最新新人教版高中物理必修二同步试题 全册
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
第七章 万有引力与宇宙航行2 万有引力定律基础过关练题组一 对太阳与行星间引力的理解1.(多选)根据开普勒行星运动定律和圆周运动知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F'∝Mr2,其中M 、m 、r 分别为太阳、行星的质量和太阳与行星间的距离。
下列说法正确的是( ) A.由F ∝mr2和F'∝Mr2知F ∶F'=m ∶MB.F 和F'大小相等,是一对作用力与反作用力C.F 和F'大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力2.(多选)关于太阳与行星间的引力,下列说法中正确的是( )A.由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大B.行星绕太阳沿椭圆轨道运动时,在从近日点向远日点运动时所受引力变小C.由F=GM 太m r 2可知G=Fr 2M 太m,由此可见G 与F 和r 2的乘积成正比,与M 太和m 的乘积成反比D.行星绕太阳运动的椭圆轨道可近似看成圆轨道,行星做圆周运动的向心力来源于太阳对行星的引力题组二 对万有引力定律的理解3.(2020河北唐山十一中高二上期中)(多选)关于物体间的万有引力的表达式F=Gm 1m 2r 2,下列说法正确的是( )A.公式中的G 是引力常量,它是由实验得出的,而不是人为规定的B.当两物体间的距离r 趋于零时,万有引力趋于无穷大C.两个物体间的万有引力总是大小相等的,而与m 1和m 2是否相等无关D.两个物体间的万有引力总是大小相等、方向相反的,是一对平衡力4.(2019北京东城高一上期末)两个质点之间万有引力的大小为F,如果将这两个质点之间的距离变为原来的2倍,那么它们之间万有引力的大小变为( ) A.2FB.4FC.F2D.F45.(2019广东佛山高一下期中)如图所示,O1、O2两球间的距离为r,两球的质量分布均匀,大小分别为m1、m2,半径分别为r1、r2,则两球间的万有引力大小为( )A.G m1m2r2B.G m1m2r12C.G m1m2(r1+r2)2D.G m1m2(r1+r2+r)26.(2019福建泉州高一下期末)(多选)要使两物体间的万有引力减小到原来的14,下列办法可采用的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增为原来的2倍,质量不变D.使两物体间的距离和它们的质量都减为原来的14题组三万有引力和重力的关系7.关于万有引力F=G m1m2r2和重力,下列说法正确的是( )A.公式中的G是一个比例常数,没有单位B.到地心距离等于地球半径2倍处的重力加速度为地面重力加速度的14C.相互作用的两物体受到的万有引力是一对平衡力D.若两物体的质量不变,它们间的距离减小到原来的一半,它们间的万有引力也变为原来的一半8.(2020浙江杭州余杭第二高级中学高一下月考)设地球表面的重力加速度为g0,物体在距离地球表面3R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则gg0为( )A.1B.19C.14D.1169.(2020四川石室中学高三期中)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。
人教版必修第二册全册练习题第5章抛体运动 ..................................................................................................................... - 2 -5.1曲线运动 ................................................................................................................... - 2 -5.2 运动的合成与分解................................................................................................... - 8 -5.3实验:探究平抛运动的特点.................................................................................. - 15 -5.4 抛体运动的规律..................................................................................................... - 22 -第五章达标检测卷........................................................................................................ - 30 - 第五章进阶突破............................................................................................................ - 39 - 第6章圆周运动分层练习题................................................................................................ - 48 -6.1 圆周运动 ................................................................................................................ - 48 -6.2 向心力 .................................................................................................................... - 56 -6.3 向心加速度 ............................................................................................................ - 64 -6.4 生活中的圆周运动................................................................................................. - 71 -第六章达标检测卷........................................................................................................ - 79 - 第六章进阶突破............................................................................................................ - 88 -第7章万有引力与宇宙航行................................................................................................ - 96 -7.1 行星的运动 ............................................................................................................ - 96 -7.2 万有引力定律 ...................................................................................................... - 102 -7.3 万有引力理论的成就........................................................................................... - 108 -7.4 宇宙航行 .............................................................................................................. - 116 -7.5 相对论时空观与牛顿力学的局限性................................................................... - 124 -第七章达标检测卷...................................................................................................... - 130 - 第七章进阶突破.......................................................................................................... - 139 -第八章机械能守恒定律...................................................................................................... - 146 -8.1 功与功率 .............................................................................................................. - 146 -8.2 重力势能 .............................................................................................................. - 154 -8.3动能和动能定理.................................................................................................... - 160 -8.4 机械能守恒定律................................................................................................... - 169 -8.5 实验:验证机械能守恒定律............................................................................... - 178 -第八章达标检测卷...................................................................................................... - 184 - 第八章进阶突破.......................................................................................................... - 193 -第5章抛体运动5.1曲线运动A组·基础达标1.(2020届贵州遵义名校期中)一小球从M运动到N,a、b、c、d是其运动轨迹上的四个点,某同学在图上标出了小球经过该点时的速度v a、v b、v c、v d如图所示.其中可能正确的是()A.a B.bC.c D.d【答案】B【解析】做曲线运动的物体的速度方向沿轨迹的切线方向,故B正确.2.(2020届宿迁名校期末)关于曲线运动的描述,下列说法正确的是() A.曲线运动一定是变速运动B.曲线运动不可能是匀变速运动C.物体只有在恒力作用下才做曲线运动D.物体只有在变力作用下才做曲线运动【答案】A【解析】曲线运动的速度方向一定变化,则一定是变速运动,故A正确;曲线运动也可能是匀变速运动,例如平抛运动,故B错误;物体在恒力或变力作用下均可能做曲线运动,例如圆周运动是在变力作用下的曲线运动,故C、D错误.3.如图所示,这是质点做匀变速曲线运动的轨迹示意图.已知质点在B点的加速度方向与速度方向垂直,则下列说法中正确的是()A.C点的速率大于B点的速率B.A点的加速度比C点的加速度大C.运动过程中加速度大小始终不变,方向时刻沿轨迹的切线方向而变化D.质点受合力方向可能向上【答案】A【解析】质点做匀变速曲线运动,从B点到C点的加速度方向与速度方向夹角小于90°,则速率增大,故A正确;质点做匀变速直线运动,加速度恒定,大小和方向均不变,故A点的加速度与C点的加速度相等,故B、C错误;合力方向指向轨迹凹侧,D错误.4.物体做曲线运动,则()A.物体的加速度大小一定变化B.物体的加速度方向一定变化C.物体的速度的大小一定变化D.物体的速度的方向一定变化【答案】D【解析】物体做曲线运动,其速度方向时刻变化,但是大小可以不变,例如匀速圆周运动,其速度大小不变,但是方向时刻变化,其加速度大小不变,但是加速度方向时刻变化;匀变速曲线运动的加速度大小和方向都是不变的.故A、B、C错误,D正确.5.(2020届菏泽名校期中)关于曲线运动的描述,下列说法正确的是()A.物体只有在恒力作用下才做曲线运动B.物体只有在变力作用下才做曲线运动C.曲线运动速度方向变化,加速度方向不一定变化D.曲线运动速度大小一定变化【答案】C【解析】曲线运动的条件是合外力与速度不在同一条直线上,与力是否变化无关,物体在变力作用下可能做直线运动,如机车启动的过程中,合外力的大小是变化的;在恒力作用下也可做曲线运动,如平抛运动,故A、B错误;曲线运动的条件是合外力与速度不在同一条直线上,速度方向时刻变化,但加速度方向可能不变,故C正确;匀速圆周运动是速度大小不变方向改变的曲线运动,故D错误.6.关于曲线运动的论述中,正确的是()A.做曲线运动的物体所受的合外力可能为零B.物体不受外力时,其运动轨迹可能是直线也可能是曲线C.做曲线运动的物体的速度一定时刻变化D.做曲线运动的物体,其所受的合外力方向与速度方向可能一致【答案】C【解析】物体做曲线运动时,所受合外力的方向与速度的方向不在同一直线上,合外力不能等于零,故A错误;物体不受外力时,物体做匀速直线运动或者静止,不能做曲线运动,故B错误;做曲线运动的物体的速度方向一定是变化的,所以速度一定时刻变化,故C正确;物体做曲线运动时,所受合外力的方向与速度的方向不在同一直线上,故D错误.7.如图所示,双人滑冰运动员在光滑的水平冰面上做表演,甲运动员给乙运动员一个水平恒力F,乙运动员在冰面上完成了一段优美的弧线MN.v M与v N正好成90°角,则此过程中,乙运动员受到甲运动员的恒力可能是图中的()A.F1B.F2C.F3D.F4【答案】B8.一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向一定与该恒力的方向相同B.质点速度的方向一定与该恒力的方向垂直C.质点加速度的方向一定与该恒力的方向相同D.单位时间内质点速度的变化量逐渐增大【答案】C【解析】质点开始做匀速直线运动,现对其施加一恒力,其合力不为零,如果所加恒力与原来的运动方向在一条直线上,质点做匀加速或匀减速直线运动,质点速度的方向与该恒力的方向相同或相反;如果所加恒力与原来的运动方向不在一条直线上,物体做曲线运动,速度方向沿切线方向,力和运动方向之间有夹角,故A错误;由A分析可知,质点速度的方向不可能总是与该恒力的方向垂直,故B错误;由于质点做匀速直线运动,即所受合外力为0,原来质点上的力不变,增加一个恒力后,则质点所受的合力就是这个恒力,所以加速度方向与该恒力方向相同,故C正确;因为合外力恒定,加速度恒定,由Δv=aΔt可知,质点单位时间内速度的变化量总是不变,故D错误.9.如图所示为水平桌面上的一条弯曲轨道.钢球进入轨道的M端沿轨道做曲线运动,它从出口N端离开轨道后的运动轨迹是()A.a B.bC.c D.d【答案】C【解析】当离开末端时,由于惯性作用,仍保持原来运动的方向,即沿着曲线的切线c的方向,故C正确.B组·能力提升10.(多选)如图所示,一辆汽车在水平公路上转弯.下图中画出了汽车转弯时所受合力F的四种方向,其中可能正确的是()A BC D【答案】AB【解析】汽车在水平公路上转弯,汽车做曲线运动,所受合力F的方向指向运动轨迹内测,故知A、B是可能的,而C、D两种情况下,F都指向轨迹的外侧,不可能,故A、B正确,C、D错误.11.一质点从A开始沿曲线AB运动,M、N、P、Q是轨迹上的四点,M→N 质点做减速运动,N→B质点做加速运动,图中所标出质点在各点处的加速度方向正确的是()A.M点B.N点C.P点D.Q点【答案】C【解析】根据轨迹弯曲的方向,可以判定质点加速度的方向大体向上;故N、Q一定错误,而在M→N过程质点做减速运动,故加速度与速度夹角应大于90°;N→B质点做加速运动,加速度与速度方向的夹角应小于90°;故只有P点标得正确;故A、B、D错误,C正确.12.一个物体在光滑水平面上以初速度v0做曲线运动,已知在此过程中物体只受一个恒力F作用,运动轨迹如图所示.则由M到N的过程中,物体的速度大小将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大【答案】D【解析】判断做曲线运动的物体速度大小的变化情况时,应从下列关系入手:当物体所受合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率增大;当物体所受合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率减小;当物体所受合外力方向与速度方向的夹角始终为直角时,物体做曲线运动的速率不变.在本题中,合力F的方向与速度方向的夹角先为钝角,后为锐角,故D正确.13.小球在水平面上移动,每隔0.02秒记录小球的位置如图所示.每一段运动过程分别以甲、乙、丙、丁和戊标示.试分析,在哪段小球所受的合力为零()A.甲B.乙C.丙D.戊【答案】C【解析】小球所受的合力为零时,物体处于静止或匀速直线运动状态,根据题图可知,甲阶段的位移越来越小,所以做减速直线运动,合力不为零,故A错误;乙阶段做曲线运动,则合外力要改变速度,所以不为零,故B错误;丙阶段在相等时间内的位移相等,所以做匀速直线运动,则合外力为零,故C正确;戊阶段的位移越来越大,所以做加速运动,则戊阶段小球所受的合力不为零,故D错误.14.光滑水平面上有一质量为2 kg 的物体,在三个恒定的水平共点力的作用下处于平衡状态.现同时撤去大小分别为 5 N 和15 N 的两个水平力而其余力保持不变,关于此后物体的运动情况,下列说法正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.可能做匀减速直线运动,加速度大小可能是2 m/s2C.一定做匀变速运动,加速度大小可能是10 m/s2D.可能做匀速圆周运动,向心加速度大小可能是10 m/s2【答案】C【解析】根据平衡条件得知,余下力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为5 N和15 N的两个力后,物体的合力大小范围为10 N≤F合≤20 N,根据牛顿第二定律F=ma,得物体的加速度范围为5 m/s2≤a≤10 m/s2;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上时,物体可以做曲线运动,加速度大小可能是5 m/s2,故A错误;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,则撤去两个力后物体做匀减速直线运动,由上知加速度大小不可能是2 m/s2,故B错误;由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动.加速度大小可能等于10 m/s2,故C正确;由于撤去两个力后其余力保持不变,恒力作用下不可能做匀速圆周运动,故D错误.15.如图所示,曲线AB为一质点的运动轨迹,某人在曲线上P点作出质点在经过该处时其受力的8个可能方向,正确的是()A.8个方向都可能B.只有方向1、2、3、4、5可能C.只有方向2、3、4可能D.只有方向1、3可能【答案】C【解析】当合力的方向与速度方向不在同一条直线上时,物体做曲线运动.曲线运动轨迹夹在合力与速度方向之间,合力指向轨迹凹的一侧.根据该特点知,只有方向2、3、4可能.5.2 运动的合成与分解A组·基础达标1.关于合运动与分运动,下列说法正确的是()A.合运动的速度等于两个分运动的速度之和B.合运动的时间一定等于分运动的时间C.两个直线运动的合运动一定是直线运动D.合运动的速度方向一定与其中某一分速度方向相同【答案】B【解析】根据平行四边形定则可知,合运动的速度可能比分运动的速度大,可能比分运动的速度小,可能与分运动的速度相等,故A错误;合运动与分运动具有等时性,故B正确;两个直线运动的合运动不一定是直线运动,故C错误;合运动的速度方向可以与某一分运动的速度方向相同,也可能不同,故D错误.2.跳伞表演是人们普遍喜欢的观赏性体育项目,当运动员从直升机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是() A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关【答案】B【解析】运动员同时参与了两个分运动,竖直方向向下落和水平方向被风吹动,两个分运动同时发生,相互独立;因而,水平风速越大,落地的合速度越大,会对运动员造成伤害,但落地时间不变;风力越大,运动员下落时间不变,A错误;风力越大,运动员着地速度越大,有可能对运动员造成伤害,B正确;运动员着地速度与风力有关,C、D错误.3.双人滑运动员在光滑的水平冰面上做表演,甲运动员给乙运动员一个水平恒力F ,乙运动员在冰面上完成了一段优美的弧线MN .v M 与v N 正好成90°角,则此过程中,乙运动员受到甲运动员的恒力可能是图中的( )A .F 1B .F 2C .F 3D .F 4【答案】C 【解析】根据图示物体由M 向N 做曲线运动,物体向上的速度减小,同时向右的速度增大,故合外力的方向指向图F 2水平线下方,故F 3的方向可能是正确的,C 正确,A 、B 、D 错误.4.如图所示,汽车在岸上用轻绳拉船,若汽车行进速度为v ,拉船的绳与水平方向夹角为π6,则船速度为( )A.33vB.3vC.233vD.32v【答案】C【解析】将小船的速度沿着平行绳子和垂直绳子方向正交分解,如图所示,平行绳子的分速度等于与拉绳子的速度,可得v =v ′cos θ,代入数据,得v ′=v cos 30°=233v ,故C 正确,A 、B 、D 错误.5.人们在探究平抛运动规律时,将平抛运动分解为沿水平方向的运动和沿竖直方向的运动.