七年级数学上册测试卷二 有理数的加减法 人教义务几何
- 格式:doc
- 大小:106.00 KB
- 文档页数:4
人教版七年级数学测试卷(考试题)第一章 有理数 1.3 有理数的加减法 1.3. 2 有理数的减法第2课时 有理数的加减混合运算1.⎪⎭⎫ ⎝⎛+121与⎪⎭⎫⎝⎛-41的和的符号是________,和是________,和的绝对值是________,差的符号是________,差是________,差的绝对值是________.2.把(-8)-(-1)+(+3)-(-2)转化为只含有加法的算式:____________________. 3.把(+3)-(-2)+(-4)-(+5)写成省略括号的代数和的形式为:_________________. 4.-3,+4,-7的代数和比它们的绝对值的和小( ) A .-8 B .-14 C .20 D .-205.7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律与结合律 6.若0<b ,则b a -,a ,b a +的大小关系是( ) A .b a a b a +<<- B .b a b a a +<-< C .a b a b a <-<+ D .b a a b a -<<+ 7.41-的相反数与绝对值等于41的数的和应等于( )A .21B .0C .21-D .21或0.8.计算: (1)()()3.3463.3416+-+---;(2)()()227103-+---+----; (3)21416132-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---; (4)4-3.8-[(-2.5-1.2+4)-6.9]. (5)326543210-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛---; (6)()212115.2212--+---; (7) 13-[26-(-21)+(-18)]; (8)[1.4-(-3.6+5.2)-4.3]-(-1.5);(9)()()⎪⎭⎫ ⎝⎛-+-+--⎪⎭⎫ ⎝⎛++-54512549; (10)⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-43573.875.141343125.2.9.用计算器计算:(1)-24+3.2-16-3.5+0.3; (2)(-2.4)-(-4.7)-(+O.5)+(-3.2);(3)3250-(-2563)+560-(+7820);(4)(-73.45)+23.36-(-86.32)-98.31.10.一种零件,标明直径的要求是04.003.050+-φ,这种零件的合格品最大的直径是多少?最少的直径是多少?如果直径是49.8,合格吗?11.七名学生的体重,以48.0 kg 为标准,把超过标准体重的千克数记为正数,不足的千(1)最接近标准体重的学生体重是多少? (2)最高体重与最低体重相差多少? (3)求七名学生的平均体重;(4)按体重的轻重排列时,恰好居中的是哪个学生?附赠材料:怎样提高做题效率一读二画三抠怎样“快而不乱”做好阅读题阅读是一个获取信息的过程,阅读质量的高低取决于捕捉信息的多少。
1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。
2023-2024学年七年级数学上册《第一章有理数的加减法》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.式子-4-2-1+2的正确读法是()A.减4减2减1加2 ;B.负4减2减1加2;C.-4,-2,-1加2 ;D.4,2,1,2的和.2.对于代数式−2+k的值,下列说法正确的是()A.比−1大B.比−1小C.比k小D.比k大3.若|m|=3,|n|=2,且mn<0,则m﹣n的值是()A.﹣1或1 B.5 C.﹣5或5 D.﹣14.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4 1]=()2A.﹣1 B.0 C.1 D.25.下列计算中,正确的是()A.(﹣6)+(﹣4)=﹣2 B.﹣9+(﹣4)=﹣13C.|﹣9|+9=0 D.﹣9+4=﹣136.不改变原式的值,将6−(+3)−(−7)+(−2)中的减法改成加法,并写成省略加号的形式的是()A.−6−3+7+2B.6−3−7−2C.6−3+7−2D.6+3−7−27.如图,若各行、各列、各条斜线上的三个数之和相等,则图中a处应填的可能值为()。
A.4 B.5 C.6 D.78.某商店出售三种不同品牌的面粉,面粉袋上分别标有质量,如下表:面粉种类A品牌面粉B品牌面粉C品牌面粉质量标示(20±0.4)kg (20±0.3)kg (20±0.2)kg现从中任意拿出两袋不同品牌的面粉,这两袋面粉的质量最多相差()A.0.4kg B.0.6kg C.0.7kg D.0.8kg二、填空题9.﹣9,6,﹣3三个数的和比它们绝对值的和小.10.弥阳镇某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是℃.11.若数轴上表示3的点为M,那么在点M右边,相距2个单位的点所对应的数是.12.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是星期.星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃﹣2℃﹣3℃13.输入-1,按图所示的程序运算,则输出的结果是.三、解答题14.计算下列各题(1)6+(−14)−(−39)(2)−7−(−11)+(−9)−(+2)(3)20.36+(−1.4)+(−13.36)+1.4(4)(+325)+(−278)−(−535)+(−18)15.如图:(1)在数轴上标出表示-a、-b的点;(2)a 0;b 0;│a││b│; a-b 0(3)用“<”号把a、b、0、-a、-b连接起来.(4)、化简:|a|+|b|−|a−b|−|a+b|16.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒.问:﹣0.8 +1 ﹣1.2 0 ﹣0.7 +0.6 ﹣0.4 ﹣0.1(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?17.某日上午,司机老苏在东西走向的中山路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:km):+8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)最后一名乘客送到目的地时,老苏离出车地点的距离是多少千米?在出车地点的什么方向?(2)若每千米耗油0.2升,这天上午出租车共耗油多少升?18.甲、乙两商场上半年经营情况如下(“+”表示盈利,“﹣”表示亏本,以百万为单位)月份一二三四五六甲商场+0.8 +0.6 ﹣0.4 ﹣0.1 +0.1 +0.2乙商场+1.3 +1.5 ﹣0.6 ﹣0.1 +0.4 ﹣0.1(1)三月份乙商场比甲商场多亏损多少元?;(2)六月份甲商场比乙商场多盈利多少元?(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元?参考答案1.B2.C3.C4.B5.B6.C7.D8.C9.2410.1911.512.