2018届广东省江门市高考数学复习 专项检测试题02 导数及应用
- 格式:doc
- 大小:268.50 KB
- 文档页数:8
导数及应用一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.由直线1=y 与曲线2x y =所围成的封闭图形的面积是( )A .34 B .32 C .31D .21 【答案】A2.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A . 12B .12-C.2-D.2【答案】A3.曲线324y x x =-+在点(1,3)处切线的倾斜角为( )A .6π B .3π C .4π D .2π 【答案】C 4.若0)32(20=-⎰dx x x k,则k =( )A . 1B . 0C . 0或1D .以上都不对【答案】C5.()203sin x x dx π+⎰是( )A . 2318π+B . 2314π+C . 2314π-D . 2318π-【答案】A 6.由直线x=12,x=2,曲线1y x =及x 轴所围图形的面积为( ) A .154 B .174C .1ln 22D .2ln2【答案】D7.函数)0,4(2cos π在点x y =处的切线方程是( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x【答案】D8.(sin cos )x x π-⎰=( )A .2B .4C .πD .2π【答案】A9.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是( ) A .2[0,)[,)23πππ⋃ B . 5[0,)[,)26πππ⋃ C . 2[,)3ππD . 5(,]26ππ【答案】A10.曲线233x x y +-=在点)2,1(处的切线方程为( )A .53+=x yB .53+-=x yC .13-=x yD .x y 2=【答案】C 11.曲线321132y x x =+在点5(1,)6A 处的切线与两坐标轴围成的三角形的面积为( ) A .4918 B .4936 C .4972 D .49144【答案】D 12.函数xy 1=在点4=x 处的导数是( )A .81B . 81-C .161 ( D) 161- 【答案】D二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.132dx(11+5x)--=⎰______.【答案】77214.已知一组抛物线2y ax bx c =++,其中a 为1、3、5、7中任取的一个数,b 为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线12x =交点处的切线相互平行的概率是 .【答案】315.已知()xf x xe =,则'(1)f =【答案】2e16.函数e x y =的图象在点()e k a k a , 处的切线与x 轴的交点的横坐标为1k a +,其中*k ∈N ,10a =,则135a a a ++= .【答案】-6三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.定义函数()(,)(1),,0,yF x y x x y =+∈+∞.(1)令函数()32()1,log 3f x F x x ⎡⎤=-⎣⎦的图象为曲线1C 求与直线03154=-+y x 垂直的曲线1C 的切线方程;(2)令函数()322()1,log 1g x F x ax bx ⎡⎤=+++⎣⎦的图象为曲线2C ,若存在实数b 使得曲线2C在()()001,4x x ∈处有斜率为8-的切线,求实数a 的取值范围; (3)当,N*x y ∈,且y x <时,证明()(),,F x y F y x >. 【答案】(1)[]xx x x F x f x x 3)11()3(log ,1)(3)3(log 3232-=+=-=-,由0)3(log 32>-x x ,得133>-x x . 又41533)(2=-='x x f ,由()0f x '=,得32x =± 133>-x x ,32x ∴=-.又3928f ⎛⎫-= ⎪⎝⎭,∴切点为39,28⎛⎫- ⎪⎝⎭.存在与直线03154=-+y x 垂直的切线,其方程为9153842y x ⎛⎫-=+ ⎪⎝⎭,即027415=+-y x(2)[]1)1(log ,1)(23232+++=+++=bx ax x bx ax x F x g .由0)1(log 232>+++bx ax x ,得023>++bx ax x . 由823)(2-=++='b ax x x g ,得8232---=ax x b .082)823(2322323>---=---++=++x ax x ax x x ax x bx ax x 在)4,1(∈x 上有解.0822<++∴ax x 在()1,4x ∈上有解得xx a 82--<在()1,4x ∈上有解,()max 82,1,4a x x x ⎛⎫∴<--∈ ⎪⎝⎭. 而844)4(282-=⋅-≤+-=--x x x x x x ,当且仅当2=x 时取等号, 8-<∴a .(3)证明:),(),(x y F y x F >xy y x )1()1(+>+⇔ln(1)ln(1)y x x y ⇔+>+()ln(1)ln(1),*,x y x y x y x y++⇔>∈<N . 令x x x h )1ln()(+=,则2)1ln(1)(x x x xx h +-+=',当2≥x 时,∵()1ln 11xx x<<++,∴0)(<'x h ,)(x h 单调递减, ∴当y x <≤2时,)()(y h x h >. 又当21==y x 且时,()()11ln 2ln 322h h =>=, ∴当,*x y ∈N .且y x <时,)()(y h x h >,即),(),(x y F y x F >.18.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(3a 5)的管理费,预计当每件产品的售价为x 元(9x 11)时,一年的销售量为(12-x )2万件。