从抛出开始计时,图甲(水平方向)和图乙(竖直方向)分别为某一平抛运动两个分运动的速度与时间关系的图像,由图像可知这个平抛运动在竖直方向的位移y 0与在水平方向的位移x 0的大小关系为( )A .y 0=x 0B .y 0=2x 0C .y 0=x 02D .y 0=x 04【答案】C【解析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,在t 0时间内水平位移x =v 0t 0,竖直位移y =12v 0t 0,则y 0=12x 0,故C 正确.6.(多选)如图所示,某同学在研究运动的合成时做了下述活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时,用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是( )A .笔尖做匀速直线运动B .笔尖做匀变速直线运动C .笔尖做匀变速曲线运动D .笔尖的速度方向与水平方向夹角逐渐变小【答案】CD【解析】笔尖同时参与了直尺竖直向上匀速运动和水平向右初速度为零的匀加速运动,合运动为匀变速曲线运动,所以A 、B 错误,C 正确;由于水平速度增大,所以合速度的方向与水平方向夹角逐渐变小,故D 正确.7.(多选)在河面上方12 m 的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3 m/s拉绳,使小船靠岸,那么()A.小船靠岸过程做加速运动B.3 s时小船前进了9 mC.3 s时绳与水面的夹角为37°D.3 s时小船的速率为5 m/s【答案】AD【解析】将船的速度分解为沿细绳方向的速度和垂直于细绳方向的速度,则v船=vcos θ,随θ角的增加,船速变大,即小船靠岸过程做加速运动,A正确;由几何关系可知,开始时河面上的绳长为L1=24 m,此时船离岸的距离x1=L1cos 30°=24×32m=12 3 m,3 s后,绳子向左移动了s=v t=3 m×3=9 m,则河面上绳长为L2=(24-9) m=15 m,则此时小船离河边的距离x2=L22-h2=152-122m =9 m,小船前进的距离x=x1-x2=(123-9) m,绳与水面的夹角为α,则有sin α=hL2=1215=0.8,绳与水面的夹角为53°,故B、C错误;3 s时小船的速率为v船=vcos 53°=30.6m/s=5 m/s,故D正确.8.如图所示是某品牌的电动车,当这种电动车在平直公路上行驶时,车前照灯的光束跟平直的道路吻合.当该车转弯时,其前、后车轮在地面上留下了不同的曲线轨迹,则此时照明灯光束的指向跟下列哪条轨迹相切()A.后轮的轨迹B.前轮的轨迹C.在车前、后轮连线中点的运动轨迹D.条件不够,无法确定【答案】B【解析】因为电动车的车灯固定在车头上,随前轮一起转动,所以照明灯光束的指向与前轮在地面上留下的曲线轨迹相切,故B正确.9.一辆汽车在凹凸不平的地面上行驶,其运动轨迹如图所示,它先后经过A、B、C、D四点,速度分别是v A、v B、v C、v D , 请在图中标出各点的速度方向.【答案】见解析【解析】做曲线运动的汽车,其速度方向沿轨迹的切线方向.依次作出A、B、C、D各点运动的速度方向如图.B组·能力提升10.(2020届江苏百校联考)无人机在空中拍摄运动会入场式表演.无人机起飞上升并向前追踪拍摄,飞行过程的水平方向速度v x和竖直向上的速度v y与飞行时间t的关系图线如图所示.下列说法正确的是()A.无人机在0~t1内沿直线飞行B.无人机在t1~t2内沿直线飞行C.无人机在t1时刻上升至最高点D.无人机在0~t1内处于失重状态【答案】A【解析】由题图可知,t=0时的初速度为0,0~t1时间内水平方向和竖直方向加速度恒定,即合加速度恒定,做匀加速运动,初速度为0的匀加速运动一定是直线运动,A正确;0~t1时间内沿直线飞行,t1时刻速度方向与合加速度方向一致,t1时刻之后,水平方向加速度变为0,合加速度方向为竖直方向,与此时速度方向不共线,所以做曲线运动,B错误;t1时刻之后,竖直速度依然向上,还在上升,直到t2时刻,竖直速度减为0,到达最高点,C错误;0~t1时间内竖直加速度向上,超重状态,D错误.11.如图所示,水平面上的小车向左运动,系在车后缘的轻绳绕过定滑轮,拉着质量为m的物体上升.若小车以v1的速度匀速直线运动,当车后的绳与水平方向的夹角为θ时,物体的速度为v2,绳对物体的拉力为T,则下列关系式正确的是()A.v2=v1B.v2=v1 cos θC.T=mg D.T>mg【答案】D【解析】小车的运动可分解为沿绳方向和垂直于绳的方向两个运动,由几何关系可得v2=v1cos θ,因v1不变,而当θ逐渐变小,故v2逐渐变大,物体有向上的加速度,当加速上升时,处于超重状态,T>mg,故D正确.12.如图所示,长为L的直杆一端可绕固定轴O无摩擦转动,另一端靠在以水平速度v匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A的线速度为()A.vsin θB.v sin θC.vcos θD.v cos θ【答案】C【解析】如图将A点的速度分解,根据运动的合成与分解可知,接触点A的实际运动、即合运动为在A点垂直于杆的方向的运动,该运动由水平向左的分运动和竖直向下的分速度组成,所以v A=vcos θ,为A点做圆周运动的线速度.故选C.13.光滑水平面上有一质量为2 kg的滑块以5 m/s的速度向东运动,当受到一个向南大小为8 N 的力以后,则( )A .物块改向东南方向做直线运动B .1 s 以后物块的位移为29 mC .经过很长时间物块的运动方向就会向南D .2 s 后物块的运动方向为南偏东37°【答案】B【解析】物体在向东的方向做匀速直线运动,向南做匀加速运动,合运动为曲线运动,A 错误;向南的加速度为a =F m =82 m/s 2=4 m/s 2,1 s 以后向东的位移x 1=v 0t =5 m ,向南的位移x 2=12at 2=12×4×12m =2 m ,则总位移x =x 21+x 22=29 m ,B 正确;无论经过多长时间,物体沿正东方向总有分速度,即物块的运动方向不可能向南,C 错误;2 s 后物块沿向南方向的分速度v 2=at 2=8 m/s 2,则tan θ=v 0v 2=58,则运动方向为南偏东的角度θ≠37°,D 错误.14.一快艇要从岸边某一不确定位置处到达河中离岸边100 m 远的一浮标处,已知快艇在静水中的速度v x 图像和水流的速度v y 图像分别如图甲、乙所示,则下列说法中正确的是( )A .快艇的运动轨迹为直线B .船头如果垂直于河岸,则快艇应从上游60 m 处出发C .最短到达浮标处时间为10 sD .快艇的船头方向应该斜向上游【答案】B【解析】两个分运动一个做匀加速直线运动,一个做匀速直线运动,合加速度的方向与合速度的方向不在同一条直线上,合运动为曲线运动,故A 错误;船速垂直于河岸时,时间最短,在垂直于河岸方向上的加速度为a =0.5 m/s 2,由d =12at 2,得t =20 s .在沿河岸方向上的位移为x =v 2t =3×20 m =60 m .故B 正确,C 、D 错误.15.有一小船正在渡河,如图所示,在离对岸30 m 时,其下游40 m 处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,那么,小船从现在起相对于静水的最小速度应是多大?【答案】3 m/s【解析】当小船到达危险水域前,恰好到达对岸,其合速度方向沿AC方向,合位移方向与河岸的夹角为α,小船相对于静水的速度为v1,水流速度v2=5 m/s,如图所示.此时小船平行河岸方向位移x=40 m,垂直河岸方向位移y=30 m,则小船相距对岸的位移s=50 m,sin α=35.为使船速最小,应使v1与v垂直,则v1=v2sin α=5×35m/s=3 m/s.5.3实验:探究平抛运动的特点A组·基础达标1.(多选)如图所示为一小球做平抛运动的闪光照片的一部分,图中方格的边长为10 cm,若小球在平抛运动途中的几个位置如图中的a、b、c、d所示,如果g 取10 m/s2,那么()A .闪光的时间间隔是0.1 sB .小球运动的水平分速度为2.0 m/sC .小球经过b 点速度的大小为2.5 m/sD .小球是从O 点开始水平抛出的【答案】ABC【解析】在竖直方向上,根据Δy =L =gT 2得,闪光的时间间隔T =L g =0.110s =0.1 s ,A 正确;小球的水平分速度v x =2L T =2×0.10.1 m/s =2 m/s ,B 正确;小球经过b 点的竖直分速度v by =3L 2T =0.30.2 m/s =1.5 m/s ,根据速度的平行四边形定则可知,b 点的速度v b =v 2by +v 2x = 1.52+22 m/s =2.5 m/s ,C 正确;根据v by =1.5 m/s =gt b ,可推出抛出点到b 点的运动时间为t b =0.15 s ,而O 到b 的时间为0.2 s ,可知O 点不是抛出点,D 错误.2.未来在一个未知星球上用如图甲所示装置研究平抛运动的规律.悬点O 正下方P 点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动, 现对小球采用频闪数码相机连续拍摄,在有坐标纸的背景屏前拍下了小球在做平抛运动过程中的多张照片,经合成后照片如图乙所示,a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:(1)由以上信息,可知a 点________(填“是”或“不是”)小球的抛出点.(2)由以上信息,可以推算出该星球表面的重力加速度为__________m/s 2.(3)由以上信息可以算出小球平抛的初速度大小是________m/s.(4)由以上信息可以算出小球在b 点时的速度大小是________m/s.【答案】(1)是 (2)8 (3)0.8 (4)425【解析】(1)因为竖直方向上相等时间内的位移之比为1∶3∶5,符合初速度为零的匀变速直线运动特点,因此可知a 点的竖直分速度为零,a 点为小球的抛出点.(2)由照片的长度与实际背景屏的长度之比为1∶4,可得乙图中正方形的边长l =4 cm ,竖直方向上有Δy =2L =g ′T 2,解得g ′=2L T 2=2×4×10-20.12 m/s 2=8 m/s 2. (3)水平方向小球做匀速直线运动,因此小球平抛运动的初速度为v 0=2L T =2×4×10-20.1 m/s =0.8 m/s. (4)b 点竖直方向上的分速度v yb =4L 2T =0.160.2 m/s =0.8 m/s ,所以v b =v 20+v 2yb =0.8 2 m/s =425 m/s.3.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛____________.(2)图乙是正确实验取得的数据,其中O 为抛出点,则此小球做平抛运动的初速度为________m/s(g 取9.8 m/s 2).(3)在另一次实验中将白纸换成方格纸,每个格子的边长L =5 cm ,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为________m/s ,B 点的竖直分速度为________m/s.(g 取10 m/s 2)【答案】(1)水平 初速度相同 (2)1.6 (3)1.5 2.0【解析】(1)实验前应对实验装置反复调节,直到斜槽末端切线水平,目的是保证小球的初速度水平,从而做平抛运动,每次让小球从同一位置由静止释放,是为了每次平抛初速度相同,从而保证画出的为一条抛物线轨迹.(2)根据y =12gt 2,得t =2yg =2×0.1969.8 s =0.2 s ,则小球平抛运动的初速度为v 0=x t =0.320.2 m/s =1.6 m/s.(3)在竖直方向上,根据Δy =2L =gT 2,则T =0.1 s.则小球平抛运动的初速度为v 0=3L T =1.5 m/s ,B 点的竖直分速度为v yB =h AC 2T =2.0 m/s.4.(1)在做“研究平抛运动”的实验中,以下哪些操作可能引起实验误差( )A .安装斜槽时,斜槽末端切线方向不水平B .确定OY 轴时,没有用重垂线C .斜槽不是绝对光滑的,有一定摩擦D .每次从轨道同一位置释放小球(2)如图所示为某次实验中一小球做平抛运动的闪光照相照片的一部分,图中背景方格的边长均为5 cm.如果g 取10 m/s 2,那么:①闪光频率是 ______Hz.②小球平抛时的初速度的大小是________m/s.③小球经过B 点的速度大小是__________m/s.【答案】(1)AB (2)10 1.5 2.5【解析】(1)当斜槽末端切线没有调整水平时,小球脱离槽口后并非做平抛运动,但在实验中,仍按平抛运动分析处理数据,会造成较大误差,故斜槽末端切线方向不水平会造成误差;确定Oy 轴时,没有用重锤线,就不能调节斜槽末端切线水平,会引起实验误差,故A 、B 会引起误差,只要让小球从同一高度、无初速度开始运动,在相同的情形下,即使球与槽之间存在摩擦力,仍能保证球做平抛运动的初速度相同,因此,斜槽轨道不必要光滑,所以不会引起实验误差.每次从轨道同一位置释放小球不会引起实验误差,故C 、D 不会引起误差.(2)在竖直方向上有Δh =gT 2,其中Δh =10 cm ,代入求得T =0.1 s ,因此闪光频率为f =1T =10 Hz.水平方向匀速运动,有s =v 0t ,其中s =3l =15 cm ,t =T =0.1 s ,代入解得v 0=1.5 m/s.根据匀变速直线运动中,时间中点的瞬时速度等于该过程。
期末学业水平检测注意事项1.本试卷满分100分,考试用时90分钟。
2.考试范围:第五章~第八章。
3.无特殊说明,本试卷中g取10 m/s2。
一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.(2020安徽淮南第一中学高一下期末)公路转弯处外侧的李先生家门口,连续发生了多起车辆侧翻事故。
经交警调查,画出的现场示意图如图所示。
为了避免车辆侧翻事故再次发生,很多人提出了建议,下列建议中合理的是( )①提醒司机不要超速转弯②提醒司机以更小半径转弯③增大车轮与路面间的粗糙程度④使弯道路面内侧低外侧高A.①②③B.①③④C.②③④D.②③2.(2020广东佛山高一下期末)质量为m的物体由静止开始下落,由于阻力作用,下落的加速度为4g。
在物体下落h的过程中,下列说法错误的是( )5mghA.物体的动能增加了45mghB.物体的机械能减少了45mghC.物体克服阻力所做的功为15D.物体的重力势能减少了mgh3.(2020陕西延安实验中学高一下期末)如图所示,光滑竖直杆固定,杆上套一质量为m的环,环与轻弹簧一端相连,弹簧的另一端固定在O点,O点与B点在同一水平线上,BC>AB,AC=h。
环从A处由静止释放,运动到B点时弹簧仍处于伸长状态,整个运动过程中弹簧始终处于弹性限度内。
重力加速度为g,环从A处开始运动时的加速度大小为2g,则在环向下运动的过程中( )A.环在B处的加速度大小为0B.环在C处的速度大小为√2gℎC.环从B到C先加速后减速D.环的动能和弹簧的弹性势能的和先增大后减小4.(2020浙江嘉兴高一下期末)某踢出的足球在空中运动的轨迹如图所示,足球可视为质点,空气阻力不计。
用v y、E、E k、P分别表示足球的竖直分速度大小、机械能、动能、重力的瞬时功率大小,用t表示足球在空中运动的时间,下列图像中可能正确的是( )5.(2020湖北武汉三中高一下期末)课间休息时间,北城中学的两名同学正在操场做游戏。
(28份)新人教版必修2(全册)高中物理同步练习课堂检测题汇总附答案课时作业(一)曲线运动一、单项选择题1.如图,一物体沿曲线由a点运动到b点,关于物体在ab段的运动,下列说法正确的是( )A.物体的速度可能不变B.物体的速度不可能均匀变化C.a点的速度方向由a指向bD.ab段的位移大小一定小于路程解析:做曲线运动的物体速度方向时刻改变,即使速度大小不变,速度也改变,A错误;当物体的加速度恒定时,物体的速度均匀变化,B错误;a点的速度方向沿a点的切线方向,C错误;做曲线运动的位移大小一定小于路程,D正确.答案:D2.质点在一平面内沿曲线由P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,则下图所示的可能正确的是( )解析:速度方向总是沿运动轨迹的切线方向,A不正确.物体受力的方向总是指向轨迹的弯曲方向,加速度的方向也是指向轨迹的弯曲方向,B、C不正确,D正确.答案:D3.如图所示,撑开的带有水滴的伞绕着伞柄在竖直面内旋转,伞面上的水滴随伞做曲线运动.若有水滴从伞面边缘最高处O飞出,则飞出伞面后的水滴可能( ) A.沿曲线Oa运动B.沿直线Ob运动C.沿曲线Oc运动D.沿圆弧Od运动解析:雨滴在最高处离开伞边缘,沿切线方向飞出,由于受重力作用,雨滴的轨迹向下偏转.故选项C正确.答案:C4.小钢球以初速度v0在光滑水平面上运动,受到磁铁的侧向作用而沿如图所示的曲线运动到D点,由此可知( )A.磁铁在A处,靠近小钢球的一定是N极B.磁铁在B处,靠近小钢球的一定是S极C.磁铁在C处,靠近小钢球的一定是N极D.磁铁在B处,靠近小钢球的可以是磁铁的任意一端解析:由小钢球的运动轨迹知小钢球受力方向指向凹侧,即磁铁应在其凹侧,即B位置,磁铁的两极都可以吸引钢球,因此不能判断磁铁的极性.故D正确.答案:D如图所示,一物体在O点以初速度.如图所示,跳伞员在降落伞打开一段时间以后,在空中做匀速运动.若跳伞员在无风4.0 m/s.当有正东方向吹来的风,风速大小是.如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在)45°角,向右上方如图所示,橡皮同时参与了水平向右速度大小为和v y恒定,所以v合恒定,则橡皮运动的速度大小和方向v2x+v2y=v2+v2=合=由图乙知,物体在y方向的加速度a=0.5 m/s2,由牛顿第二定律得,物体受到的合力方向的初速度为0,故物体的初速度v0=v x=3 m/s.的时间.点时速度的大小.课时作业(二)平抛运动一、单项选择题1.关于平抛运动,下列说法正确的是( )A.平抛运动是匀速运动B.平抛运动是匀变速曲线运动C.平抛运动是非匀变速运动要依据平抛运动在竖直方向上的分速度v y的大小及方向随时间的变化规律,结合图象的特点进行分析,作出推断.平抛运动的竖直分运动是自由落体运动,竖直分速度v随时间变化的图线应是过原点的一条倾斜直线,选项MN的左侧某点沿水平方向,则所有抛出的小球在碰到墙壁前瞬间,其速度的反向延长线.任意连续相等的时间内,做平抛运动的物体下落的高度之比为.任意连续相等的时间内,做平抛运动的物体运动速度的改变量相等越小,选项A错误;物体135……,.某人向放在水平地面的正前方小桶中水平抛球,结果球划着一条弧线飞到小桶的右侧如下图所示,在距地面高度一定的空中,一架战斗机由东向西沿水平方向匀速飞行,发后,开始瞄准并投掷炸弹,炸弹恰好击中目标的斜面上的某点先后将同一小球以不同初速度水平抛出,小球均时,小球到达斜面时的速度方向与斜面的夹角为tanφ,φ=θ+α1=α2,故A、B错误,如图所示,一质点做平抛运动先后经过A、B两点,到达点时速度方向与水平方向的夹角为60°.位置的竖直分速度大小之比.答案:如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为刚好沿斜面下滑,已知平台到斜面顶端的高度为h=0.8 m,取课时作业(三)圆周运动.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,.甲、乙两物体分别做匀速圆周运动,如果它们转动的半径之比为:5为:2A.甲、乙两物体的角速度之比是:15B.甲、乙两物体的角速度之比是:.甲、乙两物体的周期之比是:15.甲、乙两物体的周期之比是:3甲甲v乙r乙=15;2πT,所以.如图所示,一位同学做飞镖游戏,已知圆盘的直径为水平抛出,在飞镖抛出的同时,圆盘以角速度A到B,再经T/4,质点由,所以相等时间内通过的路程相等,大小相等,方向并不相同,平均速度不同,A、C错.由角速度的定义以一定的角速度转动,下列说法中正确的是3:13:1同一圆周上各点的周期和角速度都是相同的,选项两点的线速度分别为v P:3:1.如图所示,一个匀速转动的半径为r 的水平圆盘上放着两个木块的地方,它们都随圆盘一起运动.比较两木块的线速度s A :s =:3A:φ=:2A .它们的半径之比r A ;r B =:3 B .它们的半径之比r A :r B =:9 T A :T =:3 f A :f =:3两个质点,在相同的时间内通过的路程之比为2:32:3v A :v 2:3;又相同的时间内转过的角度之比φA:φ3:2ω=ΔΔA :ω3:2r A :r ×ωB ω=23×4:9,选项正确.根据T =2πωT A :T B :ωA 2:3选项正确.又f A :f T B :T 3:2选项错.答案:BC 三、非选择题的半径是小轮答案:课时作业(四)向心加速度如图所示,在风力发电机的叶片上有做匀速圆周运动的物体的加速度就是向心加速度,其方向指向圆心,选项2017·安阳高一检测)自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分.大齿轮边缘点比小齿轮边缘点的线速度大.后轮边缘点比小齿轮边缘点的角速度大.大齿轮边缘点与小齿轮边缘点的向心加速度之比等于它们半径的反比两点的线速度之比v a:v=:两点的向心加速度之比a a:a b=3:2 球绕中心轴线转动,球上各点应具有相同的周期和角速度,即知v b>错,若.如图所示,皮带传动装置中,右边两轮连在一起共轴转动,图中三轮半径分别为三点为三个轮边缘上的点,皮带不打滑.向心加速度分别为.飞行员从俯冲状态往上拉时,会发生黑视,第一是因为血压降低,导致视网膜缺血;第二是因为脑缺血.飞行员要适应这种情况,必须进行严格的训练,故飞行员的选拔是非常严格的.为了使飞行员适应飞行要求,要用如图所示的仪器对飞行员进行训练,飞行员坐在一个在竖直平面内做匀速圆周运动的舱内边缘,要使飞行员的加速度课时作业(五)向心力.如图所示,小物块从半球形碗边的a点下滑到b.如图所示,在光滑杆上穿着两个小球m1、m2,且m1=匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离.:1 .:.:1 D.:2解析:两个小球绕共同的圆心做圆周运动,两球所需的向心力大小为Fr1:r1:2..如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度增大以后,物体仍然随圆筒一起匀速转动而未滑动,则下列说法正确的是.物体所受弹力增大,摩擦力也增大了物体随圆筒一起匀速转动时,受到三个力的作用:重力,劲度系数为360 N/m 的小球,当小球以360π.上海磁悬浮线路的最大转弯处半径达到8 000 m1 300 m,一个质量为2 500 m的弯道,下列说法正确的是200 N两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的有( )如图所示,一根长为L=2.5 m0.6 kg的光滑小圆环为圆心在水平面上做匀速圆周运动,圆环在水平面内做匀速圆周运动,由于圆环光滑,所以圆环两端绳的拉力大小相等.=BC,则有r+r cosθ课时作业(六)生活中的圆周运动一、单项选择题1.如图所示,光滑的水平面上,小球m在拉力F作用下做匀速圆周运动,若小球到达P 点时F突然发生变化,下列关于小球运动的说法正确的是( )的大小均与汽车速率无关gRh时,小球对底面的压力为零.火车所需向心力沿水平方向指向弯道内侧.弯道半径越大,火车所需向心力越大.火车的速度若小于规定速度,火车将做离心运动火车转弯做匀速圆周运动,合力指向圆心,受力分析如图θ.因而,m、v一定时,规定速度,火车将做向心运动,对内轨挤压;当m、r一定时,若要增大.在汽车越野赛中,一个土堆可视作半径R=10 m的圆弧,左侧连接水平路面,右侧37°斜坡连接.