三13.114.(1)6+(−14)−(−39)=−8+39=31;(2)−7−(−11)+(−9)−(+2)=−7+11−9−2=−7;(3)20.36+(−1.4)+(−13.36)+1.4=20.36+(−13.36)+(−1.4)+1.4=7;(4)(+325)+(−278)−(−535)+(−1)=(+325)−(−535)+(−278)+(−18)=9−3=6 .15.(1)解:画数轴如下:(2)>;<;<;>(3)解:由数轴得:b<−a<0<a<−b;(4)解:|a|+|b|−|a−b|−|a+b|=a−b−(a−b)+(a+b)=a+b.16.(1)解:成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%(2)解:﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.615﹣1.6÷8=14.8秒17.(1)解: +8+( -6)+ (-5)+ ( +10)+ ( -5)+ ( +3)+ ( -2)+ (+6)+ ( +2)+ ( -5 )=6(千米)。
人教版七年级数学上册《第二章有理数的运算》单元测试卷及答案 知识点题型分布:考点1:有理数的加法与减法考点2:有理数的乘法与除法考点3:有理数的乘方一、选择题1.(2023·安徽·模拟预测)联合国宣布,世界人口在2022年11月15日达到80亿.其中80亿用科学记数法表示为( )A .88010⨯B .98010⨯C .8810⨯D .9810⨯2.(23-24七年级上·陕西渭南·阶段练习)用四舍五入法对0.06574取近似值,错误..的是( ) A .0.1(精确到0.1) B .0.06(精确到百分位)C .0.066(精确到千分位)D .0.0657(精确到0.0001)3.(23-24七年级上·安徽合肥·期末)某地连续四天的天气情况如图,其中温差最大的一天是( )A .17日B .18日C .19日D .20日4.(24-25七年级上·全国·课后作业)若数a ,b 在数轴上对应的位置如图所示,则a b +是( )A .正数B .0C .负数D .都有可能5.(23-24七年级上·云南临沧·期中)下列运算中,正确的是( )A .624--=-B .1313⎛⎫÷-=- ⎪⎝⎭C .22220a b ab -=D .()a b b a --=- 6.(2023·浙江杭州·模拟预测)设a 是有理数,用[]a 表示不超过a 的最大整数,则下列四个结论中,正确的是( )A .[][]0a a +-=B .[][]a a +-等于0或1-C .[][]0a a +-≠D .[][]a a +-等于0或17.(2022·山东泰安·一模)截至2022年3月31日,全国累计报告接种新冠病毒疫苗327087.4万剂次,接种总人数达127770.9万,已完成全程接种124228.1万人.用科学记数法表示124228.1万为( ) A .101.24228110⨯ B .91.24228110⨯ C .4124228110⨯ D .5124228110⨯8.(2022九年级·全国·专题练习)如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为A 1,A 2,A 3,每列的三个式子的和自左至右分别记为B 1,B 2,B 3,其中,值可以等于789的是( ) 21n +23n + 25n + 1A 27n +29n + 211n + 2A 213n + 215n + 217n +3A 1B 2B3B 11C .A 2 D .B 3二、填空题9.(2024·重庆·一模)2024年3月12日的《政府工作报告》中指出,在过去的一年我国经济总体回升向好,其中2023年城镇新增就业1244万人,请将数字12440000用科学记数法表示为 .10.(22-23七年级上·辽宁大连·期末)大连是一个美丽的海滨城市,海岸线长1787000米,用科学记数法表示数字1787000为 .11.(23-24七年级下·江苏无锡·期末)到今年年末,我省新冠疫苗接种目标为 56 000 000 人,用科学记数法表示这个数据: .12.(23-24七年级上·全国·单元测试)数轴上表示12-和 3.5-的两个点之间的距离是 . 13.(23-24八年级上·河南焦作·期末)华为公司今年发布了一款自家的5G 芯片,这款芯片集成了49亿个晶体管,那么10个这样的芯片上共有多少个晶体管,请将这个数用科学记数法表示 .14.(23-24七年级上·湖南永州·期末)计算()()1248-÷-⨯,结果是 . 15.(23-24七年级上·河南商丘·期中)如图是一个程序框图,若输入结果是3-,则输出的结果是16.(23-24七年级上·重庆沙坪坝·阶段练习)2023年2月10日,在经过475000000公里的漫长飞行之后,中国火星探测器“天问二号”顺利进入环火轨道,成为我国又一颗人造火星卫星.将数据475000000用科学记数法表示为 .三、解答题17.(23-24七年级上·安徽合肥·期末)计算:21252532⎛⎫÷-⨯- ⎪⎝⎭;18.(22-23七年级上·全国·单元测试)计算:(1)()()8151211---+--;(2)1336442⎛⎫⎛⎫÷⨯-÷- ⎪ ⎪⎝⎭⎝⎭;(3)22022214323⎡⎤⎛⎫-+÷⨯-⎢⎥ ⎪⎝⎢⎣-⎭⎥⎦.18.(23-24七年级下·黑龙江绥化·期末)一只蜜蜂从蜂房出来采蜜,向东飞了2千米后,没有找到蜜源,又向东飞了1千米,结果仍没有找到蜜源,于是又向东飞了5-千米,终于找到了蜜源.此时蜜蜂在蜂房的哪个方向?它离蜂房多远?20.(23-24七年级上·北京通州·期末)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况: 星期一 二 三 四 五 与每天的计划量相比的 差值(单位:件) 55+ 20- 25- 60+ 50-这周共加工了 件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了 件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.参考答案1.D【分析】本题考查科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】80亿用科学记数法表示为9810⨯故选D .2.B【分析】利用四舍五入法逐一进行判断即可.【详解】解:A 、0.1(精确到0.1),正确;B 、0.07(精确到百分位),选项错误;C 、0.066(精确到千分位),正确;D 、0.0657(精确到0.0001),正确;【点睛】本题考查近似数.熟练掌握四舍五入法,是解题的关键.3.B【分析】此题考查有理数减法的实际应用,分别计算每天的温差,即可得到答案,正确理解题意列得减法算式是解题的关键.【详解】解:17日温差为()583---=℃;18日温差为()145--=℃;19日温差为202-=℃;20日温差为523-=℃;5332>=>∴温差最大的一天是18日故选:B .4.C【分析】本题结合数轴考查了有理数的加法法则,体现了数形结合的思想,熟练掌握有理数的加法法则是解答本题的关键.先根据数轴发现,a b 异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.【详解】解:由图可知:0,0,||||a b a b <>>.