2018高考数学一轮复习数列专题检测试题及答案 01一、选择题(本大题共 12个小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.设S 是等差数列{a }的前 n 项和,若 a 49,S 315 ,则数列{ }a 的通项为() nnnA .2n-3B .2n-1C .2n+1D .2n+3【答案】C2.在公差不为零的等差数列a 中, na a a 依次成等比数列,前 7项和为 35,则数列1, 3,7an的通项 a() nA . nB . n1 C . 2n 1 D . 2n 1【答案】Ba3.数列a 中,a 等于()an,且 a 1 2 ,则nnn 1a 1 3nA .16 5n 1B .2 6n5C .4 6n5D .4 3n 1【答案】B4.在等差数列{a n }中,已知 a 4+a 8=16,则该数列前 11项和 S 11=( )A .58B .88C .143D .176 【答案】B5.设 s n 是等差数列{a n }的前 n 项和,已知 s 6 =36, s n =324, s n 6 =144 (n>6),则n=( ) A . 15 B . 16 C . 17 D . 18【答案】D6.已知等差数列A.8B.9C.10D.11【答案】C7.在等差数列{a}中,若前1111( )11项和S,则a a a an25710A. 5 B.6 C.4 D.8【答案】C8.用数学归纳法证明3n n3(n≥3,n∈N)第一步应验证( )- 1 -A . n=1B . n=2C . n=3D . n=4【答案】C9.等差数列{a n }中,a 5+a 7=16,a 3=4,则 a 9=( )A .8B .12C .24D .25【答案】B 10.在等差数列a 中,若前 5项和 S 520 ,则a 等于() n3A .4B .-4C .2D .-2【答案】A11.等差数列{a }前 n 项和满足 S 20S ,下列结论正确的是()n40A . S是 30S 中最大值B . nS是 30S 中最小值nC . S =0D . S6030【答案】D12.已知实数列1,a ,b ,2 成等比数列,则 ab ()A . 4B .4 C . 2 D .2【答案】C二、填空题(本大题共 4个小题,每小题 5分,共 20分,把正确答案填在题中横线上)12213.已知数列a 的前 n 项和为 Sn n 3nn,则这个数列的通项公式为____________43【答案】an59 ,n 1 126n 5 ,n 121 a4【答案】3SS,则 15.在等差数列a中, a ,其前 n 项和为 S ,若1210 212008S的值等nn201112 10于 . 【答案】402216.已知数列{a n }的前三项依次是-2,2,6,前 n 项和 S n 是 n 的二次函数,则 a 100=____________- 2 -【答案】394三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)12317.已知数列{a n}的前n项和Sn n.n22(1)求{a n}的通项公式;1b ,求{b (2)若数列{b n}满足n}的前10项和T10.n a an n1【答案】n 1时,a1S 21n13132a n2n n2n n时,1(1)(1)1S Sn n n2222当n 1时, 112a1也满足上式所以a n 1n1111(2)由(1)得:bna an1n2n1n2n n1b b b 11111111518.设数列满足,,。
专题能力训练5 导数及其应用(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.-2B.2C.-D.2.已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称3.已知a≥0,函数f(x)=(x2-2ax)e x.若f(x)在[-1,1]上是单调递减函数,则a的取值范围是()A.0<a<B.<a<C.a≥D.0<a<4.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)5.(2017浙江金丽衢十二校模拟)如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极大值点,2个极小值点B.2个极大值点,1个极小值点C.3个极大值点,无极小值点D.3个极小值点,无极大值点6.将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角,曲线C都仍然是一个函数的图象,则α的最大值为()A.πB.C.D.7.已知函数f(x)=x+e x-a,g(x)=ln(x+2)-4e a-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为()A.-ln 2-1B.ln 2-1C.-ln 2D.ln 28.若函数f(x)=ln x与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围是()A. B.(-1,+∞)C.(1,+∞)D.(-ln 2,+∞)二、填空题(本大题共6小题,每小题5分,共30分)9.若f(x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a的取值范围为.10.(2017浙江诸暨肇庆三模)已知函数f(x)=x3+ax2+3x-9,若x=-3是函数f(x)的一个极值点,则实数a=.11.设f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是.12.已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.13.已知函数f(x)=若对于∀t∈R,f(t)≤kt恒成立,则实数k的取值范围是.14.设函数f(x)=ax3+bx2+cx+d(a≠0)满足f(1)+f(3)=2f(2),现给出如下结论:①若f(x)是区间(0,1)上的增函数,则f(x)是区间(3,4)上的增函数;②若a·f(1)≥a·f(3),则f(x)有极值;③对任意实数x0,直线y=(c-12a)(x-x0)+f(x0)与曲线y=f(x)有唯一公共点.其中正确的结论为.(填序号)三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知函数f(x)=x3+|x-a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[-1,1]上的最小值(用a表示).16.(本小题满分15分)已知函数f(x)=ax(ln x-1)(a≠0).(1)求函数y=f(x)的单调递增区间;(2)当a>0时,设函数g(x)=x3-f(x),函数h(x)=g'(x),①若h(x)≥0恒成立,求实数a的取值范围;②证明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).参考答案专题能力训练5导数及其应用1.A解析由y'=得曲线y=在点(3,2)处的切线斜率为-,又切线与直线ax+y+1=0垂直,则a=-2.故选A.2.C解析f(x)=ln x+ln(2-x)=ln(-x2+2x),x∈(0,2).