某车手驾车从左侧驶上土堆,经过土堆顶部时恰能离开,赛第五章曲线运动倍线上方管道中运动时,内侧管壁对小球一定有作用力线上方管道中运动时,外侧管壁对小球一定有作用力线下方管道中运动时,内侧管壁对小球一定有作用力如图所示,用一小车通过轻绳提升一货物,某一时刻,两段绳恰好垂直,且拴在小车一端的绳与水平方向的夹角为.绳索中拉力可能倾斜向上.伤员先处于超重状态后处于失重状态.在地面上观察到伤员的运动轨迹是一条倾斜向上的直线钢球静止不动时,传感器的示数F0=2 N,则钢球的质量给钢球一初速度,使钢球在竖直面内做圆周运动,某同学记录了钢球运动到最低点时,则钢球在最低点的速度v1=________ m/sv与v的大小关系是水平管口单位时间内喷出水的质量.如图所示,如果在圆盘圆心处通过一个光滑小孔把质量均为,与圆盘的动摩擦因数为-μg.所受的静摩擦力最大且指向圆心,即有+μgR.的取值范围为 -μgR≤1+μgR.1 -μgR≤1+μgR课时作业(七) 行星的运动一、单项选择题1.下列说法中正确的是( )A .地球是宇宙的中心,太阳、月亮和其他行星都绕地球运动B .太阳是静止不动的,地球和其他行星绕太阳运动C .地球是绕太阳运动的一颗行星D .日心说和地心说都正确反映了天体运动规律解析:宇宙中任何天体都是运动的,地心说和日心说都有局限性,只有C 正确. 答案:C2.提出行星运动规律的天文学家为( )A .第谷B .哥白尼为绕地球沿椭圆轨道运行的卫星,椭圆的半长轴为为绕地球沿圆周运动的卫星,圆周的半径为r,运行周期为的圆周绕地球运动的周期为处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭点相切,求飞船由A点到·T=+R0 4R答案:+R04R课时作业(八)太阳与行星间的引力一、单项选择题1.如果认为行星围绕太阳做匀速圆周运动,那么下列说法正确的是( ) A.行星受到太阳的引力,引力提供行星做圆周运动的向心力B.行星受到太阳的引力,行星运动不需要向心力.我国发射的神舟飞船,进入预定轨道后绕地球做椭圆轨道运动,地球位于椭圆的一个点运动到远地点B的过程中,下列说法正确的是课时作业(九)万有引力定律一、单项选择题1.重力是由万有引力产生的,以下说法中正确的是( )A.同一物体在地球上任何地方其重力都一样B.物体从地球表面移到高空中,其重力变大C.同一物体在赤道上的重力比在两极处小些D.绕地球做圆周运动的飞船中的物体处于失重状态,不受地球的引力解析:由于地球自转同一物体在不同纬度受到的重力不同,在赤道最小,两极最大,C正确.答案:C2.关于万有引力定律和引力常量的发现,下面说法中正确的是( )A.万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的B.万有引力定律是由开普勒发现的,而引力常量是由卡文迪许测定的C.万有引力定律是由牛顿发现的,而引力常量是由胡克测定的G Mm +2,,即R +2=做圆周运动的向心力大小相等 做圆周运动的角速度大小相等.地球对一颗卫星的引力大小为GMm -2.一颗卫星对地球的引力大小为GMm r22+T22+3T2R2其中r为匀速圆周运动的轨道半径,2+T2,故G+2=,根据万有引力等于重力得重力加速度2+3T2R2,故答案:BD课时作业(十)万有引力理论的成就g 0-g GT 2g B.g GT 2g 0-gD.3πGT Mm =g 0-g T 242,则GT 2g 0-g ,B.如图所示为中国月球探测工程的标志,它以中国书法的笔触,勾勒出一轮明月和一课时作业(十一)宇宙航行均绕地球做匀速圆周运动,).“悟空”卫星的线速度比同步卫星的线速度小.“悟空”卫星的角速度比同步卫星的角速度小.“悟空”卫星的运行周期比同步卫星的运行周期小。
第八章机械能守恒定律注意事项1.本试卷满分100分,考试用时90分钟。
2.无特殊说明,本试卷中g取10 m/s2。
一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.(2020山东潍坊高一下期中)关于功和功率的计算,下列说法中正确的是( )A.用W=Fx cos θ可以计算变力做功B.用W合=E k2-E k1可以计算变力做功C.用W=Pt只能计算恒力做功D.用P=W可以计算瞬时功率t2.(2020辽宁六校协作体高一下期中)如图甲为一女士站立在台阶式自动扶梯上正在匀速上楼,如图乙为一男士站立在履带式自动人行道上正在匀速上楼。
下列关于两人受到的力做功判断正确的是( )A.甲图中支持力对人做正功B.乙图中支持力对人做正功C.甲图中摩擦力对人做负功D.乙图中摩擦力对人做负功3.(2020广西南宁三中高一下期中)质量为m的汽车在平直路面上启动,启动过程的速度图像如图所示,OA段为直线,从t1时刻起汽车保持额定功率不变,整个运动过程中汽车所受阻力恒为f,则( )A.0~t1时间内,汽车的牵引力等于m v1t1B.t1~t2时间内,汽车做匀加速运动C.t1~t2时间内,汽车的功率等于fv1D.t1~t2时间内,汽车的功率等于fv24.(2020山东淄川中学高一下期末)如图所示,某喷泉喷出的水柱高度为5 m,喷管的半径为4 cm。
若水的密度为1×103 kg/m3,则用于喷水的电动机输出功率至少为( )A.100π WB.200π WC.400π WD.800π W5.(2020浙江嘉兴三校高一下检测)弹簧发生弹性形变时,其弹性势能的表达式为E p=12kx2,其中k是弹簧的劲度系数,x是形变量。
如图所示,一质量为m的物体位于一直立的轻弹簧上方h高度处,该物体从静止开始落向弹簧。
人教版(2019)物理必修第二册同步练习8.3动能和动能定理一、单选题1.下列对功和动能等关系的理解正确的是( )A.所有外力做功的代数和为负值,物体的动能就减少B.物体的动能保持不变,则该物体所受合外力一定为零C.如果一个物体所受的合外力不为零,则合外力对物体必做功,物体的动能一定要变化D.只要物体克服阻力做功,它的动能就减少2.一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。
取2,g m s10/关于力对小孩做的功,以下结果正确的是( )A.支持力做功50JB.阻力做功500JC.重力做功500JD.合外力做功50J3.质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用,设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A. 14mgR B.13mgR C.12mgR D. mgR4.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做负功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功二、多选题5.一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2 N的水平外力作用,第2 s内受到同方向的1 N的外力作用。
下列判断正确的是( )A.0~2 s内外力的平均功率是94WB.第2 s内外力所做的功是54JC.第2 s末外力的瞬时功率最大D.第1 s内与第2 s内质点动能增加量的比值是456.人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示。
则在此过程中( )A.物体所受的合外力做功为212mgh mv + B.物体所受的合外力做功为212mv C.人对物体做的功为mgh D.人对物体做的功大于mgh 三、计算题7.如图所示,质量10m kg =的物体放在水平地面上,物体与地面间的动摩擦因数0.4μ=,g 取102/? m s ,今用50F N =的水平恒力作用于物体上,使物体由静止开始做匀加速直线运动,经时间8t s =后,撤去F .求:1.力所做的功;2.8s 末物体的动能;3.物体从开始运动到最终静止的过程中克服摩擦力所做的功.8.如图所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小物块(可看做质点)以初速度06v gR,从A点开始向右运动,并进入半圆形轨道,若小物块恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A点,重力加速度为g,求:1.小物块落到水平轨道上的A点时速度的大小v A;2.水平轨道与小物块间的动摩擦因数μ。
最新⼈教版⾼中物理必修⼆测试题及答案全套最新⼈教版⾼中物理必修⼆测试题及答案全套章末检测试卷(⼀)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题4分,共48分)1.关于平抛运动和圆周运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.匀速圆周运动是速度不变的运动C.圆周运动是匀变速曲线运动D.做平抛运动的物体落地时的速度⼀定是竖直向下的答案A解析平抛运动的加速度恒定,所以平抛运动是匀变速曲线运动,A正确;平抛运动⽔平⽅向做匀速直线运动,所以落地时速度⼀定有⽔平分量,不可能竖直向下,D错误;匀速圆周运动的速度⽅向时刻变化,B错误;匀速圆周运动的加速度始终指向圆⼼,也就是⽅向时刻变化,所以不是匀变速运动,C错误.【考点】平抛运动和圆周运动的理解【题点】平抛运动和圆周运动的性质2.如图1所⽰为某中国运动员在短道速滑⽐赛中勇夺⾦牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑⾏,则她()图1A.所受的合⼒为零,做匀速运动B.所受的合⼒恒定,做匀加速运动C.所受的合⼒恒定,做变加速运动D.所受的合⼒变化,做变加速运动答案D解析运动员做匀速圆周运动,由于合⼒时刻指向圆⼼,其⽅向变化,所以是变加速运动,D正确.【考点】对匀速圆周运动的理解【题点】对匀速圆周运动的理解3.各种⼤型的货运站中少不了旋臂式起重机,如图2所⽰,该起重机的旋臂保持不动,可沿旋臂“⾏⾛”的天车有两个功能,⼀是吊着货物沿竖直⽅向运动,⼆是吊着货物沿旋臂⽔平⽅向运动.现天车吊着货物正在沿⽔平⽅向向右匀速⾏驶,同时⼜使货物沿竖直⽅向向上做匀减速运动.此时,我们站在地⾯上观察到货物运动的轨迹可能是下图中的()图2答案D解析由于货物在⽔平⽅向做匀速运动,在竖直⽅向做匀减速运动,故货物所受的合外⼒竖直向下,由曲线运动的特点(所受的合外⼒要指向轨迹凹侧)可知,对应的运动轨迹可能为D.【考点】运动的合成和分解【题点】速度的合成和分解4.⼀物体在光滑的⽔平桌⾯上运动,在相互垂直的x⽅向和y⽅向上的分运动速度随时间变化的规律如图3所⽰.关于物体的运动,下列说法正确的是()图3A.物体做速度逐渐增⼤的曲线运动B.物体运动的加速度先减⼩后增⼤C.物体运动的初速度⼤⼩是50 m/sD.物体运动的初速度⼤⼩是10 m/s答案C解析由题图知,x⽅向的初速度沿x轴正⽅向,y⽅向的初速度沿y轴负⽅向,则合运动的初速度⽅向不在y轴⽅向上;x轴⽅向的分运动是匀速直线运动,加速度为零,y轴⽅向的分运动是匀变速直线运动,加速度沿y轴⽅向,所以合运动的加速度沿y轴⽅向,与合初速度⽅向不在同⼀直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减⼩后增⼤,故A错误.物体运动的加速度等于y⽅向的加速度,保持不变,故B错误;根据题图可知物体的初速度⼤⼩为:v0=v x02+v y02=302+402 m/s=50 m/s,故C正确,D错误.【考点】运动的合成和分解【题点】速度的合成和分解5.⼀圆盘可以绕其竖直轴在⽔平⾯内转动,圆盘半径为R,甲、⼄物体质量分别为M和m(M>m),它们与圆盘之间的最⼤静摩擦⼒均为正压⼒的µ倍,两物体⽤⼀根长为L(L图4A.µ(M-m)gmL B.µgLC.µ(M+m)gML D.µ(M+m)gmL答案D解析以最⼤⾓速度转动时,以M为研究对象,F=µMg,以m为研究对象F+µmg=mLω2,可得ω=µ(M+m)gmL,选项D正确.【考点】向⼼⼒公式的简单应⽤【题点】⽔平⾯内圆周运动的动⼒学问题6.如图5所⽰,斜⾯上a、b、c三点等距,⼩球从a点正上⽅O点抛出,做初速度为v0的平抛运动,恰落在b点.若⼩球初速度变为v,其落点位于c,则()图5A.v0B.v=2v0C.2v0D.v>3v0答案A解析如图所⽰,M点和b点在同⼀⽔平线上,M点在c点的正上⽅.根据平抛运动的规律,若v=2v0,则⼩球经过M 点.可知以初速度v 0【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤7.如图6所⽰,两个相同材料制成的靠摩擦传动的轮A 和轮B ⽔平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的⼩⽊块恰能相对静⽌,若将⼩⽊块放在B 轮上,欲使⽊块相对B 轮能静⽌,则⽊块距B 轮转轴的最⼤距离为( )图6A.r B 4B.r B3 C.r B 2 D.r B答案 C解析当主动轮匀速转动时,A 、B 两轮边缘上的线速度⼤⼩相等,由ω=v R 得ωA ωB =vr A v r B =r B r A =12.因A 、B材料相同,故⽊块与A 、B 间的动摩擦因数相同,由于⼩⽊块恰能在A 边缘上相对静⽌,则由静摩擦⼒提供的向⼼⼒达到最⼤值F fm ,得F fm =mωA 2r A ①设⽊块放在B 轮上恰能相对静⽌时距B 轮转轴的最⼤距离为r ,则向⼼⼒由最⼤静摩擦⼒提供,故F fm =mωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】⽔平⾯内的匀速圆周运动分析【题点】⽔平⾯内的匀速圆周运动分析8.质量分别为M 和m 的两个⼩球,分别⽤长2l 和l 的轻绳拴在同⼀转轴上,当转轴稳定转动时,拴质量为M 和m 的⼩球悬线与竖直⽅向夹⾓分别为α和β,如图7所⽰,则( )图7A.cos α=cos β2B.cos α=2cos βC.tan α=tan β2D.tan α=tan β答案 A解析对于球M ,受重⼒和绳⼦拉⼒作⽤,这两个⼒的合⼒提供向⼼⼒,如图所⽰.设它们转动的⾓速度是ω,由Mg tan α=M ·2l sin α·ω2,可得:cos α=g 2lω2.同理可得cos β=g lω2,则cos α=cos β2,所以选项A 正确.【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析9.西班⽛某⼩镇举⾏了西红柿狂欢节,其间若⼀名⼉童站在⾃家的平房顶上,向距离他L 处的对⾯的竖直⾼墙上投掷西红柿,第⼀次⽔平抛出的速度是v 0,第⼆次⽔平抛出的速度是2v 0,则⽐较前后两次被抛出的西红柿在碰到墙时,有(不计空⽓阻⼒)( ) A.运动时间之⽐是2∶1 B.下落的⾼度之⽐是2∶1 C.下落的⾼度之⽐是4∶1 D.运动的加速度之⽐是1∶1 答案 ACD解析由平抛运动的规律得t 1∶t 2=L v 0∶L 2v 0=2∶1,故选项A 正确.h 1∶h 2=(12gt 12)∶(12gt 22)=4∶1,选项B 错误,C 正确.由平抛运动的性质知,选项D 正确. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤10.m 为在⽔平传送带上被传送的⼩物体(可视为质点),A 为终端动⼒轮,如图8所⽰,已知动⼒轮半径为r ,传送带与轮间不会打滑,当m 可被⽔平抛出时( )图8A.传送带的最⼩速度为grB.传送带的最⼩速度为g rC.A 轮每秒的转数最少是12πg rD.A 轮每秒的转数最少是12πgr答案 AC解析物体恰好被⽔平抛出时,在动⼒轮最⾼点满⾜mg =m v 2r ,即速度最⼩为gr ,选项A 正确,B 错误;⼜因为v =2πrn ,可得n =12πgr,选项C 正确,D 错误. 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题11.有⼀种杂技表演叫“飞车⾛壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁⾼速⾏驶,做匀速圆周运动.如图9所⽰,图中虚线表⽰摩托车的⾏驶轨迹,轨迹离地⾯的⾼度为h ,下列说法中正确的是( )图9A.h 越⾼,摩托车对侧壁的压⼒将越⼤B.h 越⾼,摩托车做圆周运动的线速度将越⼤C.h 越⾼,摩托车做圆周运动的周期将越⼤D.h 越⾼,摩托车做圆周运动的向⼼⼒将越⼤答案 BC解析摩托车受⼒分析如图所⽰.由于F N =mgcos θ所以摩托车受到侧壁的⽀持⼒与⾼度⽆关,保持不变,摩托车对侧壁的压⼒也不变,A 错误;由F n =mg tan θ=m v 2r =mω2r =m 4π2T 2r 知h 变化时,向⼼⼒F n 不变,但⾼度升⾼,r 变⼤,所以线速度变⼤,⾓速度变⼩,周期变⼤,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析12.如图10所⽰,两个质量均为m的⼩⽊块a和b(均可视为质点)放在⽔平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,⽊块与圆盘的最⼤静摩擦⼒为⽊块所受重⼒的k倍,重⼒加速度⼤⼩为g.若圆盘从静⽌开始绕转轴缓慢地加速转动,⽤ω表⽰圆盘转动的⾓速度,下列说法正确的是(假设最⼤静摩擦⼒等于滑动摩擦⼒)()图10A.b⼀定⽐a先开始滑动B.a、b所受的摩擦⼒始终相等C.ω=kg2l是b开始滑动的临界⾓速度D.当ω=2kg3l时,a所受摩擦⼒的⼤⼩为kmg答案AC解析⼩⽊块a、b做圆周运动时,由静摩擦⼒提供向⼼⼒,即F f=mω2R.当⾓速度增加时,静摩擦⼒增⼤,当增⼤到最⼤静摩擦⼒时,发⽣相对滑动,对⽊块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对⽊块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb=kg2l,所以b先达到最⼤静摩擦⼒,选项A正确;两⽊块滑动前转动的⾓速度相同,则F f a=mω2l,F f b=mω2·2l,F f aB错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则F f a=mω2l=23kmg,选项D错误.【考点】⽔平⾯内的匀速圆周运动的动⼒学分析【题点】⽔平⾯内的匀速圆周运动的动⼒学分析⼆、实验题(本题共2⼩题,共12分)13.(4分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对⽀持⾯⼏乎没有压⼒,所以在这种环境中已经⽆法⽤天平称量物体的质量.假设某同学在这种环境中设计了如图11所⽰的装置(图中O为光滑⼩孔)来间接测量物体的质量:给待测物体⼀个初速度,使它在⽔平桌⾯上做匀速圆周运动.设航天器中具有基本测量⼯具.图11(1)实验时需要测量的物理量是__________________.(2)待测物体质量的表达式为m =________________.答案 (1)弹簧测⼒计⽰数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测⼒计的⽰数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R .【考点】对向⼼⼒的理解【题点】向⼼⼒实验探究14.(8分)未来在⼀个未知星球上⽤如图12甲所⽰装置研究平抛运动的规律.悬点O 正下⽅P 点处有⽔平放置的炽热电热丝,当悬线摆⾄电热丝处时能轻易被烧断,⼩球由于惯性向前飞出做平抛运动.现对⼩球采⽤频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了⼩球在做平抛运动过程中的多张照⽚,经合成后,照⽚如图⼄所⽰.a 、b 、c 、d 为连续四次拍下的⼩球位置,已知照相机连续拍照的时间间隔是0.10 s ,照⽚⼤⼩如图中坐标所⽰,⼜知该照⽚的长度与实际背景屏的长度之⽐为1∶4,则:图12(1)由以上信息,可知a 点________(选填“是”或“不是”)⼩球的抛出点. (2)由以上及图信息,可以推算出该星球表⾯的重⼒加速度为________m/s 2. (3)由以上及图信息可以算出⼩球平抛的初速度是________m/s. (4)由以上及图信息可以算出⼩球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)由初速度为零的匀加速直线运动连续相等时间内通过的位移之⽐为1∶3∶5可知,a 点为抛出点.(2)由ab 、bc 、cd ⽔平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直⽅向有Δh =gT 2,T =0.10 s ,可求出g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,⽔平距离为8 cm ,x =v x t ,得⽔平速度v x =0.8 m/s. (4)b 点竖直分速度为a 、c 间的竖直平均速度,则v yb =4×4×10-22×0.10 m/s =0.8 m/s ,所以v b =v x 2+v yb 2=425m/s.【考点】研究平抛运动的创新性实验【题点】研究平抛运动的创新性实验三、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 15.(8分)如图13所⽰,马戏团正在上演飞车节⽬.在竖直平⾯内有半径为R 的圆轨道,表演者骑着摩托车在圆轨道内做圆周运动.已知⼈和摩托车的总质量为m ,⼈以v 1=2gR 的速度过轨道最⾼点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压⼒⼤⼩相差多少?图13答案 6mg解析在B 点,F B +mg =m v 12R ,解得F B =mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F A ′=F A =7mg 所以在A 、B 两点车对轨道的压⼒⼤⼩相差F A ′-F B ′=6mg . 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题16.(10分)如图14所⽰,⼩球在外⼒作⽤下,由静⽌开始从A 点出发做匀加速直线运动,到B 点时撤去外⼒.然后,⼩球冲上竖直平⾯内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动通过最⾼点C ,到达最⾼点C 后抛出,最后落回到原来的出发点A 处.不计空⽓阻⼒,试求:(重⼒加速度为g )图14(1)⼩球运动到C 点时的速度⼤⼩; (2)A 、B 之间的距离. 答案 (1)gR (2)2R解析 (1)⼩球恰能通过最⾼点C ,说明此时半圆环对球⽆作⽤⼒,设此时⼩球的速度为v ,则mg =m v 2R所以v =gR(2)⼩球离开C 点后做平抛运动,设从C 点落到A 点⽤时为t ,则2R =12gt 2⼜因A 、B 之间的距离s =v t 所以s =gR ·4Rg=2R . 【考点】竖直⾯内的圆周运动分析【题点】竖直⾯内的“绳”模型17.(10分)如图15所⽰,在⽔平地⾯上固定⼀倾⾓θ=37°、表⾯光滑的斜⾯体,物体A 以v 1=6 m/s 的初速度沿斜⾯上滑,同时在物体A 的正上⽅,有⼀物体B 以某⼀初速度⽔平抛出.物体A 恰好可以上滑到最⾼点,此时物体A 恰好被物体B 击中.A 、B 均可看成质点(不计空⽓阻⼒,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求:图15(1)物体A 上滑到最⾼点所⽤的时间t ; (2)物体B 抛出时的初速度v 2的⼤⼩; (3)物体A 、B 间初始位置的⾼度差h . 