抽气器水箱水温对汽轮机真空的影响
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
汽轮机真空偏低原因及提高真空的措施1、概述汽轮机凝汽器真空状况不但影响机组运行的经济性,往往还限制机组出力。
例如125MW汽轮机组,当其他运行条件不变,如真空由96KPa降低到93KPa,则耗煤也要增加12.54Kg/Kwh;又如200MW汽轮机组当真空由96KPa降低到93KPa时,则耗煤也要增加12.54Kg/Kwh。
由此看出,在火力发电厂中,应把汽轮机凝汽器真空问题作为重要的节能方式作为研究。
根据各厂的具体情况,制定出提高真空的确实可行措施,以保证机组的安全经济运行。
2、汽轮机凝汽器真空偏低的主要原因汽轮机凝汽器系统的真空问题与热力系统的设计合理与否、制造安装、运行维护和检测的质量等多种因素有关,必须根据每台机组的具体情况进行具体分析。
汽轮机凝汽器真空偏低的主要原因有:1.汽轮机真空系统严密性差,对大型凝汽器的真空系统,其漏入的空气量一般不应超过12Kg/h—15Kg/h。
有的机组运行中,实际漏入的空气量远远超过这个数值,竟达到40Kg/h,升至更大,对汽轮机组的真空影响很大。
电力部部颁标准规定,汽轮机真空下降速度平均每分钟不大于266Pa/min—399Pa/min。
然而,有许多机组在做严密性实验时,其真空下降速度大大超过这个规定,有的竟达1000Pa/min—2000Pa/min,有的国产200MW机组,真空下降速度达到了2700Pa/min—4000Pa/min,还有的个别机组,根本无法做真空严密性实验,这说明真空系统漏气太大。
对200MW汽轮机组,当真空系统每漏入11Kg空气时,则真空度要下降1%。
漏空的主要部位有:低压汽缸两端汽封及低压汽缸的接合面,中低压汽缸之间连接通道的法兰连接处,低压汽缸排气管与凝汽器喉部联接焊缝,处于负压状态下工作的有关阀门、法兰等处。
2.设计考虑不周或循环水泵选择不当。
循环水泵出力小,使实际通过凝汽器的冷却水量远远小于热力计算的规定,从而影响真空。
一般凝汽器的冷却倍率m应为50—60,对大型凝汽器,该冷却倍率还要适当大些。
影响汽轮机凝汽器真空度的主要因素介绍!排汽真空度对汽轮机正常运行起着非常重要的作用。
真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动, 甚至引起汽缸变形及动静间隙增大。
如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。
凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作为判别凝汽器运行状态的依据。
运行中端差值越小, 则运行情况越好,机组的热效率越高。
凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。
影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。
一、空气量凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。
空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。
主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。
空气的第二大危害是使凝结水的过冷度增大。
降低空气量主要从真空严密性和真空泵的工作性能考虑。