则0a b故选:C .5.D【分析】根据有理数减法运算法则、有理数除法法则、合并同类项法则和去括号法则,逐项分析即可获得答案.【详解】A. 628--=-,故本选项运算错误,不符合题意; B. 1393⎛⎫÷-=- ⎪⎝⎭,故本选项运算错误,不符合题意; C. 22a b 与22ab 不是同类项,不能合并,故运算错误,不符合题意;D. ()a b b a --=-,运算正确,符合题意.故选:D .【点睛】本题主要考查了有理数运算及整式运算,熟练掌握相关运算法则是解题关键.6.B【分析】本题考查有理数比较大小,有理数的加法运算,分a 为整数和不是整数两种情况,进行讨论求解即可.【详解】解:当a 为整数时:[]a a = []a a -=-∴[][]0a a +-=当a 不是整数时,例如: 1.5a =则:[]1.51= []1.52-=-∴[][]1a a +-=-;综上:[][]a a +-等于0或1-;故选B .7.B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:124228.1万=1242281000=91.24228110⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.8.B【分析】把A 1,A 2,B 1,B 3的式子表示出来,再结合值等于789,可求相应的n 的值,即可判断.【详解】由题意得:A 1=2n +1+2n +3+2n +5=789整理得:2n =260则n 不是整数,故A 1的值不可以等于789;A 2=2n +7+2n +9+2n +11=789整理得:2n =254则n 不是整数,故A 2的值不可以等于789;B 1=2n +1+2n +7+2n +13=789整理得:2n =256=28则n 是整数,故B 1的值可以等于789;B 3=2n +5+2n +11+2n +17=789整理得:2n =252则n 不是整数,故B 3的值不可以等于789;故选:B .【点睛】本题主要考查规律型:数字变化类,解答的关键是理解清楚题意,得出相应的式子.9.71.24410⨯【分析】本题主要考查了科学记数法,将数据表示成形式为10n a ⨯的形式,其中1||10a <<,n 为整数,正确确定a 、n 的值是解题的关键.将12440000写成10n a ⨯其中1||10a <<,n 为整数的形式即可.【详解】解:712440000 1.24410=⨯.故答案为71.24410⨯.10.61.78710⨯【分析】将1787000可分为1.7871000000⨯,进而可表示为61.78710⨯.【详解】解:61787000 1.7871000000 1.78710=⨯=⨯故答案为:61.78710⨯.【点睛】本题考查用科学记数法表示较大的数,能够数清数位是解决本题的关键.11.75.610⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:56000000=5.6×107故答案为:5.6×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.3【分析】本题考查了数轴上两点之间的距离,运用较大的数减去较小的数,进行作答. 【详解】解:依题意,()1 3.532---= ∴则点P 与点Q 之间的距离是3故答案为:3.13.104.910⨯【分析】此题考查科学记数法的表示方法.正确确定a 的值以及n 的值是解答的关键.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:49亿×10=490亿=49000000000=104.910⨯故答案为:104.910⨯.14.116【分析】根据有理数的乘除混合运算法则计算即可.【详解】解:原式=12×18=116 故答案为:116. 【点睛】本题主要考查了有理数的乘除混合运算,解题的关键是熟练掌握有理数的乘除混合运算法则. 15.71-【分析】本题主要考查有理数的混合运算和流程图,解题的关键是掌握有理数的混合运算法则:先算乘方,再算乘除,最后算加减,有括号的先算括号.将3x =-代入210x -,列出算式再根据有理数的混合运算顺序和运算法则计算可得答案.【详解】解:当3x =-时 ()22101031x -=--= 10>否当1x =时22101019x -=-=90>否当9x =时221010971x -=-=-输出结果71-故答案为:71-.16.4.75×108【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】475000000=4.75×108故答案为:4.75×108【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.50【分析】本题考查有理数计算.根据题意先整理算式,再利用乘法分配律运算即可得到本题答案. 【详解】解:213131252525252550322222⎛⎫⎛⎫÷-⨯-=⨯+⨯=⨯+= ⎪ ⎪⎝⎭⎝⎭. 18.(1)16- (2)32(3)7-【分析】(1)先去括号,再计算有理数的加减法即可得;(2)根据有理数的乘除法法则计算即可得;(3)先计算乘方,再计算括号内的乘法与减法,然后计算除法,最后计算减法即可得.【详解】(1)解:原式8151211=-+--71211=--511=--16=-.(2)解:原式12943⎛⎫⎛⎫=⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ 9234⎛⎫=-⨯- ⎪⎝⎭ 32=. (3)解:原式491432-⎛⎫=-+÷⨯ ⎪⎝⎭ 41234-⎛⎫=-+÷ ⎪⎝⎭ 2314⎛⎫=-+÷- ⎪⎝⎭ 3214⎛⎫=-+⨯- ⎪⎝⎭16=--7=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 19.此时蜜蜂在蜂房的西边,离蜂房2千米.【分析】此题考查了有理数加法的实际应用,根据题意列出算式求解即可.【详解】根据题意得()2152++-=-∴此时蜜蜂在蜂房的西边,离蜂房2千米.20.(1)2020(2)110件(3)20300元【分析】本题考查了有理数混合运算的应用(1)用本周的计划加工的总数量加上多加工的数量即可求解;(2)用最多的一天比计划多的数量减去最少的一天比计划少的数量即可求解;(3)用加工的数量乘以单价,再加上多加工的额外收入即可求解;准确理解题意是解题的关键.【详解】(1)400555202560502020⨯+--+-=(件) 故答案为:2020;(2)6050110++-=(件)故答案为:110;(3)()20201020204005520300⨯+-⨯⨯=(元) ∴该车间这周的总收入为20300元.。