当x∈(0,1)时,x增大,-x2+2x增大,ln(-x2+2x)增大,当x∈(1,2)时,x增大,-x2+2x减小,ln(-x2+2x)减小,即f(x)在区间(0,1)上单调递增,在区间(1,2)上单调递减,故排除选项A,B;因为f(2-x)=ln(2-x)+ln[2-(2-x)]=ln(2-x)+ln x=f(x),所以函数y=f(x)的图象关于直线x=1对称,故排除选项D.故选C.3.C解析f'(x)=e x[x2+2(1-a)x-2a],∵f(x)在[-1,1]上单调递减,∴f'(x)≤0在[-1,1]上恒成立.令g(x)=x2+2(1-a)x-2a,则解得a≥.4.B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F'(x)=f'(x)-2,因为f'(x)>2,所以F'(x)>0在R上恒成立,所以F(x)在R上单调递增.而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.故选B.5.A解析F'(x)=f'(x)-k,如下图所示,从而可知函数y=F'(x)共有三个零点x1,x2,x3,因此函数F(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增,故x1,x3为极小值点,x2为极大值点,即F(x)有1个极大值点,2个极小值点,应选A.6.D解析函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向连续旋转时,当且仅当其任意切线的倾斜角小于等于90°时,其图象都仍然是一个函数的图象,因为x≥0时y'=是减函数,且0<y'≤1,当且仅当x=0时等号成立,故在函数y=ln(x+1)(x≥0)的图象的切线中,x=0处的切线倾斜角最大,其值为,由此可知αmax=.故选D.7.A解析由题意得f(x)-g(x)=x+e x-a-ln(x+2)+4e a-x,令h(x)=x-ln(x+2),x>-2,则h'(x)=1-,∴h(x)在区间(-2,-1)上单调递减,在区间(-1,+∞)上单调递增,∴h(x)min=h(-1)=-1,又∵e x-a+4e a-x≥2=4,∴f(x)-g(x)≥3,当且仅当时等号成立.故选A.8.A解析设公切线与函数f(x)=ln x切于点A(x1,ln x1)(x1>0),则切线方程为y-ln x1=(x-x1),设公切线与函数g(x)=x2+2x+a切于点B(x2,+2x2+a)(x2<0),则切线方程为y-(+2x2+a)=2(x2+1)(x-x2),所以有因为x2<0<x1,所以0<<2.又a=ln x1+-1=-ln-1,令t=,所以0<t<2,a=t2-t-ln t.设h(t)=t2-t-ln t(0<t<2),则h'(t)=t-1-<0,所以h(t)在区间(0,2)上为减函数,则h(t)>h(2)=-ln 2-1=ln,所以a∈.故选A.9.(-∞,-1)∪(2,+∞)解析f'(x)=3x2+6ax+3(a+2),由题意知f'(x)=0有两个不相等的实根,则Δ=(6a)2-4×3×3(a+2)>0,即a2-a-2>0,解得a>2或a<-1.10.5解析f'(x)=3x2+2ax+3,由题意知x=-3为方程3x2+2ax+3=0的根,则3×(-3)2+2a×(-3)+3=0,解得a=5.11.(-2,0)∪(2,+∞)解析令g(x)=,则g'(x)=>0,x∈(0,+∞),所以函数g(x)在(0,+∞)上单调递增.又g(-x)==g(x),则g(x)是偶函数,g(-2)=0=g(2),则f(x)=xg(x)>0⇔解得x>2或-2<x<0.故不等式f(x)>0的解集为(-2,0)∪(2,+∞).12.解析因为f(-x)=(-x)3-2(-x)+e-x-=-f(x),所以f(x)为奇函数.因为f'(x)=3x2-2+e x+e-x≥3x2-2+2≥0(当且仅当x=0时等号成立),所以f(x)在R上单调递增,因为f(a-1)+f(2a2)≤0可化为f(2a2)≤-f(a-1),即f(2a2)≤f(1-a),所以2a2≤1-a,2a2+a-1≤0,解得-1≤a≤,故实数a的取值范围是.13.14.①②③解析由f(1)+f(3)=2f(2)化简得b=-6a.f'(x)=3ax2+2bx+c=3ax2-12ax+c,其对称轴为x=2,如果f(x)在区间(0,1)上递增,其关于x=2对称的区间为(3,4),故区间(3,4)也是其增区间,①正确.a[f(1)-f(3)]≥0,即2a(11a-c)≥0,导函数f'(x)=3ax2-12ax+c的判别式144a2-12ac=12a(12a-c),当a>0时,12a-c>11a-c≥0,判别式为正数,当a<0时,11a-c≤0,12a-c≤a<0,其判别式为正数,即导函数有零点,根据二次函数的性质可知原函数有极值,②正确.注意到f'(2)=c-12a,则③转化为f'(2)=,即函数图象上任意两点连线的斜率和函数在x=2处的切线的斜率相等的有且仅有一个点.由于x=2是导函数f'(x)=3ax2-12ax+c的最小值点,即有且仅有一个最小值点,故③正确.15.解 (1)因为当a=1,x<1时,f(x)=x3+1-x,f'(x)=3x2-1,所以f(0)=1,f'(0)=-1,所以f(x)在(0,f(0))处的切线方程为y=-x+1.(2)当a∈(0,1)时,由已知得f(x)=当a<x<1时,由f'(x)=3x2+1>0,知f(x)在(a,1)上单调递增.当-1<x<a时,由f'(x)=3x2-1,知①当a∈时,f(x)在上递增,在上递减,在上递增,所以f(x)min=min=min=a-.②当a∈时,f(x)在上递增,在上递增,在(a,1)上递增,所以f(x)min=min{f(-1),f(a)}=min{a,a3}=a3.综上所述,f(x)min=16.解 (1)∵f'(x)=a=a ln x,令f'(x)>0,当a>0时,解得x>1;当a<0时,解得0<x<1,∴当a>0时,函数y=f(x)的单调递增区间是(1,+∞);当a<0时,函数y=f(x)的单调递增区间是(0,1).(2)①∵h(x)=g'(x)=x2-f'(x)=x2-a ln x,∴由题意得h(x)min≥0.∵h'(x)=x-,∴当x∈(0,)时,h'(x)<0,h(x)单调递减;当x∈(,+∞)时,h'(x)>0,h(x)单调递增.∴h(x)min=h()=a-a ln,由a-a ln≥0,得ln a≤1,解得0<a≤e.∴实数a的取值范围是(0,e].②由(1)知a=e时,h(x)=x2-eln x≥0在x∈(0,+∞)上恒成立,当x=时等号成立,∴x∈N*时,2eln x<x2,令x=1,2,3,…,n,累加可得2e(ln 1+ln 2+ln 3+…+ln n)<12+22+32+…+n2,即ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).。