二、真空严密性真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调试的经验, 真空系统易泄漏空气的薄弱环节有:•凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏入空气, 造成严密性下降。
•轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导致空气漏入。
•采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效建立, 导致空气漏入。
•低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由于密封不严, 或防爆门出现裂缝, 导致空气漏入。
•大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏, 另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。
汽轮机真空度的一些影响因素摘要:本文主要介绍了影响工业汽轮机真空度的主要因素,并对其解决方法进行了一些探索。
关键词:汽轮机真空度凝汽器沸点抽汽器排汽温度工业用汽轮机的排气压力为低于大气压力的负压,即我们俗称的“真空”。
真空的数值(一般指低于大气压的数值,即相对真空)与当地大气压的比值,用百分比表示,就是“真空度”。
1.汽轮机排汽室保持真空度的作用汽轮机排汽采用真空的作用是减少蒸汽在汽轮机中的做功阻力,避免其因所遇阻力大,而在进入凝汽器之前就导致压力和温度的过多下降,在汽轮机中产生冷凝水,造成“水击”,对叶轮产生损害。
根据热力学原理,相应的饱和蒸汽压力对应相应的饱和温度。
过高的排汽温度会导致排汽室的受热膨胀而变形。
在负荷稳定的情况下,要想降低排汽温度,就只有提高排汽室处的真空度。
汽轮机的设计排汽温度一般要求低于50摄氏度,大家知道,水在标准大气压下的沸点是100摄氏度,在低于50度的温度下,要想保证排汽室内只有蒸汽而不会产生水,就只有降低排汽室内的压力,使其低于外界大气压。
液体的沸点都是随着所处环境压力的降低而降低的,比如在空气稀薄,大气压低的高原地带烧水,水就会在不到一百度的时候沸腾。
气压越低,水的沸点就会越低。
因而,在排汽室处保持一定的真空度是必要的。
以下是在部分真空状态下,水的沸点对照表(压力为绝对压力):需要说明的是,真空度并非越高越好。
而应该根据设备性能,设计参数,生产的具体情况相适应。
不过在具体生产中,由于设备,工艺等的影响,真空度往往达不到设计要求,使得设备长期在较低真空度下运行,进而影响了设备的使用寿命。
可以说,如何能够达到并平稳保持所要求的真空度,是工业生产中一个比较令人头疼的问题。
2.影响真空度的主要因素2.1真空系统的严密性与汽轮机排汽室,凝汽器相连接的所有设备,管道,法兰,阀门,管件,都要求严密无泄漏,否则空气就会进入,影响真空度。
这一点往往很难做到,大多数的真空系统都会存在或多或少的泄漏。
汽轮机排汽真空影响因素探析真空降低分以下三种情况:一、正常运行时:负荷增加;循环水量减少;循环水温升高。
二、设备有故障时:真空泵(抽气器)故障;凝汽器水位高;真空系统漏气;前、后汽封损坏;循环水系统故障;凝汽器结垢;凝结水泵故障。
三、操作失误:汽封断汽;各负压阀门误开;补水带气。
各影响因素除影响真空外,还影响端差和过冷却度,同时还有温度、压力等其它变动现象,只要认真分析,就能确定。
凝汽器内存在三种换热,即:蒸汽在铜管外壁的凝结换热;铜管内外壁的传导换热;铜管内水的对流换热。