七年级数学有理数的加减法测试题1. 已知两个数的和为正数,则( )A.一个加数为正,另一个加数为零B.两个加数都为正数C.两个加数一正一负,且正数的绝对值大于负数的绝对值D.以上三种都有可能2. 若两个数相加,如果和小于每个加数,那么( )A.这两个加数同为正数B.这两个加数的符号不同C.这两个加数同为负数D.这两个加数中有一个为零3. 笑笑超市一周内各天的盈亏情况如下:(盈余为正,亏损为负,单位:元):132,-12,-105,127,-87,137,98,则一周总的盈亏情况是( )A.盈了B.亏了C.不盈不亏D.以上都不对4. 下列运算过程正确的是()A.(-3)+(-4)=-3+-4=…B.(-3)+(-4)=-3+4=…C.(-3)-(-4)=-3+4=…D.(-3)-(-4)=-3-4=…5. 如果室内温度为21℃,室外温度为-7℃,那么室外的温度比室内的温度低()A.-28℃B.-14℃C.14℃D.28℃6. 汽车从A地出发向南行驶了48千米后到达B地,又从B地向北行驶20千米到达C地,则A地与C地的距离是( )A.68千米B.28千米C.48千米D.20千米7. x<0, y>0时,则x, x+y, x-y,y中最小的数是 ( )A x Bx-y C x+y D y8.|x-1|+|y+3|=0, 则y-x-12的值是()A -412B -212 C -112 D 1129. 在正整数中,前50个偶数和减去50个奇数和的差是 ( )A 50B -50C 100D -10010. 在1,—1,—2这三个数中,任意两数之和的最大值是 ( )A 1 B 0 C -1 D -3二、填空题11.计算:(-0.9)+(-2.7)=, 3.8-(+7)=.12. 已知两数为 556和-823,这两个数的相反数的和是,两数和的绝对值是. 13. 绝对值不小于5的所有正整数的和为.14.若m ,n 互为相反数,则|m-1+n|=.15.已知x.y ,z 三个有理数之和为0,若x=812,y=-512,则z=.16. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于。
人教版七年级数学上册:1.3有理数的加减法测试题(一)一、选择题1.计算(-3)+5的结果等于()A.2B.-2C.8D.-82.比-2小1的数是()A.-1B.-3C.1D.33.计算(-20)+17的结果是()A.-3B.3C.-2017D.20174.比-1小2015的数是()A.-2014B.2016C.-2016D.20145.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.A.1个B.2个C.3个D.4个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个7.算式-3-5不能读作()A.-3与-5的差B.-3与5的差C.3的相反数与5的差D.-3减去58.一个数减去2等于-3,则这个数是()A.-5B.-1C.1D.59.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是()A.19,7,14B.11,20,19C.14,7,19D.7,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是()A.3,8,9,10B.10,7,3,12C.9,7,4,11D.9,6,5,1111.与-3的差为0的数是()A.3B.-3C.-D.二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于-3.5且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)5.6+4.4+(-8.1)(2)(-7)+(-4)+(+9)+(-5)(3)+(-)+(4)5(5)(-9)+15(6)(-18)+(+53)+(-53.6)+(+18)+(-100)人教版七年级数学上册:1.3有理数的加减法测试题答案和解析【答案】1.A2.B3.A4.C5.B6.A7.A 8.B 9.C 10.C 11.B12.713.855514.415.-316.-117.518.解:(1)5.6+4.4+(-8.1)=10-8.1=1.9;(2)(-7)+(-4)+(+9)+(-5)=-7-4+9-5=-16+9=-7;(3)+(-)+=(-)+(--)+=0-1+=-;(4)5=(5+4)+(-5-)=10-6=4;(5)(-9)+15=(-9-15)+[(15-3)-22.5]=-25+[12.5-22.5]=-25-10=-35;(6)(-18)+(+53)+(-53.6)+(+18)+(-100)=(-18+18)+(+53-53.6)+(-100)=0+0-100=-100.【解析】1. 解:(-3)+5=5-3=2.故选:A.依据有理数的加法法则计算即可.本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. 解:-2-1=-3,故选:B.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是列出算式.3. 解:原式=-(20-17)=-3,故选A原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.4. 解:根据题意得:-1-2015=-2016,故选C根据题意列出算式,利用有理数的减法法则计算即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5. 解:①互为相反数的两个数相加和为0,所以两个有理数的和可能等于零,说法正确;②一个数同0相加,仍得这个数,所以两个有理数的和可能等于其中一个加数,说法正确;③两个有理数的和为正数时,可能这两个数都是正数;可能一正一负;还可能一个是正数,一个是0;所以原说法错误;④两个有理数的和为负数时,这两个数不能都是正数,所以原说法错误;故选B.有理数的加法法则:同号两数相加,取相同的符号,并把它们的绝对值相加;绝对值不等的异号两数相加,取绝对值较大的数的符号作为结果的符号,再用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0;一个数同0相加,仍得这个数.根据这个法则进行解答即可.本题考查了有理数的加法法则,是基础知识要熟练掌握.6. 解:①2-(-2)=2+2=4,故本小题错误;②(-3)-(+3)=-3-3=-6,故本小题错误;③(-3)-|-3|=-3-3=-6,故本小题错误;④0-(-1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选A.根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.7. 解:-3-5不能读作:-3与-5的差.故选A.根据有理数的减法运算的读法解答.本题考查了有理数的减法,是基础题,熟记并理解有理数的减法与加法的意义是解题的关键.8. 解:由题意,得:-3+2=-1,∴这个数是-1,故选B.根据加法是减法的逆运算,将两数相加即可.本题主要考查有理数的减法,解决此题时,可以运用其逆运算计算.9. 解:如图,设①、②、③三处对应的数依次是x,y,z,则,解得.故选C.设①、②、③三处对应的数依次是x、y和z,根据每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,列方程组求解.本题考查的是有理数的加法,解题关键是能够根据题意列出三元一次方程组,并且能熟练运用消元法解方程组,难度一般.10. 解:设a、b、c、d为这4个数,且a>b>c>d,则有,解得:a=11,b=9,c=7,d=4.故选C.设出4个数,按照题意列出方程组,即可得出结论.本题考查的有理数的加法,解题的关键是按大小顺序设出4个数,联立方程组得出结论.11. 解:根据题意得:0+(-3)=-3,则与-3的差为0的数是-3,故选B.根据差与减数之和确定出被减数即可.此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.12. 