答案 (1)1 s(2)2.4 m/s (3)6.8 m解析 (1)物体A 上滑过程中,由⽜顿第⼆定律得 mg sin θ=ma 代⼊数据得a =6 m/s 2设物体A 滑到最⾼点所⽤时间为t ,由运动学公式知0=v 1-at 解得t =1 s(2)物体B 平抛的⽔平位移x =12v 1t cos 37°=2.4 m物体B 平抛的初速度v 2=xt =2.4 m/s(3)物体A 、B 间初始位置的⾼度差 h =12v 1t sin 37°+12gt 2=6.8 m. 【考点】平抛运动中的两物体相遇问题【题点】平抛运动和竖直(或⽔平)运动的相遇问题18.(12分)如图16所⽰,⽔平放置的正⽅形光滑玻璃板abcd ,边长为L ,距地⾯的⾼度为H ,玻璃板正中间有⼀个光滑的⼩孔O ,⼀根细线穿过⼩孔,两端分别系着⼩球A 和⼩物块B ,当⼩球A 以速度v 在玻璃板上绕O 点做匀速圆周运动时,AO 间的距离为l .已知A 的质量为m A ,重⼒加速度为g ,不计空⽓阻⼒.图16(1)求⼩物块B 的质量m B ;(2)当⼩球速度⽅向平⾏于玻璃板ad 边时,剪断细线,则⼩球落地前瞬间的速度多⼤? (3)在(2)的情况下,若⼩球和⼩物块落地后均不再运动,则两者落地点间的距离为多少?答案 (1)m A v 2gl(2)v 2+2gH (3)L 24+l 2+2H v 2g+v L 2Hg解析 (1)以B 为研究对象,根据平衡条件有 F T =m B g以A 为研究对象,根据⽜顿第⼆定律有 F T =m A v 2l联⽴解得m B =m A v 2gl(2)剪断细线,A 沿轨迹切线⽅向飞出,脱离玻璃板后做平抛运动,竖直⽅向,有v y 2=2gH ,解得v y =2gH ,由平抛运动规律得落地前瞬间的速度v ′=v 2+v y 2=v 2+2gH(3)A 脱离玻璃板后做平抛运动,竖直⽅向:H =12gt 2⽔平⽅向:x =L2+v t两者落地的距离s =x 2+l 2= L 24+l 2+2H v 2g+v L 2Hg. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤章末检测试卷(⼆)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题5分,共60分)1.在物理学理论建⽴的过程中,有许多伟⼤的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是()A.卡⽂迪许通过实验⽐较准确地测出了引⼒常量的数值B.第⾕通过对天体运动的长期观察,发现了⾏星运动三定律C.开普勒发现了万有引⼒定律D.⽜顿提出了“⽇⼼说”答案A【考点】物理学史的理解【题点】物理学史的理解2.如图1所⽰,⽕星和地球都在围绕着太阳旋转,其运⾏轨道是椭圆.根据开普勒⾏星运动定律可知()图1A.⽕星绕太阳运⾏过程中,速率不变B.地球靠近太阳的过程中,运⾏速率减⼩C.⽕星远离太阳过程中,它与太阳的连线在相等时间内扫过的⾯积逐渐增⼤D.⽕星绕太阳运⾏⼀周的时间⽐地球的长答案D解析根据开普勒第⼆定律:对任意⼀个⾏星⽽⾔,它与太阳的连线在相同时间内扫过的⾯积相等,可知⾏星在此椭圆轨道上运动的速度⼤⼩不断变化,地球靠近太阳过程中运⾏速率将增⼤,选项A、B、C错误.根据开普勒第三定律,可知所有⾏星的轨道的半长轴的三次⽅跟公转周期的⼆次⽅的⽐值都相等.由于⽕星轨道的半长轴⽐较⼤,所以⽕星绕太阳运⾏⼀周的时间⽐地球的长,选项D正确.【考点】开普勒定律的理解【题点】开普勒定律的理解3.2015年12⽉29⽇,“⾼分四号”对地观测卫星升空.这是中国“⾼分”专项⾸颗⾼轨道⾼分辨率、设计使⽤寿命最长的光学遥感卫星,也是当时世界上空间分辨率最⾼、幅宽最⼤的地球同步轨道遥感卫星.下列关于“⾼分四号”地球同步卫星的说法中正确的是()A.该卫星定点在北京上空B.该卫星定点在⾚道上空C.它的⾼度和速度是⼀定的,但周期可以是地球⾃转周期的整数倍D.它的周期和地球⾃转周期相同,但⾼度和速度可以选择,⾼度增⼤,速度减⼩答案 B解析地球同步卫星若在除⾚道所在平⾯外的任意点,假设实现了“同步”,那它的运动轨道所在平⾯与受到的地球的引⼒就不在⼀个平⾯上,且稳定做圆周运动,这是不可能的,因此地球同步卫星相对地⾯静⽌不动,必须定点在⾚道的正上⽅,选项A 错误,B 正确;因为同步卫星要和地球⾃转同步,即它们的T 和ω都相同,根据G Mmr 2=m v 2r =mω2r ,因为ω⼀定,所以r 必须固定,且v 也固定,选项C 、D 错误.【考点】同步卫星规律的理解和应⽤【题点】同步卫星规律的理解和应⽤4.2017年11⽉15⽇,我国⼜⼀颗第⼆代极轨⽓象卫星“风云三号D ”成功发射,顺利进⼊预定轨道.极轨⽓象卫星围绕地球南北两极运⾏,其轨道在地球上空650~1 500 km 之间,低于地球静⽌轨道卫星(⾼度约为36 000 km),可以实现全球观测.有关“风云三号D ”,下列说法中正确的是( ) A.“风云三号D ”轨道平⾯为⾚道平⾯ B.“风云三号D ”的发射速度可能⼩于7.9 km/s C.“风云三号D ”的周期⼩于地球静⽌轨道卫星的周期 D.“风云三号D ”的加速度⼩于地球静⽌轨道卫星的加速度答案 C【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系5.如图2所⽰为北⽃导航系统的部分卫星,每颗卫星的运动可视为匀速圆周运动.下列说法错误的是( )图2A.在轨道运⾏的两颗卫星a 、b 的周期相等B.在轨道运⾏的两颗卫星a 、c 的线速度⼤⼩v aC.在轨道运⾏的两颗卫星b 、c 的⾓速度⼤⼩ωb <ωcD.在轨道运⾏的两颗卫星a 、b 的向⼼加速度⼤⼩a a解析根据万有引⼒提供向⼼⼒,得T =2πr 3GM,因为a 、b 的轨道半径相等,故a 、b 的周期相等,选项A 正确;因v =GMr,c 的轨道半径⼩于a 的轨道半径,故线速度⼤⼩v aGM r 3,c 的轨道半径⼩于b 的轨道半径,故⾓速度⼤⼩ωb <ωc ,选项C 正确.因a n =GMr2,a 的轨道半径等于b 的轨道半径,故向⼼加速度⼤⼩a a =a b ,选项D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系6.国务院批复,⾃2016年起将4⽉24⽇设⽴为“中国航天⽇”.1970年4⽉24⽇我国⾸次成功发射的⼈造卫星东⽅红⼀号,⽬前仍然在椭圆轨道上运⾏,如图3所⽰,其轨道近地点⾼度约为440 km ,远地点⾼度约为2 060 km ;1984年4⽉8⽇成功发射的东⽅红⼆号卫星运⾏在⾚道上空35 786 km 的地球同步轨道上.设东⽅红⼀号在远地点的加速度为a 1,东⽅红⼆号的加速度为a 2,固定在地球⾚道上的物体随地球⾃转的加速度为a 3,则a 1、a 2、a 3的⼤⼩关系为( )图3A.a 2>a 1>a 3B.a 3>a 2>a 1C.a 3>a 1>a 2D.a 1>a 2>a 3答案 D解析卫星围绕地球运⾏时,万有引⼒提供向⼼⼒,对于东⽅红⼀号,在远地点时有G Mm 1(R +h 1)2=m 1a 1,即a 1=GM (R +h 1)2,对于东⽅红⼆号,有G Mm 2(R +h 2)2=m 2a 2,即a 2=GM(R +h 2)2,由于h 2>h 1,故a 1>a 2,东⽅红⼆号卫星与地球⾃转的⾓速度相等,由于东⽅红⼆号做圆周运动的轨道半径⼤于地球⾚道上物体做圆周运动的半径,根据a n =ω2r ,故a 2>a 3,所以a 1>a 2>a 3,选项D 正确,选项A 、B 、C 错误. 【考点】⾚道物体、同步卫星以及近地卫星运动规律对⽐【题点】⾚道物体、同步卫星以及近地卫星运动规律对⽐7.地球上站着两位相距⾮常远的观察者,都发现⾃⼰的正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,则这两位观察者的位置及两颗卫星到地球中⼼的距离是( ) A.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离⼀定相等 B.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离可以不等 C.两⼈都在⾚道上,两颗卫星到地球中⼼的距离可以不等 D.两⼈都在⾚道上,两颗卫星到地球中⼼的距离⼀定相等答案 D解析两位相距⾮常远的观察者,都发现⾃⼰正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,说明此卫星为地球同步卫星,运⾏轨道为位于地球⾚道平⾯内的圆形轨道,距离地球的⾼度约为36 000 km ,所以两个⼈都在⾚道上,两卫星到地球中⼼的距离⼀定相等,故D 正确.8.2015年9⽉14⽇,美国的LIGO 探测设施接收到⼀个来⾃GW150914的引⼒波信号,此信号是由两个⿊洞的合并过程产⽣的.如果将某个双⿊洞系统简化为如图4所⽰的圆周运动模型,两⿊洞绕O 点做匀速圆周运动.在相互强⼤的引⼒作⽤下,两⿊洞间的距离逐渐减⼩,在此过程中,两⿊洞做圆周运动的( )图4A.周期均逐渐增⼤B.线速度均逐渐减⼩C.⾓速度均逐渐增⼤D.向⼼加速度均逐渐减⼩答案 C解析根据G M 1M 2L 2=M 14π2R 1T 2,解得M 22,同理可得M 1=4π2L 2GT 2R 2,所以M 1+M 2=4π2L 2GT 2(R 1+R 2)=4π2L 3GT 2,当(M 1+M 2)不变时,L 减⼩,则T 减⼩,即双星系统运⾏周期会随间距减⼩⽽减⼩,故A错误;根据G M 1M 2L 2=M 1v 12R 1,解得v 1=GM 2R 1L 2,由于L 平⽅的减⼩⽐R 1和R 2的减⼩量⼤,则线速度增⼤,故B 错误;⾓速度ω=2πT ,结合A 可知,⾓速度增⼤,故C 正确;根据G M 1M 2L 2=M 1a 1=M 2a 2知,L 变⼩,则两星的向⼼加速度增⼤,故D 错误.9.⼀些星球由于某种原因⽽发⽣收缩,假设该星球的直径缩⼩到原来的四分之⼀,若收缩时质量不变,则与收缩前相⽐( )A.同⼀物体在星球表⾯受到的重⼒增⼤到原来的4倍B.同⼀物体在星球表⾯受到的重⼒增⼤到原来的16倍C.星球的第⼀宇宙速度增⼤到原来的4倍D.星球的第⼀宇宙速度增⼤到原来的2倍答案 BD解析在星球表⾯由重⼒等于万有引⼒mg =G MmR 2可知,同⼀物体在星球表⾯受到的重⼒增⼤为原来的16倍,选项A 错误,B 正确.由第⼀宇宙速度计算式v =GMR可知,星球的第⼀宇宙速度增⼤为原来的2倍,选项C 错误,D 正确. 【考点】三个宇宙速度的理解【题点】第⼀宇宙速度的理解10.设地⾯附近重⼒加速度为g 0,地球半径为R 0,⼈造地球卫星的圆形轨道半径为R ,那么以下说法中正确的是( )A.卫星运⾏的向⼼加速度⼤⼩为g 0R 02R 2B.卫星运⾏的速度⼤⼩为R 02g 0R C.卫星运⾏的⾓速度⼤⼩为R 3R 02g 0D.卫星运⾏的周期为2πR 3R 02g 0答案 ABD解析由G Mm R 2=ma 向,得a 向=G M R 2,⼜g 0=GM R 02,故a 向=g 0R 02R 2,A 对.⼜a 向=v 2R ,v =a 向R =g 0R 02R,B 对.ω=a 向R=g 0R 02R 3,C 错.T =2πω=2πR 3g 0R 02,D 对. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律11.⼀宇宙飞船绕地⼼做半径为r 的匀速圆周运动,飞船舱内有⼀质量为m 的⼈站在可称体重的台秤上.⽤R 表⽰地球的半径,g 表⽰地球表⾯处的重⼒加速度,g ′表⽰宇宙飞船所在处的重⼒加速度,F N 表⽰⼈对台秤的压⼒,则下列关系正确的是( ) A.g ′=0 B.g ′=gR 2r 2C.F N =0D.F N =m Rrg答案 BC解析处在地球表⾯处的物体所受重⼒近似等于万有引⼒,所以有mg =G MmR 2,即GM =gR 2,对处在轨道半径为r 的宇宙飞船中的物体,有mg ′=G Mm r 2,即GM =g ′r 2,所以有g ′r 2=gR 2,即g ′=gR 2r 2,B 正确,A 错误;当宇宙飞船绕地⼼做半径为r 的匀速圆周运动时,万有引⼒提供向⼼⼒,飞船及飞船内物体处于完全失重状态,所以对台秤的压⼒为零,C 正确,D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系12.为了探测X 星球,载着登陆舱的探测飞船在以该星球中⼼为圆⼼、半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则( ) A.X 星球的质量为M =4π2r 13GT 12B.X 星球表⾯的重⼒加速度为g =4π2r 1T 12C.登陆舱在r 1与r 2轨道上运动时的速度⼤⼩之⽐为v 1v 2=m 1r 2m 2r 1 D.登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 23r 13答案 AD解析探测飞船做圆周运动时有G Mm 1r 12=m 1(2πT 1)2r 1,解得M =4π2r 13GT 12,选项A 正确;因为星球半径未知,所以选项B 错误;根据G Mmr 2=m v 2r ,得v =GMr ,所以v 1v 2=r 2r 1,选项C 错误;根据开普勒第三定律r 13T 12=r 23T 22,得T 2=T 1r 23r 13,选项D 正确. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系⼆、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 13.(8分)宇航员在某星球表⾯以初速度v 0竖直向上抛出⼀个物体,物体上升的最⼤⾼度为h .已知该星球的半径为R ,且物体只受该星球的引⼒作⽤.求: (1)该星球表⾯的重⼒加速度;(2)从这个星球上发射卫星的第⼀宇宙速度. 答案 (1)v 022h(2)v 0R 2h解析 (1)设该星球表⾯的重⼒加速度为g ′,物体做竖直上抛运动,由题意知v 02=2g ′h ,得g ′=v 022h.(2)卫星贴近星球表⾯运⾏,则有mg ′=m v 2R ,得v =g ′R =v 0R 2h. 【考点】万有引⼒定律和其他⼒学问题的综合应⽤【题点】万有引⼒与其他⼒学的综合问题14.(10分)⼈们在太阳系外发现了⾸颗“宜居”⾏星,其质量约为地球质量的6.4倍.已知⼀个在地球表⾯质量为50 kg 的⼈在这个⾏星表⾯所受的重⼒约为800 N ,地球表⾯处的重⼒加速度为10 m/s 2.求: (1)该⾏星的半径与地球的半径之⽐;(2)若在该⾏星上距⾏星表⾯2 m ⾼处,以10 m/s 的⽔平初速度抛出⼀只⼩球(不计任何阻⼒),则⼩球的⽔平射程是多⼤?答案(1)2∶1 (2)5 m解析 (1)在该⾏星表⾯处,有G ⾏=mg ⾏,可得g ⾏=16 m/s 2.在忽略⾃转的情况下,物体所受的万有引⼒等于物体所受的重⼒,得GMm R 2=mg ,有R 2=GMg ,故R ⾏2R 地2=M ⾏g 地M 地g ⾏=4,所以R ⾏R 地=2∶1.(2)由平抛运动规律,有h =12g ⾏t 2,x =v t ,故x =v2hg ⾏,代⼊数据解得x =5 m. 15.(10分)“嫦娥⼀号”探⽉卫星在空中的运动可简化为如图5所⽰的过程,卫星由地⾯发射后,经过发射轨道进⼊停泊轨道,在停泊轨道经过调速后进⼊地⽉转移轨道,再次调速后进⼊⼯作轨道.已知卫星在停泊轨道和⼯作轨道运⾏的半径分别为R 和R 1,地球半径为r ,⽉球半径为r 1,地球表⾯重⼒加速度为g ,⽉球表⾯重⼒加速度为g6.求:图5(1)卫星在停泊轨道上运⾏的线速度⼤⼩; (2)卫星在⼯作轨道上运⾏的周期. 答案 (1)rg R (2)2πR 1r 16R 1g解析 (1)设卫星在停泊轨道上运⾏的线速度为v ,卫星做圆周运动的向⼼⼒由地球对它的万有引⼒提供,有G mMR 2=m v 2R ,且有G m ′M r 2=m ′g ,解得v =r g R. (2)设卫星在⼯作轨道上运⾏的周期为T ,则有G mM 1R 12=m 2πT 2R 1,⼜有G m ″M 1r 12=m ″g 6,解得T =2πR 1r 16R 1g. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律。
新课标人教版高中物理必修二同步练习全套5.1 曲线运动一、选择题1.关于质点的曲线运动,下列说法中不正确的是( )A.曲线运动肯定是一种变速运动B.变速运动不一定是曲线运动C.曲线运动可以是速度不变的运动D.曲线运动可以是加速度不变的运动答案 C解析A项曲线运动轨迹为曲线,因此无论速度大小是否变化运动方向一定改变,一定是变速运动,故A项正确;B项变速运动轨迹不一定是曲线,可能只是速度大小发生变化,如匀变速直线运动,故B项正确;C项曲线运动的速度方向时刻改变,曲线运动一定是速度变化的运动,故C项错误;D项做曲线运动的条件为初速度与合外力不共线,若物体所受合外力恒定,其加速度就可不变,如平抛运动就是加速度不变的曲线运动,故D项正确.本题选错误的,故选C项.2.如图所示,物体在恒力F作用下沿曲线从A运动到B,此时突然使它所受的力反向,则物体( )A.可能沿曲线Ba运动B.可能沿曲线Bb运动C.可能沿曲线Bc运动D.可能沿原曲线由B返回A答案 C解析根据物体的合力指向轨迹弯曲的凹侧判断.3. 2019年5月,有多个不明飞行物落入黑龙江境内,如图甲所示.图乙所示是一目击者画出的不明飞行物临近坠地时的运动轨迹,则( )A.轨迹上每一点的切线方向,就是不明飞行物的运动方向B.不明飞行物受到的合力方向可能与速度方向相同C.不明飞行物在运动过程中的加速度不变D.在研究不明飞行物的运动轨迹时,不能把其视为质点答案 A解析根据曲线运动的速度方向的特点,轨迹上每一点的切线方向就是不明飞行物的运动方向,A项正确;物体做曲线运动,受到的合力方向与速度方向不在一条直线上,B项错误;由于受到重力和空气阻力的作用,不明飞行物的加速度会改变,C项错误;研究不明飞行物做曲线运动的轨迹时,其尺寸可以忽略,可将其视为质点,D项错误.4.(多选)一个物体在F1、F2、F3等几个力的共同作用下,做匀速直线运动.若突然撤去力F1后,则物体( )A.可能做曲线运动B.可能继续做直线运动C.必然沿F1的方向做直线运动D.必然沿F1的反方向做匀加速直线运动答案AB解析物体做匀速直线运动的速度方向与F1的方向关系不明确,可能是相同、相反或不在同一条直线上.因此,撤去F1后物体所受合外力的方向与速度v 的方向关系不确定,所以A、B两项是正确的.5.下列关于力与运动的关系的说法中正确的是( )A.物体在变力作用下可能做直线运动B.物体在变力作用下一定做曲线运动C.物体在恒力作用下一定做直线运动D.物体在恒力作用下可能做匀速圆周运动答案 A解析如果力的方向与物体运动方向在一条直线上,即使力的大小发生变化,只要方向不变,物体仍做直线运动,A项正确,B项错误;如果力的方向与速度方向不在一条直线上,即使力为恒力,物体也做曲线运动,例如平抛运动,所受的重力就是恒力,C项错误;匀速圆周运动的合外力时刻指向圆心,即合外力的方向时刻在改变,合外力不可能是恒力,D项错误.6.如图所示,一条河岸笔直的河流水速恒定,甲、乙两小船同时从河岸的A点沿与河岸均为θ角的两个不同方向渡河.已知两小船在静水中航行的速度大小相等,则( )A.甲先到达对岸B.乙先到达对岸C.渡河过程中,甲的位移小于乙的位移D.渡河过程中,甲的位移大于乙的位移答案 C解析A、B两项两小船在静水中航行的速度大小相等,且与河岸夹角均为θ,所以船速在垂直于河岸方向上的分速度相等;根据运动的独立性,船在平行于河岸方向上的分速度不影响过河时间,所以甲、乙两船同时到达对岸,故A、B两项错误;C、D两项甲船在平行河岸方向上的速度为:v甲∥=v甲cosθ-v水乙船在平行河岸方向上的速度为:v乙∥=v水+v乙cosθ两船在平行河岸方向上的位移分别为:x甲∥=v甲∥tx乙∥=v乙∥t则x甲∥<x乙∥又两船在垂直河岸方向上的位移一样综上,渡河过程中,甲的位移小于乙的位移,故C项正确,D项错误;故选C项.点评运动的合成与分解中要注意独立性的应用,两个分运动是相互独立,互不干扰的;但两者的合成决定了物体的实际运动.7.假如在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离赛车后的车轮的运动情况,以下说法正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能答案 C解析赛车沿弯道行驶,任一时刻赛车上任何一点的速度方向都是赛车运动的曲线轨迹上对应点的切线方向.被甩出的后轮的速度方向就是甩出点轨迹的切线方向.所以C项正确.8.(多选)对曲线运动中的速度的方向,下列说法正确的是( )A.在曲线运动中,质点在任一位置的速度方向总是与这点的切线方向相同B.在曲线运动中,质点的速度方向有时也不一定是沿着轨迹的切线方向C.旋转雨伞时.伞面上的水滴由内向外做螺旋运动,故水滴速度方向不是沿其切线方向的D.旋转雨伞时,伞面上的水滴由内向外做螺旋运动,水滴速度方向总是沿其轨道的切线方向答案AD解析本题主要考查物体做曲线运动时的速度方向,解此题只要把握一点:在任何情况下,曲线运动速度方向总是与其轨道的切线方向一致的,所以本题应该选择A、D两项.9.在越野赛车时,一辆赛车在水平公路上减速转弯,从俯视图中可以看到赛车沿曲线由M向N行驶.下图中分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是( )答案 C解析汽车运动的速度方向沿其轨迹的切线方向,由于速度减小,则合力方向与速度方向间的夹角大于90°,且合力指向弯曲的内侧方向.故选C项.10.若已知物体运动的初速度v的方向及它受到的恒定的合外力F的方向,图a、b、c、d表示物体运动的轨迹,其中正确的是( )答案 B解析合外力F与初速度v不共线,物体一定做曲线运动,C项错误.物体的运动轨迹向合外力F方向偏转,且介于F与v的方向之间,A、D项错误,B 项正确.二、非选择题11.一物体做速率不变的曲线运动,轨迹如图所示,物体运动到A、B、C、D四点时,图中关于物体速度方向和受力方向的判断,哪些点可能是正确的?答案A、D两点是正确的解析质点在某一点的速度,沿曲线在这一点的切线方向,力指向凹的一侧.12.某质点的运动速度在x、y方向的分量vx 、vy与时间的关系如图所示,已知x、y方向相互垂直,求:(1)4 s末该质点的速度大小;(2)0到4秒内的位移大小.答案(1)5 m/s (2)413 m解析(1)t=4 s时,vx =3 m/s,vy=4 m/s,则v=vx2+vy2=32+42 m/s=5 m/s则4 s末该质点的速度大小是5 m/s.(2)t=4 s时,x=vx t=12 m,y=12at2=8 m故s=x2+y2=122+82 m=413 m,则4 s内该质点的位移大小为413 m;点评本题是运动的合成问题,包括加速度、速度、位移的合成,都按平行四边形定则进行合成.5.2 平抛运动一、选择题1.(多选)关于物体的平抛运动,下列说法中正确的是( )A.平抛运动是匀变速曲线运动B.做平抛运动的物体相同时间内的速度变化量总是相等C.平抛运动的速度方向与加速度方向的夹角一定越来越小D.落地时间和落地速度只与抛出点的高度有关答案ABC解析平抛运动加速度不变,是匀变速曲线运动,A项正确;物体做平抛运动时,水平分速度不变.在竖直方向,加速度g=Δvt恒定,速度的增量Δv=gt在相等时间内相同,B项正确;对平抛物体的速度方向与加速度方向的夹角,有tanθ=vvy=vgt,因t一直增大,所以tanθ变小,C项正确;由v=v2+2gh和t=2hg知:落地时间只与抛出点高度有关,而落地速度与抛出点高度和初速度均有关.2.