=2a 2B .a 2+a 2=a 4C .(﹣a 2)2=a 4D .(a+1)2=a 2+15.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位 置的小正方体的个数,则这个几何体的主视图是( )A .B .C .D .6.函数y=中自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D .7.把a 2﹣4a 多项式分解因式,结果正确的是( )A .a (a ﹣4)B .(a+2)(a ﹣2)C .a (a+2)(a ﹣2)D .(a ﹣2)2﹣48.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角, 则∠1+∠2+∠3等于( )A.90°B.180° C.210°D.270°9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个 C.众数是2个 D.众数是5个10.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥111.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧、是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为()A.4π+2 B.π﹣2 C.π+2 D.4π12. 如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.二、填空题(本题共6题,每小题4分,共24分)13.计算:( +1)(3﹣)= .14.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为.15.若m、n互为倒数,则mn2﹣(n﹣1)的值为.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.17.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有个小三角形;当三角形内有n个点时,此时有个小三角形.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(一)(本大题3小题,每小题6分,共18分)19.已知A=﹣(1)化简A ;(2)当x 满足不等式组,且x 为整数时,求A 的值.20.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD 和五边形EFGHK 的顶点均为小正方形的顶点.(1)以B 为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK 重叠部分的周长.(结果保留根号)21.如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O 为旋转中心,逆时针旋转30°得到如图2,连接OB 、OD 、AD . (1)求证:△AOB ≌△AOD ;(2)试判定四边形ABOD 是什么四边形,并说明理由.四、解答题(二)(本大题4小题,每小题8分,共32分)22. 如图,已知∠A=∠D 有下列五个条件①AE=DE ②BE=CE ③AB=DC ④∠ABC=∠DCB ⑤AC=BD 能证明△ABC 与△DCB 全等的条件有几个?并选择其中一个进行证明。
2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。
2018年中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.52.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x33.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.下列图形中,是中心对称图形的是()A. B. C. D.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠010.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.12.分解因式:x3﹣4x=.13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是,中位数是.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为m2.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=,b=,其中成绩合格的有人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在组,扇形统计图中E组对应的圆心角是;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是形;(3)若AB=AC,则四边形ADCF是形.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.2017年辽宁省葫芦岛市建昌县中考数学二模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.5【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法,找出最小的数即可.【解答】解:∵﹣3<﹣2<3<5,∴四个数中最小的是﹣3.故选A.2.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x3【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【分析】利用积的乘方、幂的乘方以及同底数的幂的乘法法则即可作出判断.【解答】解:A、2x和1不是同类项,不能合并,故选项不符合题意;B、(﹣x2)3=﹣x6,故选项不符合题意;C、x2•x3=x5,故选项不符合题意;D、(﹣2x)3=﹣8x3正确,选项符合题意.