圆锥曲线011、设()()123,0,3,0F F -、)()123,0,3,0F F -分别是椭圆1422=+y x 的左、右焦点。
(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的最大值和最小值;(2)设过定点)2,0(M 的直线l 与椭圆交于不同的两点B A ,,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围。
解:(1)依题易知2,1,a b c ===())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0=x ,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值—2 当2±=x ,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1。
(2)显然直线0x =不满足题设条件,可设直线)2(:-=x k y l ,()()2211,,,y x B y x A联立⎪⎩⎪⎨⎧=+-=14)2(22y x x k y ,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,1144k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:23-<k 或23>k ;()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+ 又12120OA OB x x y y ⋅=+>,2223101144k k k -++>++,即24k <,∴22k -<<;故有2k -<<2k <<。
2、已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴的端点和焦点所组成的四边形是正方形,且两准线间的距离为4。
导数及其应用一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线kx y =是曲线x y ln =的切线,则直线kx y =经过点 ( ) A .)1,(-eB .)1,(eC .)1,1(-eD .)1,1(e2.已知函数1)(+-=mx e x f x 的图像为曲线C ,若曲线C 不存在与直线x y 21=垂直的切线,则实数m 的取值范围是 ( ) A .21-≤mB .21->m C .2≤m D .2>m3.若2()cos f x x α=-,则'()f α等于A .2sin αα+B .cos αC .sin αD .2sin αα-4.曲线2)(3-+=x x x f 上点0P 处的切线垂直于直线x y 41-=,则点P 0的坐标是 ( ) A .)0,1(-B .)2,0(-C .)4,1(--或)0,1(D .)4,1(5.一质点沿直线运动,如果由始点起经过t 秒后的位移为t t t s 833123+-=,那么速度为零的时刻是 ( ) A .1秒 B .1秒末和2秒末 C .4秒末D .2秒末和4秒末6.函数3()21(0)f x ax x a =++≠在x=1处的切线方程为0x y m +-=,则实数a 等于 A 1 B -1 C-2 D 37.函数)(x f 的导函数为)(x f ',对任意的R x ∈都有)()(2x f x f >'成立,则A .)3ln 2(2)2ln 2(3f f >B .)3ln 2(2)2ln 2(3f f <C .)3ln 2(2)2ln 2(3f f =D .)2ln 2(3f 与)3ln 2(2f 的大小不确定 8.已知点P 是曲线13+-=xx e e y 上一动点,α∠为曲线在点P 处的切线的倾斜角,则α∠的最小值是 ( ) A .0 B .4πC .32π D .43π9.已知函数)(x f y =,(x ∈R )上任一点))(,(00x f x 处的切线斜率200)1)(3(+-=x x k ,则该函数的单调递增区间为 ( ) A .[)+∞,3B .(]3,-∞C .(]1,--∞ D .[)+∞-,1 10.函数)(x f 的导函数图像如图所示,则函数)(x f 的极小值点个数有A .0个B .1个C .2个D .3个11.已知函数)(x f 的导函数为)(x f ',满足3)2(2)(x f x x f +'=,则)2(f '等于A .8-B .12-C .8D .1212.定义在R 上的函数()f x 满足f (4)=1,f (x )为f (x )的导函数,已知函数y=f′(x )的图象如图所示.若正数a ,b 满足f (2a+b ) <1,则22a b ++的取值范围是A .(1,23)B .(1,)(3,)2-∞+∞C .1(,3)2D .(,3)-∞二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.函数233x x y -=在x 等于 处取得极小值. 14.x x y cos 21-=的单调递减区间为 ; 15.曲线xxy tan 1tan +=在点)21,4(πM 处的切线的斜率为 .16.直线x y =是曲线kx y sin =的一条切线,则符合条件的一个实数值 . 三.解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分14分)已知函数(1)求函数在上的最大值和最小值; (2)求证:在区间上,函数的图象在的图象的下方。
2018高考数学一轮复习推理与证明专题检测试题及答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 都是正数,则三数111,,a b c b c a +++( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2【答案】D 2.用反证法证明“方程)0(02≠=++a c bx ax 至多有两个解”的假设中,正确的是( )A . 至多有一个解B . 有且只有两个解C . 至少有三个解D . 至少有两个解【答案】C 3.用反证法证明命题“若022=+b a ,则b a ,全为0”其反设正确的是( )A .b a ,至少有一个不为0B . b a ,至少有一个为0C . b a ,全不为0D . b a ,中只有一个为0【答案】A4.已知b a ,为不相等的正数,a b b a B b b a a A +=+=,,则A 、B 的大小关系( )A .B A >B .B A ≥C .B A <D .B A ≤【答案】A 5.