将物体从某一高度以初速度v水平抛出,落地速度为v,不计空气阻力,则物体在空中飞行时间( )A.v+vgB.v-vgC.v2-v2gD.v2+v2g答案 C解析落地时的竖直分速度vy =v2-v2,又vy=gt得t=v2-v2g.3.(多选)如图,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则( )A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大答案BD解析平抛运动在竖直方向上的分运动为自由落体运动,由h=12gt2可知,飞行时间由高度决定,hb =hc>ha,故b与c的飞行时间相同,均大于a的飞行时间,A项错误,B项正确;由题图可知a、b的水平位移满足xa >xb,由于飞行时间tb >ta,根据x=vt得v0a>v0b,C项错误;同理可得v0b>v0c,D项正确.4.如图,战机在斜坡上进行投弹演练.战机水平匀速飞行,每隔相等时间释放一颗炸弹,第一颗落在a点,第二颗落在b点.斜坡上c、d两点与a、b 共线,且ab=bc=cd,不计空气阻力,第三颗炸弹将落在( )A.bc之间B.c点C.cd之间D.d点答案 A解析如图:假设第二颗炸弹经过Ab,第三颗经过PQ(Q点是轨迹与斜面的交点);则a,A,B,P,C在同一水平线上,由题意可知,设aA=AP=x,ab=bc=L,斜面倾角为θ,三颗炸弹到达a所在水平面的竖直速度为vy ,水平速度为v,对第二颗炸弹:水平方向:x1=Lcosθ-x0=vt1.竖直方向:y1=vyt1+12gt12若第三颗炸弹的轨迹经过cC,则对第三颗炸弹,水平方向:x2=2Lcosθ-2x=vt2竖直方向:y2=vyt2+12gt22解得:t2=2t1,y2>2y1,所以第三颗炸弹的轨迹不经过c,则第三颗炸弹将落在bc之间,故A项正确.点评考查平抛运动的规律,明确水平方向与竖直方向的运动规律.会画草图进行分析求解.考查的是数学知识.注意:过b点画水平线分析更简单,水平方向速度不变,而竖直方向速度越来越大,所以越往下,在相同时间内,水平位移越小.5.(多选)以初速度v=20 m/s,从20 m高台上水平抛出一个物体(g取10 m/s2),则( )A.2 s末物体的水平速度为20 m/sB.2 s末物体的速度方向与水平方向成45°角C.每1 s内物体的速度变化量的大小为10 m/sD.每1 s内物体的速度大小的变化量为10 m/s答案ABC解析物体做平抛运动,水平速度不变,A项正确;2 s末,vy=gt=20 m/s,由tanθ=vyvx=1知:θ=45°,B项正确;平抛运动是匀变速运动,由Δv=gΔt知,C项正确;但每1 s速度大小的变化量不等于10 m/s,如物体抛出后第1 s末速度大小v2=v2+(g×1 s)2=10 5 m/s,第 2 s末速度大小为v2=v2+(g×2 s)2=20 2 m/s,很明显(105-20)≠(202-105),故D项错误.6.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上.若不计空气阻力,则A、B两个小球的运动时间之比为( )A.1∶1 B.4∶3C.16∶9 D.9∶16答案 D解析两小球均做平抛运动,由题意知小球都落在斜面上,所以A、B两小球位移方向与水平速度v0方向的夹角分别为θA=37°,θB=53°,由tanθ=y x =12gt2vt=gt2v得t=2vtanθg,所以tAtB=tanθAtanθB=tan37°tan53°=916.D项正确.7.飞镖运动于十五世纪兴起于英格兰,二十世纪初,成为人们日常休闲的必备活动.一般打飞镖的靶上共标有10环,第10环的半径最小.现有一靶的第10环的半径为1 cm,第9环的半径为2 cm……以此类推,若靶的半径为10 cm,在进行飞镖训练时,当人离靶的距离为5 m,将飞镖对准第10环中心以水平速度v投出,g取10 m/s2.则下列说法正确的是( )A.当v≥50 m/s时,飞镖将射中第8环线以内B.当v=50 m/s时,飞镖将射中第6环线C.若要击中第10环的线内,飞镖的速度v至少为50 2 m/sD.若要击中靶子,飞镖的速度v至少为50 5 m/s答案 B解析A、B两项当v=50 m/s时,运动的时间t=xv=550s=0.1 s.则飞镖在竖直方向上的位移y=12gt2=12×10×0.12m=0.05 m,将射中第6环线,当v≥50m/s时,飞镖将射中第6环线以内.故A项错误,B项正确.C项击中第10环线内,下降的最大高度为0.01 m,根据h=12gt2得,t=550s,则最小初速度v=xtm/s=50 5 m/s.故C错误.D项若要击中靶子,下降的高度不能超过0.1 m,根据h=12gt2得,t=210s,则最小速度v=xt=5210m/s=25 2 m/s.故D项错误.点评解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律:x=v0t;y=12gt2,结合运动学公式灵活求解.8.如图所示,在同一竖直平面内,小球a、b从高度不同的两点分别以初速度va 和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点.若不计空气阻力,下列说法正确的是( )A.ta >tb,va<vbB.ta>tb,va>vbC.ta <tb,va<vbD.ta<tb ,va>vb答案 A解析小球在空中运动的时间由竖直方向的分运动决定,根据h=12gt2,可得ta >tb,水平方向做匀速直线运动,根据x=vt可得va<vb,故选A项.9.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )A.tanφ=sinθ B.tanφ=cosθC.tanφ=tanθ D.tanφ=2tanθ答案 D解析物体的竖直分速度与水平分速度之比为tanφ=gtv,物体的竖直分位移与水平分位移之比为tanθ=12gt2vt,故tanφ=2tanθ,D项正确.二、非选择题10.汽车以1.6 m/s的速度在水平地面上匀速行驶,汽车后壁货架上放有一小球(可视作质点),架高 1.8 m,由于前方事故,突然急刹车,汽车轮胎抱死,小球从架上落下.已知该汽车刹车后做加速度大小为4 m/s2的匀减速直线运动,忽略小球与架子间的摩擦及空气阻力,g取10 m/s2.求小球在车厢底板上落点距车后壁的距离.答案0.64 m解析(1)汽车刹车后,小球做平抛运动:h=12gt2得t=2hg=0.6 s小球的水平位移为:s2=vt=0.96 m汽车做匀减速直线运动,刹车时间为t′,则:t′=va=0.4 s<0.6 s则汽车的实际位移为:s1=v22a=0.32 m故Δs=s2-s1=0.64 m.11.如图所示,子弹射出时的水平初速度v=1 000 m/s,有五个等大的直径为D=5 cm的环悬挂着,枪口离环中心100m,且与第四个环的环心处在同一水平线上,求:(1)开枪时,细线被烧断,子弹能击中第几个环?(2)开枪前0.1 s,细线被烧断,子弹能击中第几个环?(不计空气阻力,g 取10 m/s2)答案(1)第四个(2)第一个解析(1)开枪时,细线被烧断,子弹的竖直分运动如同环的运动,故子弹与环的竖直位移相同,则子弹击中第四个环.(2)设开枪后经时间t子弹运动到环处,则在竖直方向上:子弹的竖直位移y 1=12gt2环的位移y2=12g(t+0.1 s)2在水平方向上子弹做匀速运动,则t=Lv=100 m1 000 m/s=0.1 s故y2-y1=12g(t+0.1 s)2-12gt2=12×10×0.22 m-12×10×0.12 m=0.15 m=15 cm.再考虑环的直径为5 cm,故子弹恰好击中第一个环.12.如图所示,某人在离地面高10 m处,以5 m/s的初速度水平抛出A球,与此同时在离A球抛出点水平距离s处,另一人竖直上抛B球,不计空气阻力和人的高度,试问:要使B球上升到最高点时与A球相遇(g取10 m/s2),则:(1)B球被抛出时的初速度为多少?(2)水平距离s为多少?答案(1)10 m/s (2)5 m解析(1)对于B球,有hB =vB22g,t=vBg对于A球,hA =12gt2,可得hA=vB22g由于两球相遇,所以h=hA +hB=vB2g代入数据,解得vB=10 m/s.(2)由B球得t=vBg=1 sA球在水平方向,有s=vAt代入数据得s=5 m.5.3 实验:研究平抛运动一、选择题1.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动,(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面,这个实验( )A.只能说明上述规律中的第(1)条B.只能说明上述规律中的第(2)条C.不能说明上述规律中的任何一条D.能同时说明上述两条规律答案 B解析显然两球同时落到地面只能证明A、B球在竖直方向上运动情况相同,不能证明水平方向做匀速运动,故B项正确.2.安装实验装置的过程中,斜槽末端的切线必须是水平的,这样做的目的是( )A.保证小球飞出时,速度既不太大,也不太小B.保证小球飞出时,初速度水平C.保证小球在空中运动的时间每次都相等D.保证小球运动的轨迹是一条抛物线答案 B解析安装实验装置的过程中,斜槽末端的切线必须是水平的,这样做的目的是保证小球以水平初速度抛出做平抛运动,故B项正确.3.(1)在做“研究平抛运动”实验时,除了木板、小球、斜槽、铅笔、图钉之外,下列器材中还需要的是( )A.游标卡尺B.秒表C.坐标纸D.天平E.弹簧测力计F.重锤线(2)实验中,下列说法正确的是( )A.应使小球每次从斜槽上相同的位置自由滑下B.斜槽轨道必须光滑C.要使描出的轨迹更好地反映真实运动,记录的点应适当多一些D.斜槽轨道末端可以不水平答案(1)CF (2)AC解析(1)实验中需要在坐标纸上记录小球的位置,描绘小球的运动轨迹,需要利用重锤线确定坐标轴的y轴.故C、F是需要的.(2)使小球从斜槽上同一位置滑下,才能保证每次的轨迹相同,A项正确.斜槽没必要必须光滑,只要能使小球滑出的初速度相同即可,B项错误.实验中记录的点越多,轨迹越精确,C项正确.斜槽末端必须水平,才能保证小球离开斜槽后做平抛运动,D项错误.4.(多选)在“研究平抛运动”的实验中,为了求平抛运动物体的初速度,需直接测量的数据有( )A.小球开始滚下的高度B.小球在空中飞行的时间C.运动轨迹上某点P的水平坐标D.运动轨迹上某点P的竖直坐标答案CD解析由平抛运动规律,竖直方向y=12gt2,水平方向x=vt,因此v=xg2y,可见只要测得轨迹上某点P的水平坐标x和竖直坐标y,就可求出初速度v,故C、D项正确.5.(多选)下列哪些因素会使“研究平抛运动”的实验误差增大( )A.小球与斜槽之间有摩擦B.安装斜槽时其末端不水平C.建立坐标系时,以斜槽末端端口位置为坐标原点D.根据曲线计算平抛运动的初速度时,在曲线上取作计算的点离原点O较远答案BC解析小球与斜槽之间有摩擦,只要保证小球每次从槽上由静止滚下的初始位置都相同,平抛时的初速度就都相同,不会引起误差.如果安装斜槽时其末端不水平,其运动不是平抛运动而是斜抛运动,那么就会引起误差.应以斜槽末端小球重心所在位置为坐标原点,否则会引起误差.计算点距抛出点O越远,x、y 值就越大,相对误差就越小.所以选B、C项.6.(多选)在做“研究物体的平抛运动”实验中,对于减小实验误差,下列说法中有益的是( )A.使斜槽尽量光滑B.描绘出的轨迹曲线应尽量细一些C.在轨迹上选取用于计算的点时,这些点的间隔应尽量大一些,使这些点分布在整个曲线上D.要多算出几个小球做平抛运动的初速度值,再对几个初速度值取平均值,作为最后测量结果答案BCD解析A项不必要,只要保证小球每次从槽上由静止滚下的初始位置都相同,平抛时的初速度就都相同,不会引起误差.按C项的叙述,可使计算点间的距离增大,这两条对于减小在轨迹图中测量长度的相对误差,都是有益的.按B项的叙述,可以减小每次长度测量的偶然误差.按D项的叙述,可以减小偶然误差.7.(多选)在平直公路上行驶的汽车中,某人从车窗相对于车静止释放一个小球,不计空气阻力,用固定在路边的照相机对汽车进行闪光照相,照相机闪两次光,得到清晰的两张照片,对照片进行分析,知道了如下信息:①两次闪光时间间隔是0.5 s;②第一次闪光时,小球刚释放,第二次闪光时,小球落地;③两次闪光的时间间隔内,汽车前进了5 m;④两次闪光的时间间隔内,小球的位移为5 m,根据以上信息能确定的是(g取10 m/s2)( )A.小球释放点离地的高度B.第一次闪光时汽车的速度C.汽车做匀速直线运动D.两次闪光的时间间隔内汽车的平均速度答案ABD解析知道小球落地所用时间即闪光间隔的时间,可用h=12gt2求释放点的高度,A项对;利用v=xt可求汽车的平均速度,D项对;小球做平抛运动的位移与汽车前进位移相等,小球水平位移小于汽车前进位移,故汽车一定不能做匀速直线运动,C项错;第一次闪光时汽车的速度就是小球的初速度,可以求出,B 项对,故应选A、B、D三项.8.在“研究平抛物体的运动”实验中,某同学只记录了小球运动途中的A、B、C三点的位置,取A点为坐标原点,则各点的位置坐标如图所示,下列说法正确的是( )A.小球抛出点的位置坐标是(0,0)B.小球抛出点的位置坐标是(-10,-5)C.小球平抛初速度为2 m/sD.小球平抛初速度为0.58 m/s答案 B解析从图中可知其在相同时间间隔内竖直方向的位移分别是0.15 m、0.25 m,不是1∶3的关系,故可以判断小球抛出点的位置坐标不是(0,0),故A项不正确.由yBC -yAB=gT2可得T=0.1 s,可知平抛的水平速度为v=0.10÷0.1 m/s=1 m/s,故C、D两项均不正确.B点的竖直速度vB =yAC2T=2 m/s,竖直方向从起点到B点的距离由vB 2=2gh得,h=vB22g=0.2 m,故其起点在A点上方5 cm处,下落5 cm所用时间为0.1 s,故起点在水平方向上在原点左侧10 cm处,故B 项是正确的.二、非选择题9.在做“研究平抛物体的运动”的实验时,通过描点法画出小球的平抛运动轨迹,并求出平抛运动的初速度.实验装置如图所示.(1)实验时将固定有斜槽的木板放在实验桌上,实验前要检查木板是否水平,请简述你的检查方法:________________________________.(2)关于这个实验,以下说法正确的是( )A.小球释放的初始位置越高越好B.每次小球要从同一高度由静止释放C.实验前要用重锤线检查坐标纸上的竖直线是否竖直D.小球的平抛运动要靠近但不接触木板答案(1)将小球放在斜槽的末端任一位置,看小球能否静止(2)BCD解析(1)小球放在斜槽的末端任一位置都静止,说明末端切线水平无倾角.(2)下落高度越高,初速度越大,一是位置不好用眼捕捉观察估测,二是坐标纸上描出的轨迹图线太靠上边,坐标纸利用不合理,A项错误;每次从同一高度释放,保证小球每次具有相同的水平速度,B 项正确;木板要竖直且让球离开木板,以减少碰撞和摩擦,故C 、D 项正确.10.请你由平抛运动原理设计测量弹射器弹丸出射初速度的实验方法,提供的实验器材:弹射器(含弹丸,见示意图);铁架台(带有夹具);刻度尺.(1)画出实验示意图;(2)在安装弹射器时应注意:________;(3)实验中需要测量的量(并在示意图中用字母标出)________;(4)由于弹射器每次射出的弹丸初速度不可能完全相等,在实验中采取的方法________;(5)计算公式:________. 答案 (1)如图(2)弹射器必须保持水平(3)弹丸下降的高度y 和水平射程x (4)多次测量取水平射程x 的平均值x - (5)v 0=x-g2y解析 (1)由平抛运动的实验原理,实验示意图应如答案图所示;(2)为保证弹丸初速度沿水平方向,弹射器必须保持水平;(3)应测出弹丸下降的高度y 和水平射程x ,如答案图所示;(4)在不改变高度y 的条件下进行多次实验测量水平射程x ,求得水平射程x 的平均值x -,以减小误差;(5)因为y =12gt 2,所以t=2y g.11.做杂技表演的汽车从高台水平飞出,在空中运动后着地,一架照相机通过多次曝光,拍摄得到汽车在着地前后一段时间内的运动照片如图所示(虚线为正方形格子).已知汽车长度为 3.6 m,相邻两次曝光的时间间隔相等,由照片可推算出汽车离开高台时的瞬时速度大小为________ m/s,高台离地面的高度为________ m.答案12,11.25解析由照片知在前两次曝光的时间间隔为T,竖直位移之差:Δy=l=3.6 m又Δy=gT2所以,曝光时间:T=Δyg=3.610s=0.6 s曝光时间内的水平位移:2l=7.2 m,所以v0=2lT=7.20.6m/s=12 m/s第二次曝光时车的竖直速度:v y =3l2T=3×3.62×0.6m/s=9 m/s此时,车下落的时间:t1=vyg=910s=0.9 s从开始到落地的总时间:t=t1+T=1.5 s故高台离地面的高度:h=12gt2=12×10×1.52m=11.25 m.12.在做“研究平抛运动”的实验中,为了确定小球在不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,。
第八章机械能守恒定律3 动能和动能定理基础过关练题组一对动能的理解1.(2020江苏南通高一期末)关于动能的理解,下列说法正确的是( )mv2中的v是相对于地面的速度A.一般情况下,E k=12B.动能的大小与物体的运动方向有关C.物体以相同的速率向东和向西运动,动能的大小相等、方向相反D.当物体以不变的速率做曲线运动时,其动能不断变化2.(2020河北唐山高二期中)A、B两物体的速度之比为2∶1,质量之比为1∶3,则它们的动能之比为( )A.12∶1B.4∶3C.12∶5D.3∶43.(多选)一质量为0.1 kg的小球,以5 m/s的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹。
若以弹回的速度方向为正方向,则小球碰撞过程中的速度变化和动能变化分别是(易错)A.Δv=10 m/sB.Δv=0C.ΔE k=1 JD.ΔE k=0题组二对动能定理的理解与应用4.下列说法正确的是( )A.如果物体所受合力为零,则合力对物体做的功一定为零B.如果合力对物体所做的功为零,则合力一定为零C.物体在合力作用下做变速运动,动能一定发生变化D.物体的动能不变,所受合力一定为零5.假设汽车紧急制动后所受阻力的大小与汽车所受重力的大小差不多。
当汽车以20 m/s的速度行驶时,突然制动,它还能继续滑行的距离约为( )A.40 mB.20 mC.10 mD.5 m6.将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图线如图所示,不计空气阻力,重力加速度g取10 m/s2。
根据图像信息,不能确定的物理量是( )A.小球的质量B.小球的初速度C.小球抛出时的高度D.最初2 s内重力对小球做功的平均功率7.如图所示,ABCD是一个盆形容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC水平,长度为d=0.50 m,盆边缘的高度为h=0.30 m。
在A处放一个质量为m的小物块,并让其自由下滑,已知盆内侧壁是光滑的,而盆底BC与小物块间的动摩擦因数μ=0.10,小物块在盆内来回滑动,最后停下来,则停下的位置到B的距离为( )A.0.50 mB.0.25 mC.0.10 mD.08.(多选)如图所示,电梯的质量为M,在它的水平底板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为h时,电梯的速度达到v,则在这段过程中,下列说法正确的是( )A.电梯底板对物体的支持力所做的功等于1mv22mv2+mghB.电梯底板对物体的支持力所做的功等于12Mv2+MghC.钢索的拉力做的功等于12D.钢索的拉力做的功大于1Mv2+Mgh29.(多选)物体沿直线运动的v-t图像如图所示,已知在第1 s内合力对物体做的功为W,则( )A.从第1 s末到第3 s末,合力做的功为4WB.从第3 s 末到第5 s 末,合力做的功为-2WC.从第5 s 末到第7 s 末,合力做的功为WD.从第3 s 末到第4 s 末,合力做的功为-0.75W10.如图所示,一个沿水平方向的弹簧振子,物块的质量为m,它与水平桌面间的动摩擦因数为μ。
第八章机械能守恒定律4 机械能守恒定律基础过关练题组一机械能守恒的判断1.(多选)载人飞船从发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的( )A.飞船升空的阶段B.只在地球引力作用下,返回舱沿椭圆轨道绕地球运行的阶段C.只在地球引力作用下,返回舱飞向地球的阶段D.临近地面时返回舱减速下降的阶段2.(多选)竖直放置的轻弹簧下连接一个小球,用手托起小球,使弹簧处于压缩状态,如图所示。
则迅速放手后(不计空气阻力)( )A.放手瞬间小球的加速度等于重力加速度B.小球与弹簧以及地球组成的系统机械能守恒C.小球的机械能守恒D.小球向下运动过程中,小球动能与弹簧弹性势能之和不断增大3.(多选)如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O 在同一水平面的A点(弹簧处于原长)无初速度地释放,让它自由摆下。
不计空气阻力,在重物由A点摆到最低点的过程中( )A.重物的机械能减少B.重物与弹簧组成的系统的机械能不变C.重物与弹簧组成的系统的机械能增加D.重物与弹簧组成的系统的机械能减少4.在如图所示的物理过程示意图中,甲图为一端固定有小球的轻杆,从右偏上30°释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用轻质细绳悬挂的小球从图示位置由静止释放,小球开始摆动。
关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是( )A.甲图中小球机械能守恒B.乙图中小球A机械能守恒C.丙图中小球机械能守恒D.丁图中小球机械能守恒5.(多选)如图所示,质量分别为m和2m的两个小球a和b用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在b球顺时针摆动到最低位置的过程中( )A.b球的重力势能减少,动能增加,b球的机械能守恒B.a球的重力势能增加,动能也增加,a球的机械能不守恒C.a球、b球组成的系统机械能守恒D.a球、b球组成的系统机械能不守恒题组二机械能守恒定律的应用6.一物体由h高处自由落下,以地面为参考平面,当物体的动能等于势能时,物体运动的时间为(不计空气阻力,重力加速度为g)( )A.√2ℎg B.√ℎgC.√ℎ2gD.以上都不对7.如图所示,光滑的曲面与光滑的水平面平滑相连,一轻弹簧右端固定,质量为m 的小球从高为h处由静止下滑,则( )A.小球与弹簧刚接触时,速度大小为√2gℎB.小球与弹簧接触的过程中,小球机械能守恒mghC.小球压缩弹簧至最短时,弹簧的弹性势能为12D.小球在压缩弹簧的过程中,小球的加速度保持不变8.从地面竖直上抛两个质量不同的小球,设它们的初动能相同,当上升到同一高度时(不计空气阻力,选地面为参考面)( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能不相等D.所具有的机械能相等9.一根轻弹簧下端固定,竖立在水平面上,其正上方A位置有一只小球,小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。