故选D.3.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱【考点】U1:简单几何体的三视图.【分析】根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式组解集的四种情况进行解答即可.【解答】解:由大小小大中间找的原则,得出不等式组的解集为﹣2≤x <4,表示在数轴上为,故选B.5.下列图形中,是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁【考点】W7:方差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的平均数较大且方差较小,故选乙.故选:B.7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°【考点】JA:平行线的性质.【分析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:∵a∥b,∴∠4=∠2=47°,∵∠1=30°,∴∠3=∠4﹣∠1=17°,故选C.8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐高铁对旅客的行李的检查是事关重大的调查,故A不符合题意;B、了解建昌县初中生的视力情况调查范围广适合抽样调查,故B符合题意;C、调查九年级一班全体同学的身高情况适合普查,故C不符合题意;D、对新研发的新型战斗机的零部件进行检查是事关重大的调查,故D不符合题意;故选:B.9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选C.10.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个【考点】E6:函数的图象.【分析】观察图象,获得路程及相应的时间,可得答案.【解答】解:(1)由纵坐标看出公园门口到公园凉亭的距离是600m,故(1)正确;(2)由横坐标看出小明在凉亭休息了5min,故(2)正确;(3)由横坐标看出小刚和小明同时回到了公园,故(3)正确;(4)由纵坐标看出同样的路程,由横坐标看出小明的时间长,小刚的时间段,小明返回时的速度比去时的速度慢,故(4)错误;故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.【考点】X4:概率公式;P3:轴对称图形.【分析】根据概率公式求解可得.【解答】解:从中任意抽取1张,共有3种等可能结果,其中是轴对称的只有圆这一种,∴抽出的卡片是轴对称图形的概率是,故答案为:.12.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为5×1010.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:50000000000=5×1010,故答案为:5×1010.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是8,中位数是9.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】根据众数的定义找出答对最多的题目数即可;根据中位数的定义,找出50人中的第25、26两人答对题目的数量的平均数即可为中位数.【解答】解:由图可知,答对8题的人数最多,是20人,所以,每位同学答对的题的个数组成的样本众数是8,答题人数为:4+20+18+8=50,按照答对题目数量从少到多,第25、26两人都是9道题目,所以,中位数是9.故答案为:8;9.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=4.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KQ:勾股定理.【分析】由题意MN垂直平分线段AB,可得BD=AD,在Rt△BCD中,可得BD===5,推出AD=BD=5,AC=AD+DC=8,在Rt△ACB中,根据AB=即可解决问题.【解答】解:由题意MN垂直平分线段AB,∴BD=AD,在Rt△BCD中,BD===5,∴AD=BD=5,AC=AD+DC=8,在Rt△ACB中,AB===4,故答案为4.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为y=﹣.【考点】G5:反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△AOB的面积为矩形面积的一半,即|k|.【解答】解:由于点A在反比例函数y=的图象上,=|k|=4,k=±8;则S△AOB又由于函数的图象在第二象限,k<0,则k=﹣8,所以反比例函数的解析式为y=﹣.故答案为:y=﹣.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为27m2.【考点】HE:二次函数的应用.【分析】首先表示出矩形的长与宽,进而利用二次函数最值求法得出答案.【解答】解:设AB=x,则BC=18﹣3x,则围成的矩形花圃ABCD的面积为:S=x(18﹣3x)=﹣3x2+18x=﹣3(x2﹣6x)=﹣3(x﹣3)2+27,即围成的矩形花圃ABCD的占地面积最大为27m2.故答案为:27.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是()n﹣1.【考点】D2:规律型:点的坐标.【分析】先求出直线y=kx+b的解析式,求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A3的坐标,进而得出各点的坐标的规律.【解答】解:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得,∴直线解析式为:y=x+;设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点A n的纵坐标是()n﹣1,故答案为:,()n﹣1.