解:原式=+(8-1)=7,故答案为:7原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.13. 解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n-1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n-1)n]=+{(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+[(n-1)•n•(n+1)-(n-2)•(n-1)•n]}=+[(n-1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为 8555.根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.14. 解:大于-3.5且小于4的整数是-3、-2、-1、0、1、2、3、4,∴大于-3.5且小于4的整数的和为:-3-2-1+0+1+2+3+4=4.故答案为4.先找出符合条件的整数,然后把它们相加即可.此题考查了有理数的加法,解题时正确写出符合条件的整数是关键.15. 解:原式=-(9-6)=-3,故答案为:-3.根据有理数的加法,可得答案.本题考查了有理数的加法,熟记有理数的加法是解题关键.16. 解:比1小2的数是1-2=1+(-2)=-1.关键是理解题中“小”的意思,根据法则,列式计算.本题主要考查了有理数的减法的应用.17. 解:7+(-2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.18.(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.。
七年级数学上册《有理数的加减法》测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣1﹣(﹣3)等于()A.﹣4B.2C.4D.﹣22.若x的相反数是2,|y|=5,且x+y<0,则x﹣y的值是()A.3B.3或﹣7C.﹣3或﹣7D.﹣73.下列计算正确的是()A.8+(﹣14)=+6B.8+|﹣14|=﹣6C.8+(﹣14)=﹣22D.8+(﹣14)=﹣64.以下叙述中,正确的有()①减去一个数,等于加上这个数的相反数;②两个正数的和一定是正数;③两个负数的差一定是负数;④在数轴上,零右边的点所表示的数都是正数.A.4个B.3个C.2个D.1个.5.冬季一天早晨的气温是﹣2℃,中午上升了8℃,下午又下降了4℃,则下午的气温是()A.10℃B.2℃C.﹣2℃D.﹣5℃6.在数4,﹣3,﹣12,﹣9中,任取三个不同的数相加,其中和最大的是()A.﹣11B.﹣8C.﹣17D.﹣67.如果a﹣b>0,且a+b<0,那么一定正确的是()A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|8.11月10日,某股票的股价在连续上涨后开始高位震荡,当天开盘价为31.85元,相对开盘价,波动最高+0.13元,最低﹣0.84元,那么这天的最大价差(最高价减去最低价)为()A.31.98元B.31.01元C.0.71元D.0.97元二.填空题(共8小题,满分40分)9.比0小4的数是,比3小4的数是,比﹣5小﹣2的数是.10.我县某天的最低气温为﹣3℃,最高气温为5℃,这一天的最高气温比最低气温高℃.11.已知|x|=5与|y|=4,且x>y,则y﹣x=.12.x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z的值为.13.计算:﹣20+(﹣14)﹣(﹣18)+13=.14.计算(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)的结果是.15.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.16.计算:(+1)+(﹣2)+(+3)+(﹣4)+……+(+2021)+(﹣2022)=.三.解答题(共6小题,满分40分)17.计算:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5 (2)5.3﹣|﹣3|+2﹣2.18.计算下列各题(1)﹣20+(﹣17)﹣(﹣18)﹣11 (2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(3).19.计算:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)(2)(﹣)+3.25+2+(﹣5.875)+1.15 20.数学张老师在多媒体上列出了如下的材料:计算:.解:原式===.上述这种方法叫做拆项法.请仿照上面的方法计算:(1);(2).21.阅读绝对值拓展材料:|a|表示数a在数轴上的对应点与原点的距离,如:|5|表示5在数轴上的对应点到原点的距离而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离,类似的,|5+3|=|5﹣(﹣3)|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.根据上述材料,回答下列问题.(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)借助数轴解决问题:如果|x+2|=1,那么x=;(3)|x+2|+|x﹣1|可以理解为数轴上表示x的点到表示和这两个点的距离之和,则|x+2|+|x﹣1|的最小值是.22.2020年“双十一”期间某淘宝商家提前搞促销活动,计划平均每天销售某品牌学习机100台,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是双十一的一周销售倩况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+2﹣3+25+8﹣4+2﹣6(1)根据记录的数据,计算该店一周日销量最多比最少多多少台?(2)本周实际销售总量达到了计划数量吗,通过计算说明理由.(3)该店实行每日按销售台数计算工资,每销售一台学习机可得10元,若超额完成任务,则超过部分每台另奖20元;少销售一台扣30元,那么该店铺的销售人员这一周的工资总额是多少元?参考答案一.选择题(共8小题,满分40分)1.解:﹣1﹣(﹣3)=﹣1+3=2.故选:B.2.解:∵﹣2的相反数是2,∴x=﹣2.∵|y|=5,∴y=±5.∵x+y<0,∴x=﹣2,y=﹣5.∴x﹣y=﹣2﹣(﹣5)=﹣2+5=3.故选:A.3.解:8+(﹣14)=8﹣14=﹣6,故D选项正确,A选项、C选项错误;8+|﹣14|=8+14=22,故B选项错误.故选:D.4.解:①减去一个数,等于加上这个数的相反数,说法正确;②∵同号两数相加,取相同的符号,∴两个正数的和一定是正数,故②说法正确;③∵(﹣1)﹣(﹣5)=﹣1+5=4,∴两个负数的差一定是负数不正确,故③说法错误;④在数轴上,零右边的点所表示的数都是正数,说法正确;综上所述,正确的有3个.故选:B.5.解:由题意得,﹣2+8﹣4=2(°C),故选:B.6.解:根据题意得:4﹣3﹣9=﹣8,故选:B.7.