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( ) A .至少有一个不大于2 B .都小于2C .至少有一个不小于2D .都大于2【答案】C6.用反证法证明某命题时,对某结论:“自然数a b c ,,中恰有一个偶数”,正确的假设为( )A .a b c ,,都是奇数B .a b c ,,都是偶数C .a b c ,,中至少有两个偶数D .a b c ,,中至少有两个偶数或都是奇数【答案】D7.下边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )A .2B .4C .6D . 8【答案】C8.若)0(,3,47≥-+=+-+=a a a Q a a P ,则,P Q 的大小关系是( )A .P Q >B .P Q =C .P Q <D .由a 的取值确定 【答案】C9.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B10.平面内有n 条直线,最多可将平面分成)(n f 个区域,则()f n 的表达式为( )A . 1+nB . n 2C .222++n nD . 12++n n【答案】C 11.用反证法证明:“方程,02=++c bx ax 且c b a ,,都是奇数,则方程没有整数根” 正确的假设是方程存在实数根0x 为( )A .整数B .奇数或偶数C .自然数或负整数D .正整数或负整数【答案】C12.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,得P 的轨迹为椭圆B .由a 1=a,a n =3n-1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆22221x y a b +=的面积S=πab D .科学家利用鱼的沉浮原理制造潜艇【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.研究问题:“已知关于x 的不等式02>+-c bx ax 的解集为)2,1(,解关于x 的不等式02>+-a bx cx ”,有如下解法:解:由02>+-c bx ax ⇒0)1()1(2>+-x c x b a ,令x y 1=,则)1,21(∈y ,所以不等式02>+-a bx cx 的解集为)1,21(. 参考上述解法,已知关于x 的不等式0<++++cx b x a x k 的解集为)3,2()1,2( --,则关于x 的不等式0111<--+-cx bx ax kx 的解集为 【答案】111,,1232⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ 14.若三角形内切圆的半径为r ,三边长为a b c ,,,则三角形的面积等于1()2S r a b c =++,根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别是1234S S S S ,,,,则四面体的体积V = .【答案】12341()3R S S S S +++ 15.用反证法证明命题“三角形的内角至多有一个钝角”,正确的假设是【答案】三角形的内角中至少有两个钝角16.若正数c b ,,a 满足14=++c b a ,则c b a 2++的最大值为 .【答案】210三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.求证:2222,2,2y ax bx c y bx cx a y cx ax b =++=++=++(,,a b c 是互不相等的实数),三条抛物线至少有一条与x 轴有两个交点.【答案】假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有 ⎪⎩⎪⎨⎧≤-=≤-=≤-=044044044232221bc a Δab c Δac b Δ 三式相加,得a 2+b 2+c 2-ab -ac -bc ≤0⇒(a -b )2+(b -c )2+(c -a )2≤0.∴a=b=c 与已知a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.18.已知函数)1(,12)(>+-+=a x x a x f x ,用反证法证明:方程0)(=x f 没有负实数根. 【答案】假设存在x 0<0(x 0≠-1),满足f(x 0)=0,则0x a =-0021x x -+,且0<0x a <1, 所以0<-0021x x -+<1,即12<x 0<2.与假设x 0<0矛盾,故方程f(x)=0没有负数根.19.已知a ,b ,c 均为实数,且2πa =x 2y +2-,2πb =y 2z +3-,2πc =z 2x +6-,求证:a ,b ,c 中至少有一个大于0.【答案】假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,得a+b+c ≤0,而a+b+c=(x -1)2+(y -1)2+(z -1)2+π-3>0,即a+b+c>0,与a+b+c ≤0矛盾,故假设a ,b ,c 都不大于0是错误的,所以a ,b ,c 中至少有一个大于0.20.有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z 的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:给出如下变换公式:⎪⎪⎩⎪⎪⎨⎧≤≤∈+≤≤∈+=)2,261,(132)2,261,(21'整除能被整除不能被x x N x x x x N x x X 将明文转换成密文,如8→82+13=17,即h 变成q ;如5→5+12=3,即e 变成c. ①按上述规定,将明文good 译成的密文是什么?②按上述规定,若将某明文译成的密文是shxc ,那么原来的明文是什么?【答案】①g →7→7+12=4→d; o →15→15+12=8→h; d →o; 则明文good 的密文为dhho②逆变换公式为⎪⎩⎪⎨⎧≤≤∈-≤≤∈-=)2614,(262)131,(12''''''x N x x x N x x x 则有s →19→2×19-26=12→l ; h →8→2×8-1=15→o ;x →24→2×24-26=22→v ; c →3→2×3-1=5→e故密文shxc 的明文为love21.已知,,a b c R +∈3a b c ++。