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(x﹣2﹣)===,当x=2sin45°+()﹣1=2×=,原式=.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=5,b=15,其中成绩合格的有45人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在C组,扇形统计图中E组对应的圆心角是36°;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图;W4:中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A 组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由E组有5人,占5÷50=10%,即可求得:对应的圆心角为:360°×10%=36°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查的总人数为5÷10%=50,∴a=50×30%=15,b=50﹣(5+10+15+15)=5,其中合格的人数为50﹣5=45人,补全条形图如下:故答案为:15、5、45,(2)50个数据的中位数为第25、26个数据的平均数,而第25、26个数均落在C组,∴中位数在C组,扇形统计图中E组对应的圆心角是360°×=36°,故答案为:C、36°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,其中甲、乙至少有1人被选中的结果有14种,==.∴P(甲、乙至少有1人被选中)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】(1)解:∵∠CAD=30°,∠CBD=60°,CD⊥l,CD=30∴在Rt△ADC中,AD===30,在Rt△BDC中,BD===10,则AB=AD﹣BD=30﹣10=20≈34.6(米),答:AB的长约为34.6米,(2)解:超速,理由如下:∵汽车从A到B用时3秒,由(1)知,AB≈34.6米∴速度为×3.6≈41.5(千米/小时)>40千米/小时,∴此校车在AB路段超速.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是菱形;(3)若AB=AC,则四边形ADCF是正方形.【考点】LF:正方形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;L9:菱形的判定.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由(1)知,AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形;(3)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)由(1)知,AF=DB.DB=DC,则AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.故答案是:菱;(3)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.故答案是:正方.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)设每张儿童票x元,每张成人票y元,根据两家人的购票费用列方程组求解即可;(2) ①设带儿童m人,根据题意得不等式即可得到结论;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),根据一次函数的性质即可得到结论.【解答】解:(1)设每张儿童票x元,每张成人票y元,根据题意,得,解得:,答:每张儿童票30元,每张成人票80元;(2) ①设带儿童m人,根据题意,得30m+80(50﹣m)≤≤3000,解得m≥20,又∵儿童人数不能超过25人,∴带儿童人数的取值范围是20≤m≤25;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),即W=﹣50m+4000,∵k=﹣50<0,∴w随m的增大而减小,而20≤m≤25,∴m=25时,w最小,这时,w=﹣50×25+4000=2750,因此,25个成人25个儿童去才能既保证安全又使费用最低,最低费用是2750元.六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.【考点】ME:切线的判定与性质;KQ:勾股定理;M2:垂径定理.【分析】(1)连接OA.依据等腰三角形的性质可得到∠B=∠BAO,∠GEA=∠GAE,从而可证名∠B+∠BEF=90°,通过等量代换可得到∠BAO+∠GAE=90°,即OA⊥AG;(2)由直径所对的圆周角等于90°可得到∠BAC=90°,依据勾股定理可求得BC=10,则⊙O的半径为5,锐角三角函数的定义可知cosB==,故此可求得BF的长,最后依据OF=OB ﹣BF求解即可.【解答】解:(1)连接OA.∵OA=OB,GA=GE,∴∠B=∠BAO,∠GEA=∠GAE.∵EF⊥BC,∴∠BFE=90°,∴∠B+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,∴OA⊥AG.又∵OA是半径,∴AG是⊙O的切线.(2)解:∵BC为直径,∴∠BAC=90°.又∵AC=6,AB=8,∴在Rt△BAC中,根据勾股定理,得BC=10,∴OB=5.又∵BE=3,∴在Rt△BEF和Rt△BCA中,cosB==.∴=,解得:BF=2.4.∴OF=OB﹣BF=5﹣2.4=2.6.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是6.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.