它们的热阻和构成凝汽器的传热热阻。
各影响因素都会对换热产生影响。
近似地,蒸汽凝结放热等于循环水吸热量,也等于传热量。
一、循环水系统故障只会使真空降低,对过冷却度和端差影响不大。
1)凝汽器冷却水管板脏污、出口水室存气,会使冷却水量减少,同样负荷,进出口温差增大,出口水温升高,进口压力上升,出口压力稍降。
因水量减少,液相对流传热热阻增加,传热降低,传热温差增大,凝汽温度升高,真空降低。
但端差基本不变,或稍有下降。
2)进水管道阻塞,使泵与凝汽器入口间阻力增加,压差增大,而凝汽器进出口压差减少,压力均下降。
3)循环水泵故障(吸水水位低、入口滤网堵塞、叶轮磨损、吸入空气)会使整体压力下降,泵电流降低。
4)出口管道堵塞,会使水量减少,堵塞点前整体压力上升。
水温变化及对真空影响同1)5)部分循环水泵跳闸,会使水压和真空立即迅速下降,泵电流消失,必须果断降负荷,开备用泵。
二、换热管结垢,会使污垢热阻(导热)增加,总热阻增加,传热温差增加,进出口水温变化不大,而凝结温度升高,端差增大,过冷却度不变。
三、凝汽器存气,空气会附着在换热管上,它的传热系数很低,总热阻增加,传热温差增大,端差增大。
因为空气的存在,凝汽器中蒸汽分压小于排汽中的,所以凝结温度小于排汽温度,即过冷却度增加。
造成存气的原因有真空系统漏气和真空泵(抽气器)故障。
真空泵(抽气器)故障时,真空系统严密性试验是合格的。
书山有路勤为径,学海无涯苦作舟
轴封冷却器疏水回收系统对汽轮发电机组真空度的影响分
析
该文结合生产实践,分析生物质发电分公司15mW 抽汽凝气式机组真空系统真空度下降的原因,探讨并着重分析了通过轴加疏水改造提高真空度的可行性,提高了机组的经济效益。
1、真空系统对汽轮发电机组的影响真空系统是汽轮发电机组的一个重要组成部分,其严密性与稳定性直接影响整个设备运行的热经济性和安全性。
国家电力行业标准对真空系统的严密性要求非常严格,正常情况下凝汽器的真空度应保持在94kPa 左右。
凝汽器内真空度下降后,若保持机组负荷不变,汽轮机进汽量势必增
大,使轴向推力增大以及叶片过负荷,且汽轮机的汽耗率升高,发电效率下降、能耗增加;甚至由于真空下降,使排汽温度升高,从而引起排汽缸变形,机组重心偏移,使机组的振动增加及凝汽器铜管受热膨胀产生松弛、变形甚至断裂。
故机组在运行中发现真空下降时除按规定减负荷外,必须查明原因及时处理。
2、真空系统对汽轮汽耗的影响凝汽器真空度的下降对汽轮机的汽耗有着重要影响:当机组汽耗量不变时,真空降低1%(大约1kPa),将引起汽轮机的功率(汽轮机出力)降低约为额定容量的1.0%~1.2%。
当汽轮机的负荷不变时,真空降低1%(大约1kPa),汽耗增加1.0%~1.5%。
3、引起真空下降的原因及采取的措施引起真空下降的原因很多,如汽轮机的本体及机组负压系统存在密封性能差;低压加热器长期无水位运行;夏季射水式抽气器水箱水温高,导致射水式抽气器效率下降;夏季循环水温度高,凝汽器。
汽轮机排汽真空影响因素探析汽轮机排汽真空影响因素探析真空降低分以下三种情况:一、正常运行时:负荷增加;循环水量减少;循环水温升高。
二、设备有故障时:真空泵(抽气器)故障;凝汽器水位高;真空系统漏气;前、后汽封损坏;循环水系统故障;凝汽器结垢;凝结水泵故障。
三、操作失误:汽封断汽;各负压阀门误开;补水带气。
各影响因素除影响真空外,还影响端差和过冷却度,同时还有温度、压力等其它变动现象,只要认真分析,就能确定。
凝汽器内存在三种换热,即:蒸汽在铜管外壁的凝结换热;铜管内外壁的传导换热;铜管内水的对流换热。
它们的热阻和构成凝汽器的传热热阻。
各影响因素都会对换热产生影响。