集合与函数概念一、选择题(每题5分,共50分)1.用描述法表示一元二次方程的全体,应是( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于( )A. B .2 C .{2} D .N 5.设函数xy 111+=的定义域为M ,值域为N ,那么 ( )A .M={x |x ≠0},N={y |y ≠0}B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}C .M={x |x ≠0},N={y |y ∈R }D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6、已知集合{1,2,3,}A a =,2{3,}B a =,则使得()R A B =∅ð成立的a 的值的个数为( ) A .2 B .3 C .4 D .5 7、已知{3,5,7,9}M =,{4,6,8,10}N =,则()()R RM N =痧( )A .MB .NC .RD .∅8、已知全集U R =,集合{12}A x x x =><-或,集合{10}B x x =-≤<, 则()UAB =ð( )A .{10}x x x <-≥或B .{11}x x x <->或C .{21}x x x <->或D .{20}x x x <-≥或9、设A 、B 为两个非空集合,定义{(,),}A B a b a A b B ⊕=∈∈,若{1,2,3}A =,{2,3,4}B =,则A B ⊕中的元素个数为( )A .3B .7C .9D .1210、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B =( )A .{(,)1,2}x y x y ==B .{13}x x ≤≤C .{13}x x -≤≤D .∅ 请同学将选择题答案填入下面表格中: 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题4分,共16分.把答案填在题中的横线上)11.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 .13、已知集合2{10}A x x =+=,若A R =∅,则m 的取值范围是: 。
俯视图高考数学三轮复习冲刺模拟试题02第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(A) i - (B) i (C) -1 (D) 1 2.已知2log x x f (x)f (x ) x >⎧=⎨+≤⎩10,则)1(-f =( )(A) 2 (B) 1 (C) 0 (D) 43.若a ,b 是两个非零向量,则“+=-a b a b ”是“⊥a b ”的( ) (A )充分不必要条件 (B )充要条件 (C )必要不充分条件 (D )既不充分也不必要条件4.一个正三棱柱的侧棱长和底面边长相等,体积为示.左视图是一个矩形.则这个矩形的面积是( ) (A) 4(C) 2(D) 5.某产品的广告费用x 与销售额y 的统计数据如下表:6万元时销售额为( )(A) .636万元 (B) .655万元 (C) .677万元 (D) .720万元6.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若α∥β,l ⊂α,m ⊂β则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则α⊥β.则下列命题为真命题的是( )(A) p 或q (B )p 且q (C)非p 或q (D) p 且非q7.数列{}n a 的通项公式为n a n =-249,当该数列的前n 项和n S 达到最小时,n 等于( ) (A)24 (B )25 (C)26 (D)278.函数sin3y x π=在区间[]0,t 上至少取得2个最大值,则正整数t 的最小值是( )(A)10 (B )9 (C)8 (D)710.如图,已知圆M :4)3()3(22=-+-y x ,四边形ABCD 为圆M 的内接正方形,E 、F 分别为边AB 、AD 的中点,当正方形ABCD 绕圆心M 转动时,OF ME ⋅的取值范围是( ) (A)]26,26[- (B)]6,6[- (C)]23,23[- (D)]4,4[-第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上. 11.在区间[]-12,上随机取一个数x ,则[]x ,∈01的概率为 . 12.下面程序框图,输出的结果是________.13.方程x y t t +=--22141表示曲线C ,给出以下命题: ①曲线C 不可能为圆;②若t <<14,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则t <<512. 其中真命题的序号是_____(写出所有正确命题的序号).14.我校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6,x y x y x -≥⎧⎪-≤⎨⎪<⎩则我校招聘的教师人数最多是 名.15.本题A 、B 、C 三个选答题,请考生任选一题作答,如果多做,则按所做的第一题计分. A.(不等式选讲)不等式x x++->11123的解集是 . B.(坐标系与参数方程)在极坐标中,圆4cos ρθ=的圆心C 到直线sin()4πρθ+=的距离为 .C .(几何证明选讲)圆O 是ABC ∆的外接圆,过点C 的圆 的切线与AB 的延长线交于点D ,72=CD ,AB BC ==3,则AC 的长为 .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本题满分12分)某地三所高中校A 、B 、C 联合组织一项活动,用分层抽样方法从三所学校的相关人员 中,抽取若干人组成领导小组,有关数据如下表(单位:人) (Ⅰ)求x ,y ;(Ⅱ)若从B 、C 两校抽取的人中选2人任领导小组组长,求这二人都来自学校C 的概率.17.(本题满分12分)如图,AB 为圆O 的直径,点E 、F 在圆O 上,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)求三棱锥C OEF -的体积.18.(本题满分12分)如图,A 、B 是单位圆上的动点,C 是单位圆与x 轴的正半轴的交点,且6π=∠AOB ,记θ=∠COA ,),0(πθ∈,AOC ∆的面积为S .(Ⅰ)若S OC OB f 2)(+⋅=→--→--θ,试求)(θf 的最大值以及此时θ的值.(Ⅱ)当A 点坐标为54,53(-时,求2→-BC 的值.19.(本题满分12分)已知公差不为零的等差数列{}n a 的前10项和1055S =,且248a a a ,,成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足(1)2n nn n b a =-+,求{}n b 的前n 项和n T .20.