【考点】RB:几何变换综合题.【分析】(1)①过D作DF⊥CE于F,根据等边三角形的性质得到∠C=60°,解直角三角形得到DF=,于是得到结论;②由△ABC是等边三角形,得到∠ABC=60°,解直角三角形得到BF=2,CF=6,根据三角形的面积公式即可得到结论;(2)根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论;(3)延长AD交BE于F,设AD与BC交于E,根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论.【解答】解:(1)①过D作DF⊥CE于F,∵△CDE是等边三角形,∴∠C=60°,∵CD=CE=2,∴DF=,∴△DEC的面积=×2×=;②∵△ABC是等边三角形,∴∠ABC=60°,∵∠BCF=30°,∴∠BFC=90°,∵BC=4,∴BF=2,CF=6,∴△CBF的面积=2×6=6;故答案为:,6;(2)∠EOD=60°,理由如下:∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠DFC=∠AFE,∴∠EOD=∠ECD=60°;(3)延长AD交BE于F,设AD与BC交于E,∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠AEC=∠BEF,∴∠AFB=∠ACB=60°,直线AD与BE相交所得到的锐角的度数是60°.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.【考点】HF:二次函数综合题.【分析】(1)由抛物线顶点D的坐标是(1,),设抛物线解析式为y=a(x﹣1)2+,再把C(0,4)代入,得出关于a的方程,解方程求出a=﹣,即可得出抛物线的解析式;(2)根据抛物线的解析式求出B点坐标,利用待定系数法求出直线BD的解析式为y=﹣x+6,由点P是线段BD上的一个动点,可设P(x,﹣x+6).得出PE=x,OE=﹣x+6,再根据三角形的面积公式列式得出S=PE•OE=xy=x(﹣x+6)=﹣x2+3x(1<x<4),利用配方法化为顶点式求出S的最大值;(3)在(2)的条件下,当S取最大值时,P(2,3),则E(0,3),F(2,0).画出图形.利用待定系数法求出直线EF的解析式为y=﹣x+3.根据折叠的性质得出P′E=PE=2,PP′⊥EF,由互相垂直的两直线斜率之积为﹣1,得出直线PP′的斜率为,再求出直线PP′的解析式为y=x+,设P′(x,x+),根据P′E=2列出方程x2+(x+﹣3)2=4,解方程求出x的值,进而求解即可.【解答】解:(1)∵抛物线顶点D(1,),∴设抛物线解析式为y=a(x﹣1)2+,又∵抛物线经过点C(0,4),∴4=a+,解得a=﹣,∴抛物线解析式为y=﹣(x﹣1)2+,即y=﹣x2+x+4;(2)令﹣x2+x+4=0,解得x1=﹣2,x2=4,故A(﹣2,0)、B(4,0).设直线BD解析式为y=mx+n(m≠0),∵B(4,0),D(1,),∴,。
2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2018年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2018年中考模拟卷数学参考答案及评分标准一、精心选一选(本题有10个小题,每小题3分,共30分) 题号1 2 3 4 5 6 7 8 9 10 答案C B A C B A A C DA二、细心填一填(本题有6个小题,每小题4分,共24分)11、 2 12、208≤≤≥d d 或 13、 3 14、X > 1或X < -1 15、 y=6/x 16、 (40,0) 三、认真答一答(本题有8个小题,共66分) 17、(本小题满分6分)画出两条中垂线得3分 画出外接圆得2分 写出结论得1分18、(本小题满分6分) ∵AD ∶DB=1∶3,∴AD ∶AB=1∶4, …………………(2分) ∵△ABC∽△A DE∴AD ∶AB= DE ∶BC …………………(2分) ∵DE=2∴BC =8 …………………(2分)19.(本小题满分6分) 解:连接OA∵OA 2=AD 2+OD 2∴1204508650OD OA AD 22222=)--(=-= ………………………………(3分)∴S=ππ1024AD 2=平方米…………………………(3分)答:这个国际会议中心建筑的面积为1184π平方米。
20、(本小题满分8分)(1) ΔAED ≌ΔDFC. -------------------------- 1分 ∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. -------------------------- 1分又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, -------------------------- 1分 ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC. -------------------------- 2分∴ ΔAED ≌ΔDFC (AAS ).(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ------------------------- 2分 ∵ DF=DE+EF ,∴ AE=FC+EF. ------------------------- 1分21.(本小题满分8分)(1)y=-2/x -------------3分y=x+3 -------------3分 (2)(-1,2) -------------2分22.(本小题满分10分)解:(I)Y=-x 2+4x= -(x 2一4x+4—4) =-(x 一2)2+4 ------------3分 ∴ 对称轴为:直线x =2----------------------- 1分 顶点坐标:(2,4);----------------------- 1分 (2)图象与x 轴的交点坐标为: (0,0)与 (4,0) ------2分 (3) x ≥2 , 0<x <4 x <0或x >4--------3分23、(本小题满分10分)(1) x y 220+= 0<x ≤12 ------- 各1分,共2分 (2)当 0<x ≤5时, w =(1200-800)y=400×(20x 2+)=8000+800x ------- 2分当5<x ≤12时,w =[1200-800-(30-y )×20]y =-802x +400x +12000 ------- 4分 此函数只有当=x 2.5天时w 最大,可x 的取值不符合。