解:∵a﹣b>0,∴a>b,①b≥0则a一定是正数,此时a+b>0,与已知矛盾,∵a+b<0,当b<0时,①若a、b同号,∵a>b,∴|a|<|b|,②若a、b异号,∴|a|<|b|,综上所述b<0时,a>0,|a|<|b|.故选:C.8.解:0.13﹣(﹣0.84)=0.13+0.84=0.97(元),故选:D.二.填空题(共8小题,满分40分)9.解:根据题意得:0﹣4=﹣4;3﹣4=﹣1;﹣5﹣(﹣2)=﹣5+2=﹣3,故答案为:﹣4;﹣1;﹣310.解:5﹣(﹣3)=5+3=8(℃).故答案为:811.解:∵|x|=5与|y|=4,∴x=±5,y=±4,∵x>y,∴x=5,y=±4,(1)当x=5,y=4时,y﹣x=4﹣5=﹣1(2)当x=5,y=﹣4时,y﹣x=﹣4﹣5=﹣9故答案为:﹣1或﹣9.12.解:∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x﹣y+z=﹣1﹣1+0=﹣2.故答案为:﹣2.13.解:﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣3.故答案为:﹣314.解:(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)=[(﹣0.5)﹣(﹣7)]+[﹣(﹣3)+2.75]=7+6=13故答案为:13.15.解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.16.解:原式=(1﹣2)+(3﹣4)+…+(20121﹣2022)=﹣1﹣1﹣1…﹣1=﹣1011,故答案为:﹣1011.三.解答题(共6小题)17.解:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5=﹣16﹣8+8﹣3+5=(﹣16﹣8﹣3)+(8+5)=﹣27+13=﹣14;(2)5.3﹣|﹣3|+2﹣2=5.3﹣3+2﹣2=(5.3+2)+(﹣3﹣2)=7.3﹣6=1.3.18.解:(1)原式=﹣20+(﹣17)+18+(﹣11)=﹣37+18+(﹣11)=﹣19+(﹣11)=﹣30;(2)原式=﹣49+(﹣91)+5+(﹣9)=﹣140+5+(﹣9)=﹣135+(﹣9)=﹣144;(3)原式=4+(﹣3.85)+3+(﹣3.15)=(4+3)+[(﹣3.85)+(﹣3.15)]=8+(﹣7)=1.19.解:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)=19+[(﹣6.9)+(﹣3.1)]﹣8.35=19﹣10﹣8.35=9﹣8.35=0.65;(2)(﹣)+3.25+2 +(﹣5.875)+1.15=[(﹣)+(﹣5.875)]+(3.25+1.15+2.6)=﹣6+7=1.20.解:(1)=(28+)+[(﹣25)+(﹣)]=(28﹣25)+(﹣)=3+=3;(2)=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+(﹣)=(﹣2021﹣2022+4044)+(﹣﹣﹣)=1+(﹣1)=0.21.解:(1)2和5的两点之间的距离是|5﹣2|=3,1和﹣3的两点之间的距离是|﹣1﹣(﹣3)|=4,故答案为:3,4;(2)∵|x+2|=1,∴x+2=1或x+2=﹣1,∴x=﹣1或x=﹣3,故答案为:﹣1或﹣3;(3)|x+2|+|x﹣1|表示x轴上点到点﹣2和1的距离之和,∴|x+2|+|x﹣1|的最小距离是3,故答案为:﹣2,1,3.22.解:(1)25﹣(﹣6)=25+6=31(台),答:该店一周日销量最多比最少多31台;(2)2﹣3+25+8﹣4+2﹣6=24>0,∴本周实际销量达到了计划数量;(3)(100×7+24)×10+(2+25+8+2)×20+(﹣3﹣4﹣6)×30=7590(元).答:该店铺的销售人员这一周的工资总额是7590元.。
《有理数》单元测试卷(二)(考试时间:100分钟总分:150分)一、单选题(共12小题,每题4分,共48分)1.下列各数:-5,1.1010010001…,3.14,227,20%,3π,有理数的个数有()A .3个B .4个C .5个D .6个2.如果+5米表示一个物体向东运动5米,那么-3米表示().A .向西走3米B .向北走3米C .向东走3米D .向南走3米3.超市里一袋食盐的净含量是(500±5)g ,表示这袋食盐的重量范围在495g ~505g 之间,如果某种药品的保存温度为(20±2)℃,那么下列温度符合保存要求的是()A .+2℃B .﹣2℃C .21℃D .17℃4.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④5.下列计算正确的是()A .(2)(3)5-+-=B .(2)35--=-C .D .33ππ-=-6.(本题4分)下列说法中正确的是()A .a -一定是负数;B .a 一定是负数C .a -一定不是负数D .2a -一定是负数7.已知3a =,4b =,且0<+b a ,则a-b 的值为()A .1或7B .-1或-7C .1和-7D .-1和78.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg9.有理数,a b 在数轴上的位置如图所示,则下列式子中正确的个数是()①;②;③;④.A .1B .2C .3D .410.下列每组数中,相等的是()。
A 、-(-3)和-3;B 、+(-3)和-(-3);C 、-(-3)和|-3|;D 、-(-3)和-|-3|.11.(本题4分)按如图所示的运算程序,能使运算输出结果为5-的是()123-=--0a b +>0a b -<0a b ->a b ->-A .1x =,2y =-B .1x =,2y =C .1x =-,2y =D .1x =-,2y =-12.(本题4分)已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1=-112-,-1的差倒数是11=1(1)2--.如果12a =-,是的差倒数,是的差倒数,是的差倒数……依此类推,那么12100a a a +++ 的值是()A .-7.5B .7.5C .5.5D .-5.5二、填空题(共24分)13.把下列各数填在相应的大括号内:-13,31,0.8,-3,324,-3.101001,-2,11,0,...202002.3,π,∙7.1整数集合:{…}分数集合:{…}负分数集合{…}非负整数集合{…}14.如果向东走20米记作+20米,那么向西走30米记作_________.15.的相反数是________,绝对值是_________.16.比较大小:-(+3.5)____|-4.5|,23-____34-,-π______3.1.17.若0||||=-++a c b a 且b a >,则=+cb b a ||||_________18.下面是按一定规律排列的一列数:,,,,…那么第n 个数是.三、解答题(共78分)19.(本题10分)画出数轴,在数轴上表示下列各数,并用“>”将他们连接起来),25(--,321-|43|-+20.(本题10分)计算:(1)12(16)(4)5--+--(2)21.(本题10分)已知有理数a 、b 满足,求的值.|5|--[(4)]---|,1|--,0,5.3-2141(6132-----)5(|1|+++-b a 0|3||42|=-++b a 2a 1a 3a 2a 3a 4a22.