最新人教版高中物理必修二同步测试题及答案系列1高中同步测试卷(一)第一单元 平抛运动 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.物体做平抛运动,速度v 、加速度a 、水平位移x 、竖直位移y ,这些物理量随时间t 的变化情况是( )A .v 与t 成正比B .a 随t 逐渐增大C .比值yx与t 成正比D .比值yx与t 2成正比2.对于平抛运动,下列说法不正确的是( ) A .平抛运动是匀变速曲线运动B .做平抛运动的物体,在任何相等的时间内速度的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关3.一物体做平抛运动时,描述此物体在竖直方向的分速度v y (取向下为正)随时间变化的图线是下图中的( )4.如图所示,A 、B 为两个不计体积、挨得很近的小球,并列放于光滑斜面上,斜面足够长,在释放B 球的同时,将A 球以某一速度v 0水平抛出,当A 球落于斜面上的P 点时,B 球的位置位于( )A .P 点以下B .P 点以上C .P 点D .由于v 0未知,故无法确定5.一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6hB.L 14g h <v < (4L 21+L 22)g6hC.L 12g 6h <v <12(4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h6.如图所示,从一根内壁光滑的空心竖直钢管A 的上端边缘,沿直径方向向管内水平抛入一钢球.球与管壁多次相碰后落地(球与管壁相碰时间不计),若换一根等高但较粗的内壁光滑的钢管B ,用同样的方法抛入此钢球,则运动时间( )A .在A 管中的球运动时间长B .在B 管中的球运动时间长C .在两管中的球运动时间一样长D .无法确定7.如图,战机在斜坡上进行投弹演练.战机水平匀速飞行,每隔相等时间释放一颗炸弹,第一颗落在a 点,第二颗落在b 点.斜坡上c 、d 两点与a 、b 共线,且ab =bc =cd ,不计空气阻力,第三颗炸弹将落在( )A .bc 之间B .c 点C .cd 之间D .d 点二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意.)8.甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P 点在丙的正下方,在同一时刻甲、乙、丙开始运动,甲以水平速度v 0做平抛运动,乙以水平速度v 0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则( )A .若甲、乙、丙三球同时相遇,一定发生在P 点B .若只有甲、丙两球在水平面上相遇,此时乙球一定在P 点C .若只有甲、乙两球在水平面上相遇,此时丙球还没落地D .无论初速度v 0大小如何,甲、乙、丙三球一定会同时在P 点相遇9.如图所示,在平原上空水平匀速飞行的轰炸机,每隔1 s 投放一颗炸弹,若不计空气阻力,下列说法正确的有( )A .落地前,炸弹排列在同一竖直线上B .炸弹都落在地面上同一点C .炸弹落地时速度大小方向都相同D .相邻炸弹在空中的距离保持不变10.以初速度v 0水平抛出一物体,当它的竖直分位移与水平分位移相等时( ) A .竖直分速度等于水平速度 B .瞬时速度等于5v 0 C .运动的时间为2v 0gD .位移大小是22v 20g11.在交通事故处理过程中,测定碰撞瞬间汽车的速度,对于事故责任的认定具有重要的作用.《中国汽车驾驶员》杂志曾给出一个计算碰撞瞬间车辆速度的公式:v =g 2·ΔLh 1-h 2,式中ΔL 是被水平抛出的散落在事故现场路面上的两物体沿公路方向上的水平距离,h 1、h 2分别是散落物在车上时的离地高度,如图所示,只要用米尺测量出事故现场的ΔL 、h 1、h 2三个量,根据上述公式就能够计算出碰撞瞬间车辆的速度.不计空气阻力,g 取9.8 m/s 2,则下列叙述正确的有( )A .P 、Q 落地时间相同B .P 、Q 落地时间差与车辆速度无关C .P 、Q 落地时间差与车辆速度成正比D .P 、Q 落地时间差与车辆速度乘积等于ΔL12.如图所示,A 、B 两个质点以相同的水平速度v 抛出,A 在竖直平面内运动,落地点在P 1;B 在光滑的斜面上运动,落地点在P 2,不计空气阻力,则下列说法中正确的是 ( )A .A 、B 的运动时间相同 B .B 运动的时间长C .A 、B 沿x 轴方向的位移相同D .B 沿x 轴方向的位移大13.(10分)某同学根据平抛运动原理设计粗测玩具手枪弹丸的发射速度v0的实验方案,实验示意图如图所示,已知没有计时仪器.(1)用玩具手枪发射弹丸时应注意______________________;(2)用一张印有小方格的纸记录手枪弹丸的轨迹,小方格的边长L=2.5 cm.若弹丸在平抛运动途中的几个位置如图中的a、b、c、d所示,则其平抛的初速度v0=________m/s.(取g=10 m/s2,结果保留两位有效数字)四、计算题(本题共3小题,共32分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)14.(10分)如图所示,一质点做平抛运动先后经过A、B两点,到达A点时速度方向与水平方向的夹角为30°,到达B点时速度方向与水平方向的夹角为60°.(1)求质点在A、B位置的竖直分速度大小之比;(2)设质点的位移l AB与水平方向的夹角为θ,求tan θ的值.15.(10分)如图,水平地面上有一个坑,其竖直截面为半圆.ab为沿水平方向的直径.若在a点以初速度v0沿ab方向抛出一小球,小球会击中坑壁上的c点.已知c点与水平地面的距离为圆半径的一半,求圆的半径.16.(12分)如图所示,排球场总长为18 m,网高2.24 m,女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球初速度方向与底线垂直,试计算说明:(不计空气阻力,取g =10 m/s 2)(1)此球是否能过网? (2)是否落在对方界内?参考答案与解析1.[ ] [解析]选C.设初速度为v 0,则v =v 20+(gt )2,a =g ,y x =12gt 2v 0t =g 2v 0t ,只有选项C 正确.2.[ ] [解析]选D.平抛运动的物体,只受重力作用,加速度恒定,故平拋运动为匀变速曲线运动,A 正确;根据公式Δv =a Δt =g Δt 可得做平抛运动的物体在任何相等时间内速度的增量都是相等的,B 正确;平抛运动可分解为水平方向上的匀速直线运动,即x =v 0t 和竖直方向上的自由落体运动,即h =12gt 2,联立可得 t =2hg,v =v 20+2gh ,落地速度还和初速度有关,C 正确D 错误. 3.[ ] [解析]选D.由运动的分解可知,做平抛运动的物体,从抛出时刻开始计时,在竖直方向做自由落体运动,即初速度为零的匀加速直线运动.注意运动物体速度图线并不等同于物体的运动轨迹,不能混淆.平抛运动的轨迹是抛物线,在竖直方向的速度-时间图象却是直线.4.[ ] [解析]选B.设A 球落到P 点的时间为t A ,AP 的竖直位移为y ,B 球滑到P 点的时间为t B ,则BP 的竖直位移也为y ,t A =2yg ,t B=2y g sin 2θ=1sin θ2yg >t A,故B 项正确. 5.[ ] [解析]选D.设以速率v 1发射乒乓球,经过时间t 1刚好落到球网正中间.则竖直方向上有3h -h =12gt 21 ①,水平方向上有L 12=v 1t 1 ②.由①②两式可得v 1=L 14gh. 设以速率v 2发射乒乓球,经过时间t 2刚好落到球网右侧台面的两角处,在竖直方向有3h =12gt 22 ③,在水平方向有⎝⎛⎭⎫L 222+L 21=v 2t 2 ④.由③④两式可得v 2=12(4L 21+L 22)g6h.则v 的最大取值范围为v 1<v <v 2.故选项D 正确.6.[ ] [解析]选C.小球做平抛运动,平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.球跟管壁碰撞中受水平方向弹力作用,只改变水平方向速度大小,而竖直方向始终仅受重力作用,保持自由落体运动.由公式h =12gt 2,得t =2hg,因A 、B 等高,故t 相同,应选C.7.[ ] [解析]选A.如图:假设第二颗炸弹经过Ab ,第三颗经过PQ (Q 点是轨迹与斜面的交点),则a 、A 、B 、P 、C 在同一水平线上,由题意可知,设aA =AP =x 0,ab =bc =L ,斜面倾角为θ,三颗炸弹到达a 所在水平面的竖直速度为v y ,水平速度为v 0,对第二颗炸弹:水平方向:x 1=L cos θ-x 0=v 0t 1 竖直方向:y 1=v y t 1+12gt 21对第三颗炸弹:水平方向:x 2=2L cos θ-2x 0=v 0t 2 竖直方向:y 2=v y t 2+12gt 22解得:t 2=2t 1,y 2>2y 1,所以Q 点在c 点的下方,也就是第三颗炸弹将落在bc 之间,故A 正确.8.[ ] [解析]选AB.甲做平抛运动,在水平方向上做匀速直线运动,所以在未落地前任何时刻,甲、乙两球都在同一竖直线上,最后在地面上相遇,可能在P 点前,也可能在P 点后,还可能在P 点;甲在竖直方向上做自由落体运动,所以在未落地前的任何时刻,甲、丙两球在同一水平线上,两球相遇点可能在空中,可能在P 点.所以,若三球同时相遇,则一定在P 点,故A 正确,D 错误.若甲、丙两球在水平面上相遇,由于甲、乙两球始终在同一竖直线上,所以乙球一定在P 点,故B 正确.若甲、乙两球在水平面上相遇,由于甲、丙两球始终在同一水平线上,所以丙球一定落地,故C 错误.9.[ ] [解析]选AC.由于惯性,炸弹和轰炸机水平方向具有相同速度,因此炸弹落地前排列在同一条竖直线上,故A 正确;早投放的炸弹早落地,因此炸弹不会落在同一点,故B 错误;由于水平方向速度相同,下落高度相同,因此这些炸弹落地速度大小方向都相同,故C 正确;因为竖直方向上相同时刻速度不同,空中相邻的炸弹之间的距离随着时间均匀增大,故D 错误.10.[ ] [解析]选BCD.由题意得v 0t =12gt 2,则t =2v 0g ,所以v y =gt =g ·2v 0g =2v 0.则v =v 20+v 2y =5v 0,通过的位移l =2x =2v 0t =22v 20/g .11.[ ] [解析]选BD.P 、Q 离开车后做平抛运动,由h 1=12gt 21①、h 2=12gt 22②,得它们落地的时间都只与下落高度有关,所以时间差(t 1-t 2)也只与下落高度有关,与车速无关,所以A 、C 错,B 正确;由题意知,v =g 2·ΔLh 1-h 2③,联立①②③得D 正确. 12.[ ] [解析]选BD.A 质点做平抛运动,由平抛运动规律知,x 1=v t 1,h =12gt 21,而B 质点在斜面上做类平抛运动,其运动可分解为沿x 轴方向的匀速直线运动和沿斜面向下的匀加速直线运动,设斜面与水平面的夹角为θ,h sin θ=12g sin θt 22,x 2=v t 2,t 1<t 2,x 1<x 2,所以B 、D 正确. 13.[ ] [解析](1)为保证弹丸做平抛运动,用玩具手枪发射弹丸时应使子弹水平飞出;(2)子弹水平分运动是匀速运动,由图知a 、b 、c 、d 间水平距离相等,则相邻两点间的时间间隔相等,设为T ,竖直分运动是自由落体运动,满足Δy =gT 2,得L =gT 2,2L =v 0T ,所以v 0=2LT=2Lg =1.0 m/s.[答案](1)使子弹水平飞出 (2)1.014.[ ] [解析](1)设质点平抛的初速度为v 0,在A 、B 点的竖直分速度分别为v Ay 、v By ,则 v Ay =v 0tan 30°,v By =v 0tan 60°,解得v Ay v By =13.(5分)(2)设从A 到B 的时间为t ,竖直位移和水平位移分别为y 、x ,则 tan θ=yx ,x =v 0t ,y =v Ay +v By 2t ,联立解得tan θ=233.(5分)[答案]见解析15.[ ] [解析]如图所示,h =R 2,则Od =32R(1分)小球做平抛运动的水平位移 x =R +32R ① (1分) 竖直位移y =h =R2②(1分) 根据y =12gt 2③(2分) x =v 0t ④(2分) 联立①②③④解得R =4v 20(7+43)g .(3分) [答案]4v 20(7+43)g16.[ ] [解析](1)球以v 0=25.0 m/s 的初速度做平抛运动,根据y =12gt 2(2分) 下落高度y =3.04 m -2.24 m =0.8 m (2分) 所需时间t 1=2yg=0.4 s (2分)在此时间内水平位移为x 1=v 0t 1=10 m >9 m , 所以能过网.(2分)(2)球落在地上所需时间为 t 2=2h g= 2×3.0410s =0.780 s (2分) 发生的水平位移x 2=v 0t 2=19.5 m >18 m , 所以球不能落在对方界内.(2分)[答案] (1)能过网 (2)不能落在对方界内高中同步测试卷(二)第二单元 圆周运动 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.关于匀速圆周运动的说法,正确的是( )A .匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度B .做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度C .做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速(曲线)运动D .做匀速圆周运动的物体速度大小不变,是匀速运动 2.下列关于离心现象的说法正确的是( ) A .当物体所受离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的运动C .做匀速圆周运动的物体,当它所受的一切力都消失时,它将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做曲线运动3.两个小球固定在一根长为1 m 的杆的两端,杆绕O 点逆时针旋转,如图所示,当小球A 的速度为3 m/s 时,小球B 的速度为12 m/s.则小球B 到转轴O 的距离是 ( )A .0.2 mB .0.3 mC .0.6 mD .0.8 m4.如图所示,天车下吊着两个质量都是m 的工件A 和B ,系A 的吊绳较短,系B 的吊绳较长.若天车运动到P 处突然停止,则两吊绳所受的拉力F A 和F B 的大小关系为( )A .F A >FB B .F A <F BC .F A =F B =mgD .F A =F B >mg5.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ.设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A .arcsin v 2RgB .arctan v 2RgC.12arcsin 2v 2RgD .arctan v 2g6.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是()A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小7.为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两个薄圆盘A、B,A、B平行相距2 m,轴杆的转速为3 600 r/min,子弹穿过两盘留下两弹孔a、b,测得两弹孔所在半径的夹角是30°,如图所示,则该子弹的速度可能是()A.360 m/s B.720 m/sC.1 440 m/s D.108 m/s二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意.)8.关于做匀速圆周运动物体的线速度、角速度、周期之间的关系,下列说法错误的是()A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的半径一定小D.角速度大的周期一定小9.A、B两个质点,分别做匀速圆周运动,在相等时间内它们通过的弧长之比s A∶s B=2∶3,转过的圆心角之比θA∶θB=3∶2.则下列说法中正确的是()A.它们的线速度之比v A∶v B=2∶3B.它们的角速度之比ωA∶ωB=2∶3C.它们的周期之比T A∶T B=2∶3D.它们的周期之比T A∶T B=3∶210.如图所示,皮带传动装置中,右边两轮连在一起共轴转动,图中三轮半径分别为:r1=3r,r2=2r,r3=4r;A、B、C三点为三个轮边缘上的点,皮带不打滑.A、B、C三点的线速度分别为v1、v2、v3,角速度分别为ω1、ω2、ω3,向心加速度分别为a1、a2、a3,则下列比例关系正确的是()A.a 1a 2=32B.ω1ω2=23C.v 2v 3=21D.a 2a 3=1211.如图所示,两根长度不同的细线分别系有一个小球,细线的上端都系于O 点.设法让两个小球在同一水平面上做匀速圆周运动.已知细线长度之比为L 1∶L 2=3∶1,L 1跟竖直方向成60°角.下列说法中正确的有( )A .两小球做匀速圆周运动的周期必然相等B .两小球的质量m 1∶m 2=3∶1C .L 2跟竖直方向成30°角D .L 2跟竖直方向成45°角12.(2016·高考浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)13.(8分)目前,滑板运动受到青少年的喜爱.如图所示,某滑板运动员恰好从B 点进入半径为2.0 m 的14圆弧,该圆弧轨道在C 点与水平轨道相接,运动员滑到C 点时的速度大小为10 m/s.求他到达C 点前、后瞬间的加速度(不计各种阻力).14.(10分)如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端O在竖直平面内做圆周运动,求:(1)小球在最高点A时速度v A为多大时,才能使杆对小球的作用力为零?(2)如m=0.5 kg,L=0.5 m,v A=0.4 m/s,g=10 m/s2,则在最高点A时,杆对小球的作用力是多大?是推力还是拉力?15.(12分)如图所示,水平长杆AB绕过B端的竖直轴OO′匀速转动,在杆上套有一个质量m=1 kg的圆环,若圆环与水平杆间的动摩擦因数μ=0.5,且假设最大静摩擦力与滑动摩擦力大小相等,则(g取10 m/s2):(1)当杆的转动角速度ω=2 rad/s时,圆环的最大旋转半径为多大?(2)如果水平杆的转动角速度降为ω′=1.5 rad/s,圆环能否相对于杆静止在原位置,此时它所受到的摩擦力有多大?16.(12分)如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个用细线相连的质量均为m的小物体A、B,它们到转轴的距离分别为r A=20 cm,r B=30 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍,g取10 m/s2.试求:(1)当细线上开始出现张力时,圆盘的角速度ω1;(2)当A开始滑动时,圆盘的角速度ω2;(3)当A即将滑动时,烧断细线,A、B运动状态如何?参考答案与解析1.[ ] [解析]选B.速度和加速度都是矢量,做匀速圆周运动的物体,虽然速度大小不变,但方向时刻在改变,速度时刻发生变化,必然具有加速度.加速度大小虽然不变,但方向时刻改变,所以匀速圆周运动是变加速曲线运动.故本题选B.2.[ ] [解析]选C.做匀速圆周运动的物体的向心力是效果力.产生离心现象的原因是F 合<mrω2,或是F 合=0(F 突然消失),故A 项错误;当F =0时,根据牛顿第一定律,物体从这时起沿切线做匀速直线运动,故C 项正确,B 、D 项错误.3.[ ] [解析]选D.设小球A 、B 做圆周运动的半径分别为r 1、r 2,则v 1∶v 2=ωr 1∶ωr 2=r 1∶r 2=1∶4,又因r 1+r 2=1 m ,所以小球B 到转轴O 的距离r 2=0.8 m ,D 正确.4.[ ] [解析]选A.设天车原来的速度大小为v ,天车突然停止运动,A 、B 工件都处于圆周运动的最低点,线速度均为v .由于F -mg =m v 2r ,故拉力F =mg +m v 2r,又由于r A <r B ,所以F A >F B ,A 正确.5.[ ] [解析]选B.汽车向右拐弯时,受力如图所示.汽车做圆弧运动的圆心与汽车在同一水平面上,当支持力F N 和重力G 的合力刚好是汽车沿圆弧运动的向心力时,汽车与路面之间的横向摩擦力就为0,因此有:mg tan θ=m v 2R ,可得 θ=arctan v 2Rg.6.[ ] [解析]选B.旋转舱对宇航员的支持力提供宇航员做圆周运动的向心力,即mg =mω2r ,解得ω=gr,即旋转舱的半径越大,角速度越小,而且与宇航员的质量无关,选项B 正确.7.[ ] [解析]选C.子弹从A 盘到B 盘,盘转动的角度θ=2πn +π6(n =0,1,2,…).盘转动的角速度ω=2πT =2πf =2πn =2π×3 60060 rad/s =120π rad/s.子弹在A 、B 间运动的时间等于圆盘转动的时间,即2v =θω,所以v =2ωθ=2×120π2πn +π6,v =1 44012n +1(n =0,1,2,…).n =0时,v =1 440 m/s ; n =1时,v =110.77 m/s ; n =2时,v =57.6 m/s ; ……8.[ ] [解析]选ABC.由v =ωR 得ω=vR ,故只有当半径R 一定时,角速度ω才与线速度v 成正比,A 错误;由v =2πR T 得T =2πRv ,故只有当半径R 一定时,周期T 才与线速度v 成反比,B 错误;由ω=v R 知,只有当线速度v 一定时,角速度ω才与半径R 成反比,C 错误;由ω=2πT 得T =2πω,故周期T 与角速度ω成反比,即角速度大的,周期一定小,D 正确.9.[ ] [解析]选AC.A 、B 两质点分别做匀速圆周运动,若在相等时间内它们通过的弧长之比为s A ∶s B=2∶3,根据公式v =st ,线速度之比为v A ∶v B =2∶3,故A 正确;通过的圆心角之比θA ∶θB =3∶2,根据ω=θt ,角速度之比为3∶2,故B 错误;根据公式T =2πω,周期之比为T A ∶T B =2∶3,故C 正确、D 错误;故选AC.10.[ ] [解析]选BD.因v 1=v 2,由a =v 2R 得a 1a 2=23,A 错;ω1ω2=23,B 对,v 2v 3=2ωr 4ωr =12,C 错;a 2a 3=2ω2r 4ω2r =12,D 对. 11.[ ] [解析]选AC.小球所受合力的大小为mg tan θ,根据mg tan θ=mω2L sin θ,得ω=gL cos θ,两小球在同一水平面内做匀速圆周运动,则两小球的L cos θ相等,即L 1cos 60°=L 2cos θ,解得θ=30°,且角速度相等,由T =2πω知周期相等,A 、C 正确,D 错误;由mg tan θ=mω2L sin θ知,小球做匀速圆周运动与质量无关,无法求出两小球的质量比,B 错误.12.[ ] [解析]选AB.因赛车在圆弧弯道上做匀速圆周运动,由向心力公式有F =m v 2R ,则在大小圆弧弯道上的运动速率分别为v 大=FR m= 2.25mgRm=45 m/s ,v 小= Fr m= 2.25mgrm=30 m/s ,可知赛车在绕过小圆弧弯道后做加速运动,则A 、B 项正确;由几何关系得直道长度为d =L 2-(R -r )2=50 3 m ,由运动学公式v 2大-v 2小=2ad ,得赛车在直道上的加速度大小为a =6.50 m/s 2,则C 项错误;赛车在小圆弧弯道上运动时间t =2πr3v 小=2.79 s ,则D 项错误. 13.