2 2 2 2 2一、选择题(共 40 分)2018 年中考模拟卷(2018.05.31)1. 下列各式中,计算结果为 1 的是( ). A .-2-1B .1 ÷ 1⨯ 22C . -12D .1-12. 如果和互为余角,那么下列表示的补角的式子中,错误的是( ).A.0o -B . 90o +C .2+D .+ 23. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).从正面看ABCD4. 下列式子中,可以表示为 2—3 的是( ).A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)5. △ABC 中,∠A ,∠B ,∠C 的度数之比为 2:1:1,则下列直线一定是△ABC 的对称轴的是( ).A. △ABC 的边 AB 的垂直平分线B .∠BAC 的角平分线所在的直线C .△ABC 的 AB 边上的中线所在的直线D .△ABC 的 AC 边上的高所在的直线6. 已知( -1)n = m ,若 m 是整数,则 n 的值可能是( ).A.B . -1C .1-D . +17. 如图,正方形网格中,每个小正方形的边长均为 1 个单位长度,A 、B 在格点上,现将线段 AB 向下平移 m 个单位长度,再向左平移 n 个单位长 度,得到线段 A ' B ',连接 A A ',B A ',若四边形 A A ' B ' B 是正方形, 则 m +n 的值是().A .3B .4C .5D .6第 7 题8. 若 A (x 1,y 1) 、B (x 2,y 2 ) 是某函数图象上的不同两点,且(x 1 - x 2 )( y 1 - y 2 ) < 0 .则该函数可能是( ).A . y = x 2 ( x > 0)B . y = 1 ( x < 0) xC . y = - 2 (x > 0) xD . y = x9. 若 x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数 x 1,x 2,a,b 的大小关系为( ).A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 210. 已知数据 x 1, x 2 , , x n 的平均数为 x ,数据 y 1, y 2 , , y m 的平均数为 y .( x ≠ y ).若数据x , x , , x , y , y , , y 的平均数 z = ax + (1- a ) y ,其中0 < a < 1.则 m ,n 的大小关系为( 1 2 n 1 2 m2). A. n = mB. n ≥ mC. n < mD. n > m二、填空题(共 24 分) 11.16 的算术平方根为.yAa212.截至 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600 亿美元。
中考模拟试卷数学试题卷(本试卷满分120分,考试时间100分钟)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.已知yP (x ,y )所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.下列等式成立的是( )A.(-1)3=-3B. (x-2y )2=x 2-2xy+4y 2C.()66232a a a a -÷==3.如图,AB ∥CD ,BE 平分∠ABC ,∠CDE =150º. 下列说法错误的是( )A .∠CDB+∠ABC=Rt ∠B .BC=CDC .∠DCB=110 ºD .∠EDC+∠ABD=180 º4.为参加“萧山区初中毕业生升学体育考试”,各班进行了紧锣密鼓得训练,在3月份进行的A .方差是26.75%B .众数是15%和20% C .中位数是22.5% D .平均数是22% 5. 将如图的Rt △ABC 绕直角边AC6.如果在△ABC 中,1sin 2B =且AB >AC ,下列说法符合实际的结论是( ) A 、△ABC 是直角三角形 B 、12BC AB= C 、∠A=30° D 、7.关于x 的不等式3x-a ﹥0解集为M ,已知x =2是解集M 中的最小正整数,而53x =不属于M ,则实数a 的取值范围是( )A .3≤a <6B .5<a ≤6C .3<a <6D .5≤a <6 8.如图⊙O 中,BC 为直径,A 、D 为圆上两点,D 是⌒ACB 的中点,且AC=3,AB=4, CD 与AB 交于圆外E 点,则DCCE等于( ) A .34 B .13 C .35 D .12A C D EDBAC第3题图9.下列命题中 ①若()22440x y x -+-= ,则xy=1;②一个角的两边分别垂直于另一角的两边,则这两个角相等③一正多边形的一个外角是45°,则此图形是正八边形;④等腰△ABC 在直角坐标系中,底边的两端点坐标是(-2,4)和(-2,-2),则第三个顶点的坐标中能确定的是横坐标;⑤一次函数与﹣1的图象之间的距离等于3,则b 的值为-4或2.其中真命题有( )A .2个B .3个C .4个D .5个10. 如图,正方形ABCD 和正方形DEFG ,点E 在AD 上,DE=1,BC=3,把其中一个正方形绕着点E 顺时针旋转180°,则此时点F 到线段BD 的距离是( ). A .553 D .553二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案13.代数式()()24,2,8ab a b b b a -- 任选两个代数式的和能进行因式分解,分解的结果为 .(写出一个即可). 14.小李和小尹两名同学一起解方程组{212ax y x by -=+= .小李由于看错了系数a,得到方程组的解是{21x y ==- ;小尹由于看错了系数b ,得到方程组的解是212x y =-=⎧⎨⎩ .则a ,b 的值是 .15.如图,菱形ABCD 的面积为1002cm ,以对角线BD 为底边作等边三角形BDE 的面积为为2cm ,则AE 的长为 cm .16.如图,点A 是反比例函数y =2x -在第二象限内图象上一点,点B 是反比例函数y =kx在第一象限内图象上一点,直线AB 与y 轴交于点C ,且AC=BC ,连接OA 、OB ,则△AOB 的面积是3时k 的值为______.第8题 B第10题三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