近似地,蒸汽凝结放热等于循环水吸热量,也等于传热量。
一、循环水系统故障只会使真空降低,对过冷却度和端差影响不大。
1)凝汽器冷却水管板脏污、出口水室存气,会使冷却水量减少,同样负荷,进出口温差增大,出口水温升高,进口压力上升,出口压力稍降。
因水量减少,液相对流传热热阻增加,传热降低,传热温差增大,凝汽温度升高,真空降低。
但端差基本不变,或稍有下降。
2)进水管道阻塞,使泵与凝汽器入口间阻力增加,压差增大,而凝汽器进出口压差减少,压力均下降。
3)循环水泵故障(吸水水位低、入口滤网堵塞、叶轮磨损、吸入空气)会使整体压力下降,泵电流降低。
4)出口管道堵塞,会使水量减少,堵塞点前整体压力上升。
水温变化及对真空影响同1)5)部分循环水泵跳闸,会使水压和真空立即迅速下降,泵电流消失,必须果断降负荷,开备用泵。
二、换热管结垢,会使污垢热阻(导热)增加,总热阻增加,传热温差增加,进出口水温变化不大,而凝结温度升高,端差增大,过冷却度不变。
三、凝汽器存气,空气会附着在换热管上,它的传热系数很低,总热阻增加,传热温差增大,端差增大。
因为空气的存在,凝汽器中蒸汽分压小于排汽中的,所以凝结温度小于排汽温度,即过冷却度增加。
造成存气的原因有真空系统漏气和真空泵(抽气器)故障。
关于火电厂汽轮机真空降低的原因分析及处理措施摘要:随着国家经济发展的逐步加快,国内电厂数量、规模不断增加,对生产、生活贡献较大,但在火电厂运行时,经常会因汽轮机漏空,降低机组热效率,因此在机组运行中,要对其进行细致研究、分析,基于此,本文重点分析了汽轮机真空降低产生的影响,细致阐述了相关的原因,以及相应的处理措施,供参考。
关键词:火电厂;汽轮机;真空降低引言:火电厂在处于正常运行时,如果汽轮机的真空程度降低,便会对机组的运转情况产生严重干扰,导致经济性降低,甚至发生人员伤亡情况。
与此同时,在工作开展中,能够产生真空度将低的原因种类较多,因此,操作中要对其加大巡检,及时排查问题出现的原因,并对其进行有效解决。
一、汽轮机真空降低产生的影响(一)凝水系统火电厂汽轮机在出现真空降低的情况时,其在排出汽体温度升高,使凝汽器的膨胀情况产生改变,导致管束、管板之间的接口处出现不同程度的膨胀现象,这必然会对其密封效果产生影响。
与此同时,还可能出现汽轮机后轴承箱抬高,产生不需要的振动情况,对机组的安全稳定运行造成了严重影响[1]。
(二)运行功率汽轮机在真空降低时,由于其中背压数值的升高,在进汽的数量、效率不发生变化的基础上,导致工作成效大幅降低。
如果汽轮机在正常工作中,突然产生了真空降低的情况,便会导致中间各级前、后的压力大幅提升,使内部的相应焓降降低,并对运行的功率造成了影响。
从机组的末级、次末级角度上进行分析,真空程度的降低,还会使蒸汽流动速度大幅、快速的下降,并对其中的转子旋转工作产生阻力,从而影响其中的功率情况。
二、汽轮机真空降低的原因分析(一)真空泵因素汽轮机运行的过程中,通过对真空泵进行合理使用,能在一定程度上保障机组的正常运行,一旦发生故障问题,便会产生真空将低的情况。
正常情况下,产生该情况的因素主要存在以下几个方面:一,冷却器中水量不充足,相应的蒸汽不能第一时间完成凝结,及时进入热井内,同时,喷嘴在高负荷运行,工作效率会大幅降低,促使内部产生无法在规定时间中凝结的情况,并进入到相应的设备内部;二,汽轮机中的冷却器内部管道密封未达到相应标准,在使用中出现断裂情况,使其中的凝结水出现流失,如果冷却器中的水进入出口位置,并且出现堵塞情况,便会对正常运行产生干扰;三,在冷却器中的换热管发生破裂、堵塞的情况时,还会产生大量的水进入到真空泵内,最后从排气孔洞喷出。