[ ] [解析]运动员经圆弧滑到C 点时做圆周运动.由公式a n =v 2r 得a 1=1022.0 m/s 2=50 m/s 2,方向竖直向上. (6分)运动员滑到C 点后进入水平轨道做匀速直线运动, 加速度a 2=0.(2分)[答案]50 m/s 2,方向竖直向上 014.[ ] [解析](1)若杆和小球之间相互作用力为零,那么小球做圆周运动的向心力由重力mg 提供,则有mg =m v 2AL,解得:v A =Lg .(4分) (2)杆长L =0.5 m 时,临界速度v 临=Lg =0.5×10 m/s =2.2 m/s (2分)v A =0.4 m/s<v 临,杆对小球有推力F A . 则有mg -F A =m v 2A L 解得:F A =mg -m v 2AL=⎝⎛⎭⎫0.5×10-0.5×0.420.5N =4.84 N . (4分)[答案](1)Lg(2)4.84 N推力15.[ ][解析](1)圆环在水平面内做匀速圆周运动的向心力是杆施加给它的静摩擦力提供的,则最大向心力F向=μmg(2分) 代入公式F向=mR maxω2(2分)得R max=μgω2,(2分)代入数据可得R max=1.25 m.(2分)(2)当水平杆的转动角速度降为1.5 rad/s时,圆环所需的向心力减小,则圆环所受的静摩擦力随之减小,不会相对于杆滑动,故圆环相对杆仍静止在原来的位置,此时的静摩擦力f=mR maxω′2≈2.81 N. (4分) [答案](1) 1.25 m(2)能 2.81 N16.[ ][解析](1)对B:kmg=mω21r B,(2分)代入数据得:ω1=2303rad/s=3.65 rad/s. (2分)(2)当A开始滑动时,A、B受力情况如图所示对A:F fm-F T=mω22r A=(2分)对B:F fm+F T=mω22r B(2分)其中F fm=kmg(1分)联立解得:ω=4 rad/s. (1分)(3)A继续做圆周运动,B做离心运动.(2分)[答案]见解析高中同步测试卷(三)第三单元行星运动和万有引力定律(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.(2016·高考全国卷丙)关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2D.GM h2 3.两颗行星的质量分别为m 1和m 2,绕太阳运行的轨道半长轴分别为r 1和r 2,则它们的公转周期之比为( )A.r 1r 2B.r 31r 32C.r 31r 32D .无法确定4.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M 、半径为R .则物体与地球间的万有引力是( )A .零B .无穷大C .GMm /R 2D .无法确定5.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N .由此可推知,该行星的半径与地球半径之比约为( )A .0.5B .2C .3.2D .46.两个质量分布均匀且大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F ,若两个半径是小铁球2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( )A .2FB .4FC .8FD .16F7.英国《新科学家(New Scientist)》杂志评选出了世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M 和半径R 的关系满足M R =c 22G (其中c 为光速,G 为引力常量),则该黑洞表面重力加速度的数量级为( )A .108 m/s 2B .1010 m/s 2C .1012 m/s 2D .1014 m/s 2二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意.)8.在力学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是( )A .伽利略发现了行星运动的规律。
第八章机械能守恒定律1 功与功率第2课时功率基础过关练题组一功率的理解和计算1.关于功率,下列说法正确的是( )A.功率是描述力对物体做功多少的物理量B.力做功时间越长,力的功率一定越小C.力对物体做功越快,力的功率一定越大D.力对物体做功越多,力的功率一定越大2.汽车上坡时,保持汽车发动机输出功率一定,降低速度,这样做的目的是( )A.增大牵引力B.减小牵引力C.增大阻力D.减小惯性3.假设列车从静止开始做匀加速直线运动,经过500 m后,速度达到最大,为360 km/h。
整列列车的质量为1×105 kg,如果不计阻力,在匀加速阶段,牵引力的最大功率是( )A.4.67×106 kWB.1×105 kWC.1×108 kWD.4.67×109 kW题组二平均功率与瞬时功率4.(多选)质量为3 kg的物体,从高45 m处自由落下(g取10 m/s2),那么在下落的过程中( )A.前2 s内重力做功的功率为300 WB.前2 s内重力做功的功率为675 WC.第2 s末重力做功的功率为600 WD.第2 s末重力做功的功率为900 W5.飞行员进行素质训练时,抓住秋千杆由水平状态开始下摆,如图所示,到达竖直状态的过程中,飞行员所受重力的瞬时功率变化情况是( )A.一直增大B.一直减小C.先增大后减小D.先减小后增大6.(多选)如图甲所示,物体受到水平推力F的作用在粗糙水平面上做直线运动,推力F、物体速度v随时间t变化的规律如图乙、丙所示。
取g=10 m/s2,则( )A.第1 s内推力做功为1 JB.第2 s内物体克服摩擦力做的功为2 JC.t=1.5 s时推力F的功率为2 WD.第2 s内推力F做功的平均功率为3 W7.在F=6 N的水平力作用下,质量m=3 kg的物体在光滑水平面上由静止开始运动,运动时间t=3 s。
求:(1)力F在前3 s内对物体做的功;(2)力F在前3 s内对物体做功的平均功率;(3)在3 s末力F对物体做功的瞬时功率。
综合测评(B)(时间:60分钟满分:100分)一、单项选择题(本题共5小题,每小题5分,共25分。
每小题只有一个选项符合题目要求)1.如图所示,乒乓球从斜面上滚下,它以一定的速度沿直线运动,在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着球横向吹气,则关于乒乓球的运动,下列说法正确的是()A.乒乓球将保持原有的速度继续前进B.乒乓球将偏离原有的运动路径,但不进入纸筒C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒答案:B解析:当乒乓球经过筒口时,对着球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动,故一定不会进入纸筒。
2.如图所示,山崖边的公路常被称为最险公路,一辆汽车欲安全通过此弯道公路(公路水平),下列说法不正确的是()A.若汽车以恒定的角速度转弯,选择内圈较为安全B.若汽车以恒定的线速度大小转弯,选择外圈较为安全C.汽车在转弯时受到重力、支持力和摩擦力作用D.汽车在转弯时受到重力、支持力、摩擦力和向心力作用答案:D解析:汽车做的是匀速圆周运动,故侧向静摩擦力提供向心力,重力和支持力平衡,向心力由合力提供,故C正确,D错误。
如果汽车以恒定的角速度转弯,根据F n=mω2r,在内圈时转弯半径小,故在内圈时向心力小,静摩擦力小,不容易打滑,较安全,故A正确。
若汽车以恒定的线速度,在外圈时转弯半径大,故在外圈时向心力小,静摩擦力小,不容易打滑,大小转弯,根据F n=m v2r较安全,故B正确。
3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度减小为,不考虑卫星质量的变化,则变轨前后卫星的()原来的12A.向心加速度大小之比为4∶1B.角速度之比为2∶1C.周期之比为1∶4D.轨道半径之比为1∶4 答案:D解析:该卫星变轨后仍做匀速圆周运动,速度减为原来的12,根据Gm 地m r 2=m v 2r 可得r=Gm 地v 2,可知变轨后轨道半径变为原来的4倍,选项D 正确。
最新人教版高中物理必修二同步测试题及答案系列2高中同步测试卷(六)第六单元 动能和动能定理 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.(2016·高考四川卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( )A .动能增加了1 900 JB .动能增加了2 000 JC .重力势能减小了1 900 JD .重力势能减小了2 000 J2.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身的重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为 ( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍3.如图所示,斜面倾角为θ=30°.把一个小球从某位置以初动能Ek0水平向左抛出,小球垂直落在斜面上,在此过程中小球重力做功为(不计空气阻力)( )A.43E k0 B .3E k0 C .4E k0D .8E k04.物体在恒定阻力作用下,以某初速度在水平面上沿直线滑行直到停止.以a 、E k 、s 和t 分别表示物体运动的加速度大小、动能、位移的大小和运动的时间,则以下各图象中,能正确反映这一过程的是( )5.如图所示,一个小球质量为m ,静止在光滑的轨道上,现以水平力击打小球,使小球能够通过半径为R 的竖直光滑轨道的最高点C ,则水平力对小球所做的功至少为( )A .mgRB .2mgRC .2.5mgRD .3mgR第5题图 第6题图6.如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )A .mgh -12m v 2B.12m v 2-mgh C .-mghD .-⎝⎛⎭⎫mgh +12m v 2 7.如图所示,斜面高为h ,质量为m 的物块在沿斜面向上的恒力F 作用下,能匀速沿斜面向上运动,若把此物块放在斜面顶端,在沿斜面向下同样大小的恒力F 作用下物块由静止向下滑动,滑至底端时其动能的大小为( )A .mghB .2mghC .2FhD .Fh二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意.)8.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能可能( ) A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大9.在光滑的水平地面上,有质量相同的甲、乙两物体,甲原来静止,乙以速度v 做匀速直线运动,俯视图如图所示.某时刻它们同时受到与v 方向垂直的相同水平恒力F 的作用,经过相同时间( )A .两物体的位移相同B .恒力F 对两物体所做的功相同C .两物体的速度变化率相同D .两物体的动能变化量相同10.起重机将质量为500 kg 的物体由静止竖直向上吊起2 m 高,此时物体的速度大小为1 m/s ,如果g 取10 m/s 2,则( )A .起重机对物体做功250 JB .起重机对物体做功1.025×104 JC .物体受到的合力对它做功250 JD .物体受到的合力对它做功1.025×104 J11.人通过滑轮将质量为m 的物体沿粗糙的斜面由静止开始匀加速地由底端拉上斜面顶端,物体到达斜面顶端的速度为v ,上升的高度为h ,如图所示.则在此过程中( )A .物体所受的合外力做功为mgh +12m v 2B .物体所受的合外力做功为12m v 2C .人对物体做的功为mghD .人对物体做的功大于mgh12.如图所示是质量为1 kg 的质点在水平面上做直线运动的v -t 图象.以下判断正确的是( )A .在t =1 s 时,质点的加速度为零B .在4~6 s 时间内,质点的平均速度为2 m/sC .在0~3 s 时间内,合力对质点做功为6 JD .在3~7 s 时间内,合力做功的平均功率为2 W13.(10分)在“探究恒力做功与动能改变的关系”实验中,某实验小组采用如图甲所示的实验装置.(1)实验时为了保证小车受到的合外力与沙和沙桶的总重力大小基本相等,在沙和沙桶的总质量m 与小车的质量M 的关系必须满足m ≪M 的同时,实验时首先要做的步骤是________.(2)如图乙所示为实验中打出的一条纸带,选取纸带中的A 、B 两点来探究恒力做功与动能改变的关系,测出A 、B 两点间距l 和速度大小v A 、v B .已知沙和沙桶的总质量m ,小车的质量M ,重力加速度g .则本实验要验证的数学表达式为__________________.(用题中的字母表示实验中测量得到的物理量)四、计算题(本题共3小题,共32分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)14.(10分)一辆汽车质量为m ,从静止开始启动,沿水平面前进了s 后,就达到了最大行驶速度v m ,设汽车的牵引功率保持不变,所受阻力为车重的k 倍.求:(1)汽车的牵引功率;(2)汽车从静止到开始匀速运动所需的时间.(提示:汽车以额定功率启动后的运动不是匀加速运动)15.(10分)如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B端的切线沿水平方向.质量m=1.0 kg的滑块(可视为质点)在水平恒力F=10.0 N的作用下,从A点由静止开始运动,当滑块运动的位移x=0.50 m时撤去力F.已知A、B之间的距离x0=1.0 m,滑块与水平轨道间的动摩擦因数μ=0.10,g取10 m/s2.求:(1)在撤去力F时,滑块的速度大小;(2)滑块通过B点时的动能;(3)滑块通过B点后,能沿圆弧轨道上升的最大高度h=0.35 m,求滑块沿圆弧轨道上升过程中克服摩擦力做的功.16.(12分)如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可视为质点)从直轨道上的P点由静止释放,结果它能在两轨道间往复运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体往复运动的整个过程中,在AB轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力.参考答案与解析1.[导学号94770083][解析]选C.根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔE k=W G+W f=1 900 J-100 J=1 800 J,A、B项错误;重力做功与重力势能改变量的关系为W G=-ΔE p,即重力势能减少了1 900 J,C项正确,D项错误.2.[导学号94770084][解析]选B.设地面对双脚的平均作用力为F,在全过程中,由动能定理得mg(H +h)-Fh=0,F =mg (H +h )h =2+0.50.5mg =5mg ,故B 正确.3.[导学号94770085] [解析]选B.如图所示,垂直撞击斜面,则撞击斜面时的速度大小v =v 0sin θ,动能为12m v 2=4×12m v 20=4E k0,应用动能定理得重力做功为3E k0,B 正确.4.[导学号94770086] [解析]选C.物体在恒定阻力作用下运动,其加速度随时间不变、随位移不变,A 、B 均错误;由动能定理,-fs =E k -E k0,解得E k =E k0-fs ,C 正确、D 错误.5.[导学号94770087] [解析]选C.设小球恰好能通过最高点C 时的速度为v ,则有mg =m v 2R ,此时水平力对小球所做的功记为W ,W -2mgR =12m v 2,联立两式可得W =2.5mgR ,选项C 正确.6.[导学号94770088] [解析]选A.由A 到C 的过程运用动能定理可得: -mgh +W =0-12m v 2,所以W =mgh -12m v 2,故A 正确.7.[导学号94770089] [解析]选B.向上运动过程由动能定理得FL -F f L -mgh =0;向下运动过程由动能定理得FL -F f L +mgh =E k -0,解得E k =2mgh ,B 正确.8.[导学号94770090] [解析]选ABD.若力F 的方向与初速度v 0的方向一致,则质点一直加速,动能一直增大,选项A 正确;若力F 的方向与v 0的方向相反,则质点先减速至速度为零后再反向加速,动能先减小至零后再增大,选项B 正确;若力F 的方向与v 0的方向成一钝角,如斜上抛运动,物体先减速,减到某一值再加速,则其动能先减小至某一非零的最小值再增大,选项D 正确.9.[导学号94770091] [解析]选BCD.经过相同时间,沿力F 方向的位移相同,而乙沿速度v 方向还有分位移,A 错误;两物体在相同时间内受到的力F 相同、沿F 方向的位移相同,恒力F 对两物体所做的功相同,B 正确;力F 相同,两物体质量相同,则加速度相同、速度变化率相同,C 正确;根据动能定理可知两物体的动能变化量等于恒力F 做的功,D 正确.10.[导学号94770092] [解析]选BC.将物体向上吊起h =2 m 过程中,应用动能定理可知合外力对物体做功W =12m v 2=250 J ,C 正确、D 错误;又起重机对物体做功W F =mgh +W ,可得W F =1.025×104 J ,A 错误,B 正确.11.[导学号94770093] [解析]选BD.物体沿斜面做匀加速运动,根据动能定理有:W 合=W F -W f -mgh =12m v 2,其中W f 为物体克服摩擦力做的功,人对物体做的功就是人对物体的拉力做的功,所以W F =W f +mgh +12m v 2,选项A 、C 错误,B 、D 正确.12.[导学号94770094] [解析]选CD.由题图可得,0~3 s ,质点的加速度是2 m/s 2,A 错误;在4~6s 时间内,质点的位移是6 m ,所以平均速度是v =6 m2 s =3 m/s ,B 错误;由动能定理,在0~3 s 时间内,合力对质点做功为W =12m v 2-12m v 20=6 J ,C 正确;在3~7 s 时间内,合力做功大小W =12m v ′2-12m v ′20=8 J ,平均功率P =W t =84W =2 W ,D 正确.13.[导学号94770095] [解析](1)小车受到自身重力、木板支持力、细绳拉力及木板摩擦力等力的作用,实验要求保证小车受到的合外力与沙和沙桶的总重力基本相等,而细绳上的拉力小于沙和沙桶的总重力,那就必须将木板的摩擦力排除,因此,实验时必须先平衡摩擦力.(2)A 、B 两点间距l 表示小车在细绳拉力作用下运动的位移,细绳拉力近似等于沙和沙桶的总重力,该过程中合外力对小车做的总功为W =mgl ,小车在A 、B 两点的速度大小为v A 、v B ,小车在该过程中的动能变化量为ΔE k =12M v 2B -12M v 2A .因此,该实验只要验证mgl =12M v 2B -12M v 2A 成立,就验证了恒力做功与动能改变的关系结论.[答案](1)平衡摩擦力 (2)mgl =12M (v 2B -v 2A ) 14.[导学号94770096] [解析](1)根据P =F 0v m 可知匀速运动时牵引力最小且有F 0=kmg (2分)得P =kmg v m .(3分)(2)汽车从静止到开始匀速运动,设所用时间为t , 根据动能定理有Pt -kmgs =m v 2m 2(3分) 解之得时间t =v 2m +2kgs2kg v m.(2分)[答案](1)kmg v m (2)v 2m +2kgs2kg v m15.[导学号94770097] [解析](1)滑动摩擦力F f =μmg 设滑块的加速度为a 1,根据牛顿第二定律得: F -μmg =ma 1 (1分) 解得:a 1=9.0 m/s 2(1分)设滑块运动位移为0.50 m 时的速度大小为v ,根据运动学公式得:v 2=2a 1x (1分) 解得:v =3.0 m/s.(1分)(2)设滑块通过B 点时的动能为E k B ,从A 到B 运动过程中,由动能定理得:Fx -F f x 0=E k B (2分) 解得:E k B =4.0 J .(1分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为W ,由动能定理得:-mgh -W =0-E k B (2分)解得:W =0.50 J .(1分)[答案](1)3.0 m/s (2)4.0 J (3)0.50 J16.[导学号94770098] [解析](1)根据动能定理有 mgR cos θ-W 阻=0-0(2分)F 阻=μmg cos θ,W 阻=F 阻s (2分) 得s =W 阻F 阻=R μ.(1分)(2)由于在PB 段受到摩擦阻力作用,小物体最终在BF 弧之间做往复运动.从B 点到E 点,由动能定理得mgR (1-cos θ)=12m v 2E -0(2分) v 2E =2gR (1-cos θ)(1分) 由牛顿第二定律可得F -mg =m v 2E R(2分) F =3mg -2mg cos θ.(1分)由牛顿第三定律可知物体对圆弧轨道的压力大小为3mg -2mg cos θ,方向竖直向下. (1分) [答案](1)Rμ(2)3mg -2mg cos θ,方向竖直向下高中同步测试卷(七)第七单元 机械能守恒与能量守恒定律(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.在最近几年的夏季家电市场上出现一个新宠——变频空调,据专家介绍,变频空调比定频的要节能,因为定频空调开机时就等同于汽车启动时,很耗能,是正常运行耗能的5至7倍.空调在工作时达到设定温度就停机,等温度高了再继续启动.这样会频繁启动,耗电多,而变频空调启动时有一个由低到高的过程,而运行过程是自动变速来保持室内温度,从开机到关机中间不停机,而是达到设定温度后就降到最小功率运行,所以比较省电.阅读上述介绍后,探究以下说法中合理的是( )A .变频空调节能,运行中不遵守能量守恒定律B .变频空调运行中做功少,转化能量多C .变频空调在同样工作条件下运行效率高,省电D .变频空调和定频空调做同样功时,消耗的电能不同2.如图所示,从倾角为θ=30°的斜面顶端以初动能E1=6 J 向下坡方向平抛出一个小球,则小球落到斜面上时的动能E 2为( )A .8 JB .12 JC .14 JD .16 J3.如图所示,轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A 相连,物体A 置于光滑水平桌面上,A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时托住B ,A 处于静止且细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析中正确的是( )A .B 物体受到细线的拉力保持不变B .B 物体机械能的减少量小于弹簧弹性势能的增加量C .A 物体动能的增加量等于B 物体的重力对B 做的功与弹簧弹力对A 做的功之和D .A 物体与弹簧所组成的系统机械能的增加量等于细线的拉力对A 做的功 4.