中考模拟试卷 数学试题卷(考试时间 100分钟 满分120分)一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中 相应的格子内. 注意可以用多种不同的方法来选取正确答案.1.如图,若把太阳看成一个圆,则太阳与地平线l 的位置关系是( ) A .相交 B.相切 C.相离 D.外离 2.如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.3.北京第29届奥运会火炬接力活动历时130天,传递总里程约13.7万千米.传递总里程用科学记数法表示为( )A. 1.37×10千米B. 1.37×105千米C. 1.37×104千米D. 13.7×104千米4. 文明于世的埃及金字塔形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m ,则估计该金字塔的高度(精确到1m )是( )A.373mB.143mC.372mD. 142m5.某个多面体的平面展开图如图所示,那么这个多面体是( ) A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥6.若方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解是( ) A. 6.3,2.2x y =⎧⎨=⎩ B.8.3,1.2x y =⎧⎨=⎩ C.10.3,2.2x y =⎧⎨=⎩ D.10.3,0.2x y =⎧⎨=⎩7.烟花厂为杭州市烟花大会特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) A.3sB.4sC.5sD.6s8. 在同一坐标平面内,图象不可能由函数122+=x y 的图象通过平移变换、轴对称变换得到的函数是( )第2题第1题A.1)1(22-+=x y B.322+=x y C.122--=x y D.1212-=x y 9.如图,下列结论中错误的是( )A.方程组⎪⎩⎪⎨⎧=+=x k y bx k y 21的解为⎩⎨⎧=-=;1y ,2x 11⎩⎨⎧-==.2,122y x B .当-2< x <1时,有y>y ' C .k 1<0,k 2<0,b<0 D .直线y=k 1x+b 与两坐标轴围成的三角形的面积是2110. 如图,⊙O 上有两点A 与P ,若P 点在圆上匀速运动一周,那么弦AP 的长度d 与时间t 的关系可能是下列图形中的 ( )二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这10户家庭月用水量的众数和中位数分别为12.如图6,AB 、CD 是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为 .13.小明(M )和小丽(N )两人一前一后放风筝,结果风筝在空中E 处纠缠在一起(如示意图)。
. . .2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。
一、选择题(每小题3分,共30分)1.-12的倒数是( ) A .2 B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是( )A .正方体B .三棱锥C .圆柱D .圆锥第3题图 笫4题图 4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是( )A .4℃,4℃B .4℃,5℃C .4.5℃,5℃D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是 ( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-a D .2a 2·3a 3=6a 5 7.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n)移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是 ( )A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。
2018年中考模拟试卷 数学卷数学参考答案及评分标准一、仔细选一选(每小题3分,共30分)说明:第1和10小题为原创题,其中2;3;5;7;8为课本习题的延伸;4;6;9为借鉴题。
(突出数学的时效性和大众化及生活中的应用) 二. 认真填一填(本题有6个小题,每小题4分,共24分)11、R=52 12.7313、b= -11 147 15、0360)2(⨯-=n S 16、20112010说明:14,16题自编题 ;11,12,13,15属于借鉴。
三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)解:(1)m=2-2---------------------------------2分(2 ︳2-2-1︱+(2-2+6)0=︱1-2︳+1=2-----------------4分 说明:此题想增加数学计算的趣味性而设置了本题。
从一般的计算演变而来。
属于改编。