书山有路勤为径,学海无涯苦作舟
水温、进水量、水压对水环真空泵抽气量的影响
根据气体的道尔顿定律可知,混合气体的压力等于组成气体的各种成
分的分压力之和,因而水的饱和蒸汽压对泵的抽气量的影响必然会存在,特别
是在水温较高、吸入压力较低(真空度较高)时,对气量的影响更为显著。
由于国内外水环真空泵的技术文件上的气量值都是在泵进水温度为15 ℃条件下得出的,因此在选泵时应考虑到实际供水温度对气量的影响。
水温对气量的影响,可举例计算说明。
根据标准GB/T 13929《水环真空泵和水环压缩机试验方法》规定,水温对水环真空泵抽气量的影响系数K1 可用下式计算。
式中:p1 泵入口气体压力(绝压),hPa;
p15 水温15 ℃时饱和蒸汽压,17.04 hPa;
pt 水温为t ℃时饱和蒸汽压,hPa;
假如供水温度为30 ℃,其饱和蒸汽压为42.42 hPa,当入口气体压力为400 hPa 时,水温影响系数K1=1.07,即由于水的饱和蒸气压的影响使抽气量与进水温度15 ℃时相比降低了7%,假如入口压力更低而水温更高,对气量的影响就更大了。
因此在应用中应尽量降低泵的进水温度。
进水量的大小对气量也有一定的影响。
进水量过大,对气量增加并不明显,相反会增加泵的轴功率。
进水量过少,间隙的密封作用减弱,气量降低,
水温也升高过快。
因此真空技术网(chvacuum/)认为合适的进水量也是使泵正常工作必不可缺少的一个条件。
目前各制造厂的技术说明书中均给出了泵的进水
量要求,通常都是经过试验得出的,可按说明书中要求供水。
在使用中也可安
装流量计显示流量的大小,用调节阀门来控制。
射水抽气设备工作水温过高对真空的影响及改进措施摘要:在本文研究过程中,主要针对山西某余热电厂射水抽气设备水温高而引起真空低问题进行分析,阐述了抽气器和凝汽器间的压力关系和抽气设备工作水温对真空的影响,提出在凝汽器与抽气器之间的管线上增加冷却器的方法,促进水蒸气的冷凝,不断降低射水使其冷凝,有效的降低抽气设备内部的温度,满足实际生产的需要。
关键词:射水抽气器;冷却器;真空;工作水温;凝汽器1前言射水抽气器具有其他设备无法比拟的优势,能够极大地提升抽气量,降低能耗,减少水蒸气损失,具有稳定可靠的特点,受到各大企业的欢迎。
在山西某余热电厂使用的是南京苏荣机械厂的CS12-2型射水抽气器。
射水抽气设备的抽吸过程中,再很大程度上影响了内部空气集聚的效果,同时会直接影响到实际水的温度。
在实际过程中,现在电厂广泛采用射水池溢流补水的方法降低其工作水温,维持水池水量,但在夏季,由于环境温度较高,射水池中的工作水温通经常高达30℃,但是采用这种方法,很难获得良好的效果,出现热量损失,并且实际温度过高,降低抽气器工作性能,影响到实际凝气器的效果,增加了生产投资。
因此,本文就针对射水抽气设备工作水温过高对真空的影响及改进措施展开论述。
2射水抽气器抽真空系统山西某余热电厂,为了提升实际生产的收益,主要采用射水抽气器。
射水抽气器的混合室与凝汽器通过管道相连接,之间安装有止回阀,来自射水泵的高压水,通过抽气器喷嘴使压力变成动能,以一定的速度从抽气器喷嘴喷出,从而使混合室中形成高度真空。
凝汽器中的气汽混合物被吸入混合室与工作水混合,一起进入扩压管,在扩压管中将动能变成压力势能,在略高于气压的情况下随水流排入射水池。
同时气汽混合物中的水蒸气凝结成水放出大量得热,使射水池温度不断上升,通过射水池中的溢流阀与补水阀不断的对水池进行水温调节。