(本题10分)出租车司机小王中秋节当天下午驾车接送游客旅游,下午的营运全是在东西走向的公路上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)+8,+4,﹣10,-3,+6,﹣5,﹣3,+6,-5,+10.请回答:(1)将第几名乘客送到目的地时,小王刚好回到下午出发点?(2)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午共需要多少油费?23.(本题10分)小张第一次用180元购买了8套儿童服装,以一定价格出售.如果以每套儿童服装80元的价格为标准,超出的记作整数,不足的记作负数,记录如下(单位:元):12,13,15,11,17,11,0,13.+-++---请通过计算说明.......:(1)小张卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?(3)小张第二次用第一次的进价再次购买900元的儿童服装,如果他预计第二次每套服装的平均售价75元,按他的预计第二次售价可获利多少元?24.(本题10分)对于有理数、定义一种新运算,规定☆.(1)求2☆()3-的值;(2)若3☆x 4=,求x 的值.b a b -=3b a a25.(本题10分)认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
七年级数学上册有理数的加减法测试题基础检测1·计算:(1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.51 (4))32(21-+ 2·计算: (1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)3·计算:(1))1713(134)174()134(-++-+- (2))412(216)313()324(-++-+- 4·计算: (1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+ 拓展提高1、 (1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、 若2,3==b a ,则=+b a ________。
3、 已知,3,2,1===c b a 且a >b >c,求a +b +c 的值。
4、 若1<a <3,求a a -+-31的值。
5、 计算:7.10)]323([3122.16---+-+-6、 计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、 10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?体验中招1·数轴上A ·B 两点所表示的有理数的和是________。
2·小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2, 这五天的最低温度的平均值是( )A ·1B ·2C ·0D ·-1参考答案基础检测1·-7,-21,0.61,-61 严格按照加法法则进行运算。
2·-10,-3.把符号相同的数就·或互为相反数的数结合进行简便运算3·-1,213-。
人教版2020年七年级数学上册1.3《有理数的加减法》课后练习一、选择题1.绝对值小于5的所有整数的和为A. 0B.C. 10D. 202.定义新运算:对任意有理数a、b,都有,例如,,那么的值是A. B. C. D.3.下面结论正确的有两个有理数相加,和一定大于每一个加数一个正数与一个负数相加得正数.两个负数和的绝对值一定等于它们绝对值的和两个正数相加,和为正数.两个负数相加,绝对值相减正数加负数,其和一定等于0.A. 0个B. 1个C. 2个D. 3个4.计算:的结果是A. B. 2 C. 8 D.5.计算的结果等于A. 2B.C. 8D.6.计算的结果等于A. 6B.C. 12D.7.比1小2的数是A. B. C. D. 08.下列结论不正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,且,则9.计算的结果等于A. B. C. 3 D. 710.某地一天的最高气温是,最低气温是,则该地这天的温差是A. B. C. D.二、填空题11.已知,,,那么 ______ .12.已知,,,,化简 ______ .13.已知,,则的值是______.14.已知,,且,则的值等于______ .15.计算: ______ ; ______ .16.计算: ______ .17.观察下面的几个算式:,,,,根据你所发现的规律,请你直接写出下面式子的结果:______.18.大于且不大于4的整数的和是______ .19.已知,,且,则的值为______ .20.甲地的气温是,乙地的气温比甲地高,则乙地的气温是______三、解答题21.计算.(3).(4)计算:.22.一个数a减去与2的和,所得的差是6,求a的值.23.某自行车厂一周计划生产1400辆自行车,平均每天生产自行车200辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入下表是某周的自行车生产情况超计划生产量为正、不足计划生产量为负,单位:辆:星期一二三四五六日增减根据记录可知前三天共生产自行车______ 辆;产量最多的一天比产量最少的一天多生产______ 辆;若该厂实行按生产的自行车数量的多少计工资,即计件工资制如果每生产一辆自行车可得人民币60元,那么该厂工人这一周的工资总额是多少元?。
有理数的加减法一、填空题1.(-8)-_________=6 (-5)-__________=0 0-________=-4 0+______=-a 0-_______=a .2.被减数是-13.6,差是-5.4,则减数是___________.3.2131与-的差的相反数是__________;比2131--小的数的绝对值是__________;2的相反数与⎪⎭⎫ ⎝⎛-21的倒数的差的绝对值等于__________. 4.若712)712(x =--,则x =__________;若317)5(x -=--,则x =__________. 5.若a >0,b <0,且|a|<|b|,则a +b__________0.若a <0,b <0,且|a|<|b|,则a -b__________0.6.若|a|=6,|b|=4,且|a +b|=a +b ,则a -b =__________.7.若a ,b ,c ,d 互不相等,且|a -c|=|b -c|=|d -b|=1,c =3,那么|a -d|=__________.8.已知数轴上点A 表示的数为-75,点B 与点A 关于原点对称,则A ,B 两点间的距离为__________.9.-7.6-(+2.8)=__________)311(513---=__________ -8+12+7-4=__________ 125214331----=__________ 10.已知有理数a ,b ,c 的和为0,且a =7,b =-2,则c =__________.11.已知-21.38=-x +(-1.38)+27,则x =__________.12.1-2+3-4+5-6+…-100+101=__________. 13.一种零件,标明的要求是04.003.050+-Φ(Φ表示直径).如果一零件的直径是49.8,则该零件是否合格__________.(填“是”或“否”)14. 已知两个数556和283-,这两个数的相反数的和是 。
15. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。
16. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
17.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。
18. 小明写作业时不慎将墨水滴在数轴上,请判定墨迹盖住部分的整数的和是 .19.若a >0,b <0,且|a|<|b|,则a +b__________0.20.若a <0,b <0,且|a|<|b|,则a -b__________0.21.若|a|=6,|b|=4,且|a +b|=a +b ,则a -b =__________.22.若a ,b ,c ,d 互不相等,且|a -c|=|b -c|=|d -b|=1,c =3,那么|a -d|=__________.23.被减数是-13.6,差是-5.4,则减数是___________.24.2131与-的差的相反数是__________;比2131--小的数的绝对值是__________;2的相反数与⎪⎭⎫ ⎝⎛-21的倒数的差的绝对值等于__________. 25.若712)712(x =--,则x =__________;若317)5(x -=--,则x =__________. 二、选择题1.下列说法正确的是( )A .两个有理数相加,和一定大于每一个有理数B .两个非零有理数相加,和可能等于零C .两个有理数的和为负数,这两个有理数都是负数D .两个负数相加,把绝对值相加2.两数相加,如果和小于任一加数,那么这两数( )A .同为正数B .同为负数C .一正数一负数D .一个为0,一个为负数3.已知有理数a ,b ,c 在数轴上的位置如图2-1所示,则下列结论错误的是( )A .a +b <0B .b +c <0C .a +b +c <0D .|a +b|=a +b4.一个数加-3.6,和为-0.36,那么这个数是( )A .-2.24B .-3.96C .3.24D .3.965.下列结论正确的是( )A .有理数减法中,被减数不一字比减数大B .减去一个数,等于加上这个数C .零减一个数,仍得这个数D .两个相反数相减得06.-2的倒数与绝对值等于21的数的差是( ) A .211212--或 B .212211或 C .-1或0 D .0或1 7.下列计算正确的是( )A .7-(-7)=0B .312151=- C .0-4=-4 D .-6-5=-1 8.下列各式中,其和等于4的是( )A .)412(411-+- B .|437|855213--- C .2)43(21+--- D .)854(125.0)43(--+- 9.如果|x|=4,|y|=3,则x -y 的值是( )A .±7B .±1C .±7或±1D .7或110.已知:a <0,b >0,用|a|与|b|表示a 与b 的差是( )A .|a|-|b|B .-(|a|-|b|)C .|a|+|b|D .-(|a|+|b|)11.如果a <0,那么a 和它的相反数的差的绝对值等于( )A .-2aB .-aC .0D .a12.1997个不全相等的有理数之和为零,则这1997个有理数中( )A .至少有一个为零B .至少有998个正数C .至少有一个是负数D .至少有1995个负数13. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数14. 已知两个数的和为正数,则( )A.一个加数为正,另一个加数为零B . 两个加数都为正数C.两个加数一正一负,且正数的绝对值大于负数的绝对值D.以上三种都有可能15. 下列运算过程正确的是( )A.(-3)+(-4)=-3+-4=… B.(-3)+(-4)=-3+4=…C.(-3)-(-4)=-3+4=… D.(-3)-(-4)=-3-4=…16. 如果室内温度为21℃,室外温度为-7℃,那么室外的温度比室内的温度低( ) A.-28℃ B.-14℃ C.14℃ D .28℃17. 汽车从A 地出发向南行驶了48千米后到达B 地,又从B 地向北行驶20千米到达C 地,则A 地与C 地的距离是( )A .68千米B .28千米C .48千米D .20千米18. x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( )A x B x -y C x+y D y19.|x+1|+|y-4|=0, 则y -x -12的值是 ( ) 20. 在正整数中,前50个偶数和减去50个奇数和的差是 ( )A 50B -50C 100D -10021. 在1,—1,—2这三个数中,任意两数之和的最大值是 ( )A 1 B 0 C -1 D -3二、填空题1. 计算:(-0.9)+(-2.7)= ,3.8-(+7)= .2. 已知两数为 556和-823,这两个数的相反数的和是 ,两数和的绝对值是 . 3. 绝对值不小于5的所有正整数的和为 .4. 若m ,n 互为相反数,则|m-1+n|= .5. 已知x.y ,z 三个有理数之和为0,若x=812,y=-512,则z= . 6. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于 。
7.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 8. 13的绝对值的相反数与323的相反数的和为______________。
9.下列结论不正确的是 [ ]A .两个正数之和必为正数B .两数之和为正,则至少有一个数为正C .两数之和不一定大于某个加数D .两数之和为负,则这两个数均为负数10.若两个数绝对值之差为0,则这两个数 [ ]A .相等B .互为相反数C .两数均为0D .相等或互为相反数11. 如果a <0,b <0,那么a+b________0(用“>”“<”填空=)。
12. 如图1数轴上两点所对应的数分别为m ,n ,则|m -n|=__________。
13. 如果a -b=0,则a ,b 的关系是________;如果a+b=0,则a ,b 的关系是________。
14. 若a >0,b <0,则a -b________0;b -a________0。
15. 如图2,有理数a 、b 、c 、d 在数轴上分别对应着点A 、B 、C 、D ,写出a 、b 、c 、d 所对应的数__________________。
16. 如果a<0,b>0,|a|>|b|,那么a+b________0(用“>”“<”填空)三、计算题1.-5-5-3+(-3) 2.-4.2+5.7-8.4-2.33.|-0.2|-|-3-(+8)|-|-8-2+10| 4.108524835)16(+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+-5.)1156()4117(1165437+---⎪⎭⎫ ⎝⎛-+ 6.81.26-293.8+8.74+1117.8147512125.043275.0-++- 8.200111999119991200012000120011---+-9.1024151212561814121+++⋯+++ 10.1+2+3+…+1997+1998+1999。