(本题满分14分)已知函数32()10f x x ax =-+,(I )当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程;(II )在区间[]1,2内至少存在一个实数x ,使得()<0f x 成立,求实数a 的取值范围.21.(本题满分13分)已知抛物线的顶点在坐标原点,焦点在y 轴上,且过点(,)21. (Ⅰ)求抛物线的标准方程;(Ⅱ)与圆1)1(22=++y x 相切的直线t kx y l +=:交抛物线于不同的两点N M ,若抛物线上一点C 满足)(+=λ)0(>λ,求λ的取值范围.参考答案一、选择题(本题共10小题,每题5分,共50分)二、填空题(本题共5小题,每题5分,共25分)11. 13 12. 12010 13. ③④ 14. 1015. A. x x x ⎧⎫-<<<<⎨⎬⎩⎭11002或 B. 2 C.2三、解答题(本题共5小题, 每题12分,共60分) 16. 解:(Ⅰ)∵分层抽样∴18∶x=36∶2 x=1 ………………………2分54∶y=36∶2 y=3 ……………………… 4分(Ⅱ)设从B 校抽取的2人为B 1、B 2,从C 校抽取的3人为C 1、C 2、C 3,从这5个人中选2人任组长的选法共有:(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 2,C 1),(B 2,C 2),(B 2,C 3),(C 1,C 2),(C 1,C 3),(C 2,C 3)10种.而两人都来自C 校的有(C 1,C 2),(C 1,C 3),(C 2,C 3)3种. ………………………10分 ∴所求概率为103. ………………………12分 17.(Ⅰ)证明:平面ABCD ⊥平面ABEF ,CB AB ⊥, 平面ABCD I 平面ABEF AB =,CB ∴⊥平面ABEF ,∵AF 在平面ABEF 内,∴AF CB ⊥, …………… 3分 又AB 为圆O 的直径,∴AF BF ⊥, ∴AF ⊥平面CBF . ………………………… 6分 (Ⅱ)解:由(1)知CB ABEF ⊥面即CB OEF ⊥面, ∴三棱锥C OEF -的高是CB , ∴1CB AD ==,……… 8分连结OE 、OF ,可知1OE OF EF ===∴OEF ∆为正三角形,∴正OEF ∆0分∴11111332C OEF OEF V CB S -∆=⨯=⨯⨯⨯=,……12分 18. 【解】(Ⅰ)θsin 21=S ………………………………2分)0,1(,)6sin(),6cos(=⎪⎭⎫ ⎝⎛++=→--→--OC OB πθπθ则θπθθsin )6cos(2)(++=+⋅=→--→--S OC OB f )3sin(πθ+=,…………4分),0(πθ∈ ,故6πθ=时,1)(max =θf …………………6分(Ⅱ)依题6,54sin ,53cos πθθθ+=∠=-=BOC BOC 中在Δ由余弦定理得:2||→--BC 53314sin cos 326cos11211+=+-=+⨯⨯⨯-+=θθπθ)(……12分 19. 解(Ⅰ) 由已知得:⎩⎨⎧=-=+⇒⎪⎩⎪⎨⎧++=+=⨯+01192)7)(()3(5529101012111211d a d d a d a d a d a d a 因为 0≠d 所以 1a d =所以 119211=+a a ,所以 1,11==d a所以 n n a n =-+=)1(1 ┈┈┈┈┈┈┈┈┈┈┈┈ 6分(Ⅱ) ⎪⎩⎪⎨⎧++-=)(2)(2为偶数为奇数n n n n b nnn(ⅰ) 当n 为奇数时252221)21(221)222()43()21(22221122--=--⋅+--=++++-++-++-=+-++++-=+n n n n n T n n n nn(ⅱ) 当n 为偶数时22221)21(22)222()1()43()21(22221122-+=--⋅+=++++++-+++-++-=+-++++-=+nn n n n T n n n nn所以 ⎪⎪⎩⎪⎪⎨⎧-+--=++)(222)(252211为偶数为奇数n n n n T n n n ┈┈┈┈┈┈┈┈┈┈┈┈ 12分20. 解:(I )当1a =时,2()=32f x x x '-,(2)=14f , …………………2分 曲线()y f x =在点(2(2))f , 处的切线斜率k =(2)=8f ',所以曲线()y f x =在点(2(2))f ,处的切线方程为820x y --=. …………6分 (II )解1:22()=323()3f x x ax x x a '-=-(12)x ≤≤ 当213a ≤,即32a ≤时,()0f x '≥,()f x 在[],12上为增函数, 故()=(1)min f x f =11a -,所以11a -0<, 11a >,这与32a ≤矛盾………8分当2123a <<,即332a <<时,若213x a ≤<,()0f x '<;若223a x <≤,()0f x '>, 所以23x a =时,()f x 取最小值,因此有2()3f a 0<,即338210273a a -+31010027a =-+<,解得3a >,这与332a <<矛盾; ………………12分 当223,a ≥即3a ≥时,()0f x '≤,()f x 在[],12上为减函数,所以()=(2)min f x f =184a -,所以1840a -<,解得92a >,这符合3a ≥.综上所述,a 的取值范围为92a >. ………………14分解2:有已知得:2231010x x x x a +=+>, ………………8分设()()21102≤≤+=x x x x g ,()3101x x g -=', ……………10分 21≤≤x ,()0<'∴x g ,所以()x g 在[]2,1上是减函数. ……………12分 ()()292min ==g x g , 故a 的取值范围为92a > …………………………………………14分21. 解(Ⅰ) 设抛物线方程为py x 22=, 由已知得:p 222= 所以 2=p所以抛物线的标准方程为 y x 42= ┈┈┈┈┈4分(Ⅱ) 因为直线与圆相切, 所以t t k k t 2111222+=⇒=++ ┈┈┈┈┈ 6分把直线方程代入抛物线方程并整理得: 0442=--t kx x由016)2(16161622>++=+=∆t t t t k得 0>t 或3-<t ┈┈┈┈┈┈┈┈┈┈┈┈ 8分 设),(,),(2211y x N y x M , 则k x x 421=+t k t x x k t kx t kx y y 242)()()(2212121+=++=+++=+由))24(,4(),()(22121λλλλt k k y y x x OM OC +=++=+= 得 ))24(,4(2λλt k k C +┈┈┈┈┈┈┈┈┈┈┈┈ 10分 因为点C 在抛物线y x 42=上, 所以,λλ)24(416222t k k += 42114212122++=++=+=⇒t tt t k t λ 因为0>t 或3-<t ,所以 442>+t 或 242-<+t 所以 λ的取值范围为 )45,1()1,21( ┈┈┈┈┈┈┈┈ 13分。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 2018广东高考数学导数的简单应用复习试题导数的简单应用是高考数学考试中容易丢分的知识点,我们在考前必须多做测试题。