3抽气器工作水温过高对真空的影响3.1凝汽器与抽气器的压力关系在凝汽器中,由于大量的乏汽被冷凝成水,导致体积骤然减小,从而使凝汽器中的压力远小于大气压建立高度真空,而凝汽器内的蒸汽压力就是蒸汽凝结温度对应的饱和压力,由凝汽器热平衡和换热条件可知蒸汽凝结温度为:在运行中除了保证循环冷却水的正常运行外,还应当保证抽气器及真空系统的正常工作,抽气器能够实现连续工作,不断抽出内部不凝结砌体,保证形成高度真空,但是在实际运行过程中,射水抽气设备对凝汽器工作性能产生非常明显的影响。
汽轮机真空系统出现泄漏的原因及预防措施摘要:现阶段,随着经济的发展和社会的快速进步,许多先进科学技术被应用到各行业与领域的生产作业中。
汽轮机在工业生产和能源供应方面发挥着十分重要的作用。
汽轮机真空系统泄露问题直接影响到设备的安全高效运转。
针对其实际泄露原因和部位展开精准诊断,同时制定有效地处理措施来提高真空系统的严密性是电力生产部门的一项基础工作内容。
本文主要对汽轮机真空系统泄露问题和具体原因进行了分析和研究,并提出了具体的防范措施,从而为相关人员提供有用参考。
关键词:汽轮机;真空系统;泄漏原因;分析与防范;措施真空系统是汽轮机设备的关键组成部分,其严密性直接关系到整个设备和系统运转的可靠性及经济性。
国家电力行业标准对真空系统的严密性有着非常严格的要求。
相关工作人员在面对汽轮机真空系统泄露问题的时候需要及时确定泄露原因和位置,从而及时采取有效地处理措施,确保项目的经济效益。
1汽轮机真空系统常见泄漏位置汽轮机的真空系统是一个庞大而又复杂的系统,在管道、焊缝、接头等任何地方都会发生负压渗漏。
所以,在真空设备的泄漏探测中,首要的是要找出关键的探测部位。
1.1汽机房运转层平台低压缸前后汽封,低压缸顶部安全阀,低压缸中密封面连接面,低压缸连接面焊缝,低压缸接头接头,给水泵汽轮机前后汽封接头,进水泵汽轮机安全阀,给水泵涡轮底轴封到低压缸排气管的连接管,给水泵和汽轮机中分面结合面,各种仪表和采样管接头等。
1.2汽机房夹层平台凝汽器的所有焊缝,凝汽器连接管和采样管的焊缝,凝汽器喉管的膨胀接头,低压旁管,低压加热器的蒸汽侧的管道,阀门和排水管,给水泵汽轮机的排气管和焊缝。
2真空系统泄漏的特征汽轮机真空系统严密性无法达到规定标准会直接导致泄露问题,同时凝汽器侧空间的空气量逐渐增大,并且空气分压力也会不断增大。
凝汽器内漏入空气之后,凝结蒸汽对冷却水管壁的放热系数会出现明显下降,从而导致总导热系数减小,设备整体的传热量减小。
抽气器水箱水温对汽轮机真空的影响
摘要:常见影响汽轮机真空的因素,简述抽气器工作状况与射水箱水温关系对汽轮机真空的影响。
关键词:汽轮机抽气器水温真空
凝汽设备运行的好坏对整个汽轮机机组的安全经济性有很大影响,影响凝汽真空主要有三项,一是冷却水进口温度twl,与季节与开式循环等冷却方式相关;二是冷却水温升,与循环冷却水量相关,冷却水量越大,温升越小;三是传热端差δt,传热端差主要与铜管表面清洁程度有无结垢以及凝汽器内积聚的空气量相关,其他如蒸汽负荷和循环水入口冷却水温对端差也有影响,另外如果凝汽器热井内水位控制不当,水位过高,使部分冷却水客被淹没减少受热面积,会使热井水温下降,端差可能会上升。
以上三种原因,是凝汽器真空的主要影响因素,还有一种重要因素,一般书本中都没有详细介绍,很容易忽略,即抽气器水箱水温;它表现为凝结水过冷却度。
1、凝结水温度的监测
在实际运行中,由于真空系统不严密,有少量空气漏入,并且蒸汽中会有少量的空气,在凝汽器中,蒸汽中空气含量可能达到0.01%,量虽然少,但危害严重。
主凝结区空气平均分压很小,汽水混合物流向冷却水管,蒸汽在冷却水管表面凝结为水膜后滴下流走。