有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A.4v 2gB.3v 2gC.2v 23gD.4v 23g5.利用传感器和计算机可以研究快速变化的力的大小,实验时让某消防队员从一平台上自由下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,最后停止.用这种方法获得消防队员受到地面冲击力随时间变化图象如图所示,由图象可知( )A .t 2时刻消防员的速度最大B .t 3时刻消防员的动能最小C .t 4时刻消防员的加速度最大D .消防员在整个运动过程中机械能守恒6.内壁光滑的环形凹槽半径为R ,固定在竖直平面内,一根长度为 2R 的轻杆,一端固定有质量为m 的小球甲,另一端固定有质量为2m 的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点,如图所示,由静止释放后( )A .下滑过程中甲球减少的机械能总是等于乙球增加的机械能B .下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能C .甲球可沿凹槽下滑到槽的最低点D .杆从右向左滑回时,乙球一定不能回到凹槽的最低点7.如图所示,质量为m 的物块从A 点由静止开始下落,加速度为12g ,下落H 到B 点后与一轻弹簧接触,又下落h 后到达最低点C .在由A 运动到C 的过程中,则( )A .物块机械能守恒B .物块和弹簧组成的系统机械能守恒C .物块机械能减少mg (H +h )/2D .物块和弹簧组成的系统机械能减少mg (H +h )/2二、多项选择题(本题共5小题,每小题6分,共30分.在每小题给出的四个选项中,有多个选项符合题意.)8.如图所示,斜面置于光滑水平地面,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是( )A.物体的重力势能减少,动能增加B.斜面的机械能不变C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面组成的系统机械能守恒9.如图,一物体以初速度v0冲向光滑斜面AB,并能沿斜面升高h,下列说法中错误的是()A.若把斜面从C点锯断,由机械能守恒定律知,物体冲出C点后仍能升高hB.若把斜面弯成圆弧形,物体仍能沿AB′升高hC.若把斜面从C点锯断或弯成圆弧状,物体都不能升高h,因为机械能不守恒D.若把斜面从C点锯断或弯成圆弧状,物体都不能升高h,但机械能仍守恒10.如图所示,长为L的粗糙长木板水平放置,在木板的A端放置一个质量为m的小物块.现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,重力加速度为g.下列判断正确的是()A.整个过程物块所受的支持力垂直于木板,所以不做功B.物块所受支持力做功为mgL sin αC.发生滑动前静摩擦力逐渐增大D.整个过程木板对物块做的功等于物块机械能的增量11.如图所示,离水平地面一定高度处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,轻质弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中错误的是()A.轻质弹簧获得的最大弹性势能小于小球抛出时的动能B.轻质弹簧获得的最大弹性势能等于小球抛出时的动能C.小球从抛出到将轻质弹簧压缩到最短的过程中小球的机械能守恒D.小球抛出的初速度大小仅与圆筒离地面的高度有关12.如图所示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量分别为m、2m.开始时细绳伸直,用手托着物体A使弹簧处于原长,且A与地面的距离为h,物体B静止在地面上.放手后物体A下落,与地面即将接触时速度为v,此时物体B对地面恰好无压力.若在物体A下落的过程中,弹簧始终处在弹性限度内,则A接触地面前的瞬间()A .物体A 的加速度大小为g ,方向竖直向下B .弹簧的弹性势能等于mgh -12m v 2C .物体B 有向上的加速度D .弹簧对物体A 拉力的瞬时功率大小为2mg v13.(10分)“验证机械能守恒定律”的实验可以采用如下图所示的甲或乙方案来进行.自由落体实验 验证机械能守恒定律 甲斜面小车实验验证机械能守恒定律 乙(1)比较这两种方案,________(选填“甲”或“乙”)方案好些,理由是_____________.(2)下图是该实验中得到的一条纸带,测出每两个计数点间的距离,已知每两个计数点之间的时间间隔T =0.1 s ,物体运动的加速度a =________;该纸带是采用________(选填“甲”或“乙”)实验方案得到的.简要写出判断依据:________________________.(3)下图是采用甲方案得到的一条纸带,在计算图中N 点的速度时,几位同学分别用下列不同的方法进行,其中正确的是________.(填选项前的字母)A .v N =gnTB .v N =x n +x n +12TC .v N =d n +1-d n -12TD .v N =g (n -1)T四、计算题(本题共3小题,共32分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)14.(10分)(2016·高考全国卷丙)如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成径为R2.一小的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.15.(10分)三峡水力发电站是我国最大的水力发电站,平均水位落差约100 m ,水的流量约1.35×104m 3/s.船只通航需要约3 500 m 3/s 的流量,其余流量全部用来发电.水流冲击水轮机发电时,水流减少的机械能有20%转化为电能.(g 取10 m/s 2)(1)按照以上数据估算,三峡发电站的发电功率最大是多少?(2)根据对家庭生活用电量的调查,三口之家平均每户同时用电的功率为0.5 kW ,如果三峡电站全部用于城市生活用电,它可以满足多少个百万人口城市的生活用电?16.(12分)电动机带动水平传送带以速度v 匀速运动,一质量为m 的小木块静止轻放在传送带上,若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的动能; (4)摩擦过程产生的内能;(5)因传送小木块,电动机多输出多少能量?参考答案与解析1.[导学号94770099] [解析]选C.自然界的一切过程都遵守能量守恒定律,A 错;功是能量转化的量度,做同样功,消耗同样电能,B 、D 错;由变频空调的工作特点可知省电的原理是效率高,C 对.2.[导学号94770100] [解析]选C.由平抛运动知识可知,当小球落到斜面上时:水平方向的位移x =v 0t ,竖直方向的位移y =12gt 2,根据E k =12m v 20,斜面倾角为θ=30°,且初动能E 1=6 J ,联立以上各式解得,小球落到斜面上时的动能E 2为14 J ,C 正确.3.[导学号94770101] [解析]选D.由静止释放B 直至B 获得最大速度的过程中,由于弹簧随着A 、B 一起运动导致弹力变大,所以A 、B 的合力以及加速度都在减小,速度增大,B 物体受到细线的拉力一直在增大,A 错误;B 物体机械能的减少量等于弹簧弹性势能的增加量和A 的动能的增加量之和,故B 错误;根据动能定理可知A 物体动能的增加量等于细线对A 做的功与弹簧弹力对A 做的功的代数和,C 错误;根据功能关系可判断D 正确.4.[导学号94770102] [解析]选D.由运动的合成与分解可知滑块A 和B 在绳长方向的速度大小相等,有v A sin 60°=v B cos 60°,解得v A =33v ,将滑块A 、B 看成一系统,系统的机械能守恒,设滑块B 下滑的高度为h ,有mgh =12m v 2A +12m v 2B ,解得h =2v 23g ,由几何关系可知绳子的长度为L =2h =4v 23g ,故选项D 正确.5.[导学号94770103] [解析]选A.0~t 1,消防员做自由落体运动,t 1~t 2,消防员做加速度减小的加速运动,t 2时,F =mg ,a =0,此时速度最大,所以A 正确;t 2~t 4,消防员做减速运动,t 4时,消防员停止运动,v =0,F =mg ,则a =0,所以B 、C 错误;t 2~t 4,消防员的势能减小,动能也减小,所以机械能不守恒,故D 错误.6.[导学号94770104] [解析]选A.环形槽光滑,甲、乙组成的系统在运动过程中只有重力做功,故系统机械能守恒,下滑过程中甲减少的机械能总是等于乙增加的机械能,甲、乙系统减少的重力势能等于系统增加的动能;甲减少的重力势能等于乙增加的势能与甲、乙增加的动能之和;由于乙的质量较大,系统的重心偏向乙一端,由机械能守恒,知甲不可能滑到槽的最低点,杆从右向左滑回时乙一定会回到槽的最低点.7.[导学号94770105] [解析]选D.由牛顿第二定律可知,mg -f =ma =mg /2,则f =mg /2;物块机械能的减少量取决于空气阻力和弹簧的弹力对物块做的功,物块和弹簧组成的系统机械能的减少量取决于空气阻力对物块做的功:W f =f (H +h )=mg (H +h )/2,即D 正确.8.[导学号94770106] [解析]选AD.物体由静止开始下滑的过程其重力势能减少,动能增加,A 正确.物体在下滑过程中,斜面做加速运动,其机械能增加,B 错误.物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,弹力方向垂直于接触面,但与速度方向之间的夹角大于90°,所以斜面对物体的作用力做负功,C 错误.对物体与斜面组成的系统,只有物体的重力和物体与斜面间的弹力做功,机械能守恒,D 正确.9.[导学号94770107] [解析]选ABC.若把斜面从C 点锯断,物体到达最高点时水平速度不为零,由机械能守恒定律可知,物体冲出C 点后不能升高h ;若把斜面弯成半圆弧状,物体在升高h 之前已经脱离轨道.但两种情况下机械能均守恒.10.[导学号94770108] [解析]选BCD.由题意得,物块滑动前支持力属于沿运动轨迹切线方向的变力,由微元法可知在这个过程中支持力做正功,而且根据动能定理,在缓慢抬高A 端的过程中,W -mgL sin α=0,可知W =mgL sin α,所以A 项错,B 项正确.由平衡条件得在滑动前静摩擦力f 静=mg sin θ,当θ↑时,f 静↑,所以C 项正确.在整个过程中,根据除了重力以外其他力做功等于机械能的变化量可知D 项正确.11.[导学号94770109] [解析]选BCD.小球从抛出到将轻质弹簧压缩到最短的过程中,只有重力和弹力做功,因此小球和轻质弹簧组成的系统的机械能守恒,即12m v 20=mgh +E p ,由此得到E p <12m v 20,选项A 正确,B 、C 错误;斜上抛运动可分解为竖直上抛运动和水平方向上的匀速直线运动,在竖直方向上有2gh=v 20sin 2θ(θ为v 0与水平方向的夹角),解得v 0=2ghsin θ,由此可知,选项D 错误. 12.[导学号94770110] [解析]选BD.当A 即将接触地面时,物体B 对地面无压力,对B 受力分析可知,细绳拉力等于轻弹簧弹力F =2mg ,选项C 错误;然后对A 受力分析可得:F -mg =ma ,可得a =g ,方向竖直向上,选项A 错误;A 下落过程中,A 与弹簧整体机械能守恒,可得mgh =E p +12m v 2,弹簧的弹性势能E p =mgh -12m v 2,选项B 正确;拉力的瞬时功率为P =F v =2mg v ,选项D 正确.13.[导学号94770111] [解析](1)机械能守恒的前提是只有重力做功,实际操作的方案中应该使摩擦力越小越好,所以甲方案好.(2)处理纸带数据时,为减小误差一般采用逐差法,即a =(s DE -s AB )+(s EF -s BC )6T 2,代入数值,解得a =4.8 m/s 2(4.7 m/s 2~4.9 m/s 2均可).该纸带是采用乙实验方案得到的,这是因为物体运动的加速度比重力加速度小很多.(3)匀变速运动中某一段位移的平均速度等于该段位移中间时刻的瞬时速度.因为所取计时起点O 的速度不一定为零,同时物体在下落过程中由于受到阻力作用,下落的加速度要小于重力加速度,所以A 、D 错误,B 、C 正确.[答案](1)甲 甲方案中摩擦力较小 (2)4.8 m/s 2 乙物体运动的加速度a =4.8 m/s 2<g (3)BC 14.[导学号94770112] [解析](1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得 E k A =mg R 4①(1分)设小球在B 点的动能为E k B ,同理有 E k B =mg 5R4②(1分) 由①②式得E k B ∶E k A =5∶1.③(1分) (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0④ (2分)。
第五章抛体运动本章复习提升易混易错练易错点1 对“物体做曲线运动的条件”不理解引起错解1.(2020陕西西安中学高三上期中,)物体在恒力F1、F2、F3的共同作用下做匀速直线运动,若突然撤去恒力F1,关于物体的运动情况,下列说法正确的是( )A.一定做匀变速直线运动B.可能做匀速直线运动C.可能做曲线运动D.速度大小一定增加2.()光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点施加上沿x轴正方向的恒力F x和沿y轴正方向的恒力F y,则( )A.因为有F x,质点一定做曲线运动B.如果F y>F x,质点向y轴一侧做曲线运动C.质点一定做直线运动D.如果F y<F x tan α,质点向x轴一侧做曲线运动易错点2 对“运动的合成与分解”不理解引起错解3.(2020江苏无锡高一上期末,)(多选)如图所示,蜡块可以在竖直玻璃管内的水中匀速上升。
若在蜡块从A点开始匀速上升的同时,玻璃管沿水平方向向右做直线运动(如图),则关于蜡块的实际运动轨迹的说法中正确的是( )A.若玻璃管向右做匀速直线运动,则轨迹为直线PB.若玻璃管向右做匀加速直线运动,则轨迹为直线PC.若玻璃管向右做匀加速直线运动,则轨迹为曲线RD.若玻璃管向右做匀加速直线运动,则轨迹为曲线Q4.()如图所示,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业。
为了节省救援时间,人沿梯子匀加速向上运动的同时消防车匀速后退,从地面上看,下列说法正确的是( )A.消防队员做匀加速直线运动B.消防队员做匀变速曲线运动C.消防队员做变加速曲线运动D.消防队员水平方向的速度保持不变易错点3 认错平抛运动的抛出点5.()(多选)如图所示,方格坐标每一小格边长为10 cm。
一物体做平抛运动时分别经过O、a、b三点,重力加速度g取10 m/s2,则下列结论正确的是( )A.O点就是抛出点B.物体经过a点的速度v a与水平方向成45°角C.速度变化量Δv aO=Δv baD.小球抛出速度v=1 m/s易错点4 不能正确理解运动效果引起错解6.()小船以一定的速率垂直河岸向对岸驶去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是( )A.水速小时,位移小,时间亦短B.水速大时,位移大,时间亦长C.水速大时,位移大,但时间不变D.位移大小、时间长短与水速大小无关7.()某同学设计了一个用网球定点击鼓的游戏,如图是他表演时的场地示意图。
新人教版高中物理必修二同步试题
第五章曲线运动
圆周运动、向心加速度、向心力
单元测试题
【试题评价】
一、选择题
1.质量相同的两个小球,分别用L和2L的细绳悬挂在天花板上。
分别拉起小球使线伸直呈水平状态,然后轻轻释放,当小球到达最低位置时:()
A.两球运动的线速度相等 B.两球运动的角速度相等
C.两球的向心加速度相等 D.细绳对两球的拉力相等
2.对于做匀速圆周运动的质点,下列说法正确的是:()
A.根据公式a=V2/r,可知其向心加速度a与半径r成反比
B.根据公式a=ω2r,可知其向心加速度a与半径r成正比
C.根据公式ω=V/r,可知其角速度ω与半径r成反比
D.根据公式ω=2πn,可知其角速度ω与转数n成正比
3、下列说法正确的是:()
A. 做匀速圆周运动的物体处于平衡状态
B. 做匀速圆周运动的物体所受的合外力是恒力
C. 做匀速圆周运动的物体的速度恒定
D. 做匀速圆周运动的物体的加速度大小恒定
4.物体做圆周运动时,关于向心力的说法中欠准确的是: ( )
①向心力是产生向心加速度的力②向心力是物体受到的合外力③向心力的作用是改变物体速度的方向④物体做匀速圆周运动时,受到的向心力是恒力
A.① B.①③ C.③ D.②④
5.做圆周运动的两个物体M和N,它们所受的向心力F与轨道半径置间的关系如图1—4所示,其中N的图线为双曲线的一个分支,则由图象可知: ( )
A.物体M、N的线速度均不变
B.物体M、N的角速度均不变
C.物体M的角速度不变,N的线速度大小不变
D.物体N的角速度不变,M的线速度大小不变
6.长度为L=0.50 m的轻质细杆OA,A端有一质量为m=3.0 k g的小
球,如图5-19所示,小球以O点为圆心,在竖直平面内做圆周运动,
通过最高点时,小球的速率是v=2.0 m/s,
g取10 m/s2,则细杆此时受到:( )
A.6.0 N拉力 B.6.0 N压力
C .24 N 拉力
D .24 N 压力 7、关于向心力的说法中正确的是:( ) A 、物体受到向心力的作用才可能做圆周运动
B 、向心力是指向圆心方向的合力,是根据力的作用效果命名的
C 、向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中一种力或一种力的分力
D 、向心力只改变物体运动的方向,不可能改变物体运动的快慢
8.在质量为M 的电动机飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为R ,如图9—19所示,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过:( ) (A )
g mR m M + (B )g mR m M + (C )g mR m M - (D )mR
Mg
S 9、质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形
金属壳竖直放置,开口向上,滑到最低点时速度大小为V ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是: ( )
A. 受到向心力为R v m mg 2+
B. 受到的摩擦力为 R
v m 2
μ
C. 受到的摩擦力为μmg D 受到的合力方向斜向左上方.
10、物体m 用线通过光滑的水平板间小孔与砝码M 相连,并且正
在做匀速圆周运动,如图2所示,如果减少M 的重量,则物体m 的轨道半径r ,角速度ω,线速度v 的大小变化情况是 ( ) A . r 不变. v 变小 B . r 增大,ω减小 C . r 减小,v 不变 D . r 减小,ω不变
二、填空题
11.吊车以4m 长的钢绳挂着质量为200kg 的重物,
吊车水平移动的速度是5m/s ,在吊车紧急刹车的瞬间,钢绳对重物
的拉力为___________________N (g=10m/s 2
)
12、质量为m 的物块,系在弹簧的一端,弹簧的另一端固定在转轴上如右图所示,弹簧的自由长度为l 。
劲度系数为K ,使物块在光滑水平支持面上以角速度ω作匀速圆周运动,则此时弹簧的长度为 。
13、一圆环,其圆心为O ,若以它的直径AB 为轴做匀速转动,如下图所示,(1)圆环上P 、Q 两点的线速度大小之比是_____
(2)若圆环的半径是20cm ,绕AB 轴转动的周期是0.01s ,环上Q 点的向心加速度大小是_______。
三、计算题
14、A 、B 两球质量分别为m 1与m 2,用一劲度系数为K 的弹簧相连,一长为l 1的细线与m 1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO`上,如图所示,当m 1与m 2均以角速度w 绕OO`做匀速圆周运动时,弹簧长度为l 2。
求:(1)此时弹簧伸长量多大?绳子张力多大? (2)将线突然烧断瞬间两球加速度各多大?
15、如图所示, 在内壁光滑的平底试管内放一个质量为1g的小球, 试管的开口端加盖与水平轴O连接. 试管底与O相距5cm, 试管在转轴带动下沿竖直平面做匀速圆周运动. 求:(1) 转轴的角速度达到多大时, 试管底所受压力的最大值等于最小值的3倍.
(2) 转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况? g取10m/s2.
16、如图所示,轻杆长2l,中点装在水平轴O点,两端分别固定着小球A和B,A球质量为m ,B球质量为2m,两者一起在竖直平面内绕O轴做圆周运动。
(1)若A球在最高点时,杆A端恰好不受力,求此时O轴的受力大小
和方向;
(2)若B球到最高点时的速度等于第(1)小题中A球到达最高点时
的速度,则B球运动到最高点时,O轴的受力大小和方向又如何?
(3)在杆的转速逐渐变化的过程中,能否出现O轴不受力的情况?若
不能,请说明理由;若能,则求出此时A、B球的速度大小。
17.如图1—10所示,竖直圆筒内壁光滑,半径为R,顶部有入口A,在A的正下方h处有出口B,一质量为m的小球从人口A沿圆筒壁切线方向水平射人圆筒内,要使球从B处飞出,小球进入入口A处的速度v o应满足什么条件?在运动过程中,球对简的压力多大?
【参考答案】
二、填空题
11、3250 12、
2
kl kl m ω-
13、(1)1:3 (2)7.9×102
m/s 2
三、计算题
14、解:(1)m 2只受弹簧弹力,设弹簧伸长Δl ,满足:K Δl=m 2w 2
(l 1+l 2)
则弹簧伸长量Δl=m 2w 2
(l 1+l 2)/K
对m 1,受绳拉力T 和弹簧弹力f 做匀速圆周运动,
满足:T -f=m 1w 2
l 1
绳子拉力T=m 1w 2l 1+m 2w 2
(l 1+l 2) (2)线烧断瞬间
A 球加速度a 1=f/m 1=m 2w 2
(l 1+l 2)/m 1
B 球加速度a 2=f/m 2=w 2
(l 1+l 2) 15、解:(1) 0/2l g (2)
/l g
16、解:(1)A 在最高点时,对A 有mg=m l v 2,对B 有T OB -2mg=2m l
v
2
,可得T OB =4mg 。
根据牛
顿第三定律,O 轴所受有力大小为4mg ,方向竖直向下
(2)B 在最高点时,对B 有2mg+ T ′OB =2m l
v 2
,代入(1)中的v ,可得T ′OB =0;对A
有T ′
OA
-mg=m l
v 2
, T ′OA =2mg 。
根据牛顿第三定律,O 轴所受的力的大小为2mg ,方向竖直向下 (3)要使O 轴不受力,据B 的质量大于A 的质量,可判断B 球应在最高点。
对B 有T ′′
OB +2mg=2m l v 2,对A 有T ′′OA -mg=m l
v 2。
轴O 不受力时,T ′′OA = T ′′OB ,可得v ′=gl 3 17、解:小球在竖直方向做自由落体运动,所以小球在桶内的运动时间为:t =①
在水平方向,以圆周运动的规律来研究,得 0
2R
t n
v π= (n=1、2、3…) ② 所以02n R v t ππ=
=、2、3…) ③ 由牛顿第二定律
22202N v n mgR F m R h
π== (n=l 、2、3…), ④。