下面小编为大家整理的广东高考数学导数的简单应用复习试题,希望大家喜欢。
广东高考数学导数的简单应用复习试题1.下列各坐标系中是一个函数与其导函数的图象,其中一定错误的是( )答案:C 命题立意:本题考查导数在研究函数单调性上的应用,难度中等.解题思路:依次判断各个选项,易知选项C中两图象在第一象限部分,不论哪一个作为导函数的图象,其值均为正值,故相应函数应为增函数,但相反另一函数图象不符合单调性,即C选项一定不正确.2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=()A.1B.-1C.-e-1D.-e答案:C 命题立意:本题考查函数的导数的求法与赋值法,难度中等.解题思路:依题意得,f′(x)=2f′(e)+,取x=e得f′(e)=2f′(e)+,由此解得f′(e)=-=-e-1,故选C.3.已知函数y=f(x)的图象如图所示,则其导函数y=f′(x)的图象可能是( )A B C D答案:A 命题立意:本题考查函数的性质,难度较小.解题思路:函数f(x)的图象自左向右看,在y轴左侧,依次是增、减、增;在(0,+∞)上是减函数.因此,f′(x)的值在y轴左侧,依次是正、负、正,在(0,+∞)上的取值恒非正,故选A.4.已知f′(x)是定义在R上的函数f(x)的导函数,且f(x)=f(5-x),f′(x)<0.若x1A.f(x1)f(x2)C.f(x1)+f(x2)<0D.f(x1)+f(x2)>0答案:B 命题立意:本题主要考查函数的性质,意在考查考生的逻辑思维能力.解题思路:依题意得,当x<时,f′(x)<0,则函数f(x)在上是减函数.当x1f(x2);若x2≥,则由x1+x2<5得x1<5-x2≤,此时有f(x1)>f(5-x2)=f(x2).综上所述,f(x1)>f(x2),故选B.5.已知f(x)=x2+2xf′(1),则f′(0)等于( )A.0B.-4C.-2D.2答案:B 解题思路:本题考查导数知识的运用.由题意f′(x)=2x+2f′(1),f′(1)=2+2f′(1),即f′(1)=-2,f′(x)=2x-4,f′(0)=-4.技巧点拨:解决本题的关键是利用导数求出f′(1)的值.6.已知函数f(x)的导数为f′(x)=4x3-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为( )A.-1B.0C.1D.±1答案:B 解题思路:可以求出f(x)=x4-2x2+c,其中c为常数.由于f(x)过(0,-5),所以c=-5,又由f′(x)=0,得极值点为x=0和x=±1.又x=0时,f(x)=-5,故x的值为0.7.已知函数f(x)=x3-2ax2-3x(aR),若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为( )A.-B.-C.D.答案:A 命题立意:本题主要考查导数的几何意义及切线方程的求法.求解时,先对函数f(x)求导,令x=1求出点P(1,m)处切线的斜率,进而求出a 的值,再根据点P在函数f(x)的图象上即可求出m的值.解题思路: f(x)=x3-2ax2-3x,f′(x)=2x2-4ax-3,过点P(1,m)的切线斜率为k=f′(1)=-1-4a.又点P(1,m)处的切线方程为3x-y+b=0,。
导数及应用
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.由直线1=y 与曲线2x y =所围成的封闭图形的面积是( )
A .34
B . 32
C .31
D .2
1 【答案】A
2.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )
A . 1
2 B .1
2- C . D .
【答案】A
3.曲线324y x x =-+在点(1,3)处切线的倾斜角为( )
A .6π
B .3π
C . 4π
D .2
π 【答案】C
4.若0)32(20=-⎰dx x x k
,则k =( ) A . 1
B . 0
C . 0或1
D .以上都不对
【答案】C 5.()203sin x x dx π
+⎰是( ) A . 2318π+ B . 2314π+ C . 23
14π- D . 2318
π- 【答案】A
6.由直线x=12,x=2,曲线1y x
=及x 轴所围图形的面积为( ) A .154 B .174
C .1ln 22
D .2ln2 【答案】D
7.函数)0,4
(2cos π在点x y =处的切线方程是( ) A .024=++πy x
B .024=+-πy x
C .024=--πy x
D .024=-+πy x
【答案】D
8.0(sin cos )x x π
-⎰=( ) A .2
B .4
C .π
D .2π
【答案】A 9.设点P 是曲线3
233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是( )
A .2[0,)[,)23
πππ⋃ B . 5[0,)[,)26πππ⋃ C . 2[,)3ππ D . 5(,]26
ππ 【答案】A
10.曲线233x x y +-=在点)2,1(处的切线方程为( )
A .53+=x y
B .53+-=x y
C .13-=x y
D .x y 2= 【答案】C
11.曲线321132y x x =
+在点5(1,)6A 处的切线与两坐标轴围成的三角形的面积为( )
A .4918
B .4936
C .4972
D .
49144 【答案】D
12.函数x y 1=
在点4=x 处的导数是( ) A . 81 B . 81- C . 161 ( D) 16
1- 【答案】D
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.12dx (11+5x)--=⎰______. 【答案】772。