在向下流动的过程,在冷却水管外围,空气分压力逐渐增加,部分蒸汽分子只能通过扩散靠近冷却水管外侧,从而阻碍蒸汽的凝结过程,传热系统大大下降,可能从正常的2500 j/(m2.s.K)左右下降到2000 j/(m2.s.K)以下,使真空下降。
根据道尔顿气体分压定律,Pc=Ps+Pa,其中Ps为蒸汽在凝汽器内的分压。
在空气分压力上升时,蒸汽分压力Ps下降,由Ps所对应的饱和温度即凝结水温必然下降。
凝结水温低于凝汽器入口压力对应的饱和温度的现象称为过冷却度,由于部分凝汽器铜管外表面形成的水膜受到冷却水过冷却,凝结水膜平均温度低于蒸汽的饱和温度,在正常运行时,中大机组过冷却度在0.2~0.5℃以下。
过冷却度增加的主要原因是漏入的空气量增加,或抽汽设备工作状况变差。
当均压箱压力变化较小时,漏入的空气量变化不会大,过冷却度如果上升达3℃以上,可以判断抽汽设备工作不正常。
2、抽汽口压力与储水箱水温关系
2.1抽汽设备分射流式抽气器和容积式抽气器。
本图为射水抽气器工作原理示意图。
如射水器工作水温在37℃时,抽汽量在0.9 t/h,真空约在9Kpa;当真空上升到6.3kpa时,抽气量下降到0 t/h。
如工作水温5℃时,真空约在3.2Kpa,抽汽量在0.9 t/h;对应的真空上升到0.9kpa时,抽气量下降到0 t/h;如实际运行真空高于5kpa,抽气量将有所上升。
机械离心式真空泵和水环真空泵水温工作特性图与上图相似,中心略下凹。
水温越高工作条件越差,特别是水环真空泵,水温对拉汽真空影响更大,设计时一般加冷却器,设计水温一般为15℃。
2.2抽汽口压力与射水箱水温关系
以射水器为例,抽气器喉口的真空度直接与射水箱水温一一对应,如水温37℃,抽气器喉口的绝对压力在6.4Kpa以上。
抽气器抽出凝汽器的蒸汽在0.1吨/时,在射水箱凝结,水得不到及时冷却或者射水箱水溢流太少,射水箱水温上升,那么凝汽器内的真空必然受到限制,表现为凝结水过冷却度上升,从正常的0.5℃以下上升到3℃以上。
射水箱水温一般要比排汽缸汽温要低10℃,如果射水箱水温控制较差,极限情况下只有3~4℃,这时候再降低循环冷却水温度或增加循环水量,只会造成凝结水过冷却度上升,真空不会上升。
如某自备电厂,技改时为防止真空系统漏气,将轴封加热器疏水放入射水箱中,射水箱溢水量不大,以至于在冬季射水箱水温超过35℃,夏季时水温在45℃以上;该厂由于凝结水再循环门是在轴封加热器后,再循环水水温较高,进入凝汽器提高了凝结水温,在凝结水过冷却度上表现不出来,运行多年,凝汽器真空度一直控制在10kpa到14kpa(对应排汽温度43-53℃)。
射水箱水温较高,是中小电厂真空度较差的一个容易忽略的问
题。
代电人
射水箱水温提升对凝汽器真空的影响,作为研究,我曾在09年11月18日凌晨,作过试验:由于新机开出,受外界热负荷的影响,机组最佳出力在四千五左右,机组真空87KPa,新机组的性能尚在试验,对此,我检查真空系统,循环泵房运行一台循环泵和两台冷风机,射水抽气系统运行一台射水泵,发现循环水池水位比正常水位下降一米左右,水位在1450左右,且射水箱水温在上升,最高时达51
度。
代电人
由于受水泥线总体冷却水流量的影响,循环水补充水是采用静压补水,循环水池补水量不能太大,略开循环水补水水,
对于射水箱的补水采用循环水补水,因射水箱采用的是金属材料制作,补水以不至于从检查口溢出为主,原因嘛,该射水箱靠近发电机小室,从上部溢水不安全,只要能略小于溢流孔的排流量。
溢流水从溢流孔排放就行。
试验证明:在循环水池水位未发生改变的情况下(因补水量太大),射水箱水温从51度下降到37度,机组负荷从4200上升到4500,真空却从87KPa上升到91KPa.够已证明射水箱工作水温对于真空系统的影响。