18、(本题6分)解: 四边形BCFD 为平行四边形-------------1分首先△ADE 绕点E 旋转180︒得到△CFE 可得△AD E ≌△CFE----------1分 ∴DE=EF------------1分又∵D.E 分别为中点∴D E ∥BC 且DE=21BC-------1分 ∴DF=∥BC ----------1分∴四边形BCFD 为平行四边形---------1分说明:旨在考查学生能运用旋转的不变性来证明三角形全等,和应用三角形的中位线的性质来证明一个四边形是平行四边形的性质应用(属于改编)。
19、(本题6分)解: (1)512,51==X X ------------------2分 (2)aa 12+-----------------------------------2分(3)5x 2-26x=-5x 2-526x=-1 x 2-526x+25169=-1+25169(x-513)2=25144(x-513)=±512∴512,51==X X ------------------2分说明:通过观察,归纳,猜想得到第1和第2小题的结论。
从理论上用配方法去求证刚才的猜想是否正确。
借鉴题。
20、(本题8分) 解:(1)AB 是O 的切线,∴90OAB ∠=,--------------------------1分222AO OB AB ∴=-,5OA ∴=.----------------------------------2分(2)OH AC ⊥,90OHA ∴∠=,2sin 5OH OAC OA ∴∠==.-------------------2分 (3)OH AC ⊥,222AH AO OH ∴=-,AH CH =,225421AH ∴=-=,AH ∴29.2AC AH ∴==.------------------------------3分 说明:此题目的是想考查学生圆中的有关计算问题,所涵盖的知识面比较广,属于改编和借鉴的结合。
21、(本题8分)解:(1)a=8,b=0.18----------------------2分 (2)图略---------------------2分(3)8%---------------------2分(4)图略 ,组中值45.----------------------------2分说明:此题的来源于八下数学课本习题的改编而成的。
属于原创。
22、(本题10分)解:设这个年利增长率为X---------------------------------1分 由题意得:2000(1+x )2=2000+2000×8%+720 -----------------5分 解得:2.2,2.021-==x x (不合题意,舍去)--------2分 ∴2.01=x =20%----------------------------------1分 答:略------------------------------------------1分说明:银行贷款是我们生活中的问题,但是我们学生很少去关心银行贷款的还利息的问题,我们怎样把生活中问题数学化,这是一种能力。
本题就是想考查学生的运用数学的能力和对生活中的数学理解能力。
本题属于原创。
23、(本题10分)(1)解:函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ···································································································· 1分设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,,··························· 1分1a >,DB a ∴=,44AE a =-.由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭,1分 得3a =,∴点B 的坐标为433⎛⎫⎪⎝⎭,.1分(2)证明:据题意,点C 的坐标为(10),,1DE =,1a >,易得4EC a=,1BE a =-,111BE a a DE -∴==-,4414AEa a CEa-==-. ············································· 1分DC AB ∴∥. ················································································· 1分 (3)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =.∴点B 的坐标是(2,2). ································································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b=+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··············································· 1分 ②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+.················································· 1分 综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 24、(本题12分)(1)解法一:由已知,直线CM :y=-x +2与y 轴交于点C (0,2)抛物线c bx ax y ++=2 过点C (0,2),所以c=2,抛物线c bx ax y ++=2的顶点M ⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22在直线CM 上,所以20,224242-==+=-⨯b b a ba b a 或解得 (2分)若b =0,点C 、M 重合,不合题意,舍去,所以b =-2。