关于煤矿瓦斯的几个参数
- 格式:doc
- 大小:84.50 KB
- 文档页数:4
瓦斯抽放基础参数定期检查观测制度瓦斯是矿山开采中常见的危险气体,含量过高会造成爆炸等严重事故。
为了保障矿工的生命安全,矿山企业通常会采取瓦斯抽放技术以控制瓦斯含量。
而瓦斯抽放技术的有效性与安全性与瓦斯抽放基础参数的准确性有关。
因此,制定一套科学合理的瓦斯抽放基础参数定期检查观测制度对于矿山企业而言十分重要。
瓦斯抽放基础参数瓦斯抽放基础参数是指影响瓦斯抽放效果的一些关键参数,包括抽放面积、抽放风量、抽放区域、抽放方式等。
这些参数的准确与否直接影响着瓦斯抽放的效果和安全性。
抽放面积抽放面积是指进行瓦斯抽放的煤矿工作面的面积。
煤矿工作面越大,瓦斯的累计量就会越多,因此需要相应地增加瓦斯抽放设备,以控制瓦斯浓度。
抽放面积的大小应根据具体情况进行确定,一般应以煤层瓦斯产量和矿井实际情况为依据。
抽放风量抽放风量是指进行瓦斯抽放时所需的风量大小。
瓦斯抽放只有在足够的风量的作用下才能有效地降低瓦斯浓度。
抽放风量的大小应按照具体情况进行确定,一般应以煤层瓦斯产量、矿井通风系统性能和抽放效果等因素为依据。
抽放区域抽放区域是指进行瓦斯抽放时所涉及到的区域。
这个区域应包括具体的工作面、采煤区、回风巷、风冲口等。
抽放区域的划分应进行科学合理的规划和设计,以充分实现瓦斯抽放的效果。
抽放方式抽放方式是指进行瓦斯抽放时所采取的具体方式。
常见的抽放方式包括局部预提、全过预提、立体控制、免堵控制等。
根据矿井的地质条件、煤层厚度、煤质、瓦斯含量等因素的影响,应选择合适的瓦斯抽放方式。
瓦斯抽放基础参数检查观测制度为确保瓦斯抽放基础参数的安全和准确性,矿山企业应制定一套科学合理的瓦斯抽放基础参数定期检查观测制度。
以下是一些具体的建议:定期检查瓦斯抽放设备企业应设立瓦斯抽放设备的检查记录,定期检查瓦斯抽放设备的运行状态。
检查范围应包括抽放机组、风机、支架等。
检查时要检查设备是否存在故障,定期更换易损件。
定期检测瓦斯含量矿山企业应制定一套瓦斯含量监测计划,定期检测瓦斯含量。
黔西金坡煤业有限责任公司4#煤层、9#煤层瓦斯基本参数测定研究报告黔西金坡煤业有限责任公司煤炭科学研究总院重庆研究院二00六年十二月黔西金坡煤业有限责任公司4#煤层、9#煤层瓦斯基本参数测定研究报告院长X X X X X X X主管院长XXXXXX 研究员所长X X X X 研究员项目负责人X X X X 高工黔西金坡煤业有限责任公司煤炭科学研究总院重庆研究院二00六年十二月目录1 前言 (1)2 矿井基本概况 (1)2.1 交通位置 (1)2.2 地形地貌 (2)2.3 矿井地层与煤层 (2)2.4 开拓与开采 (4)2.5 通风、瓦斯 (5)3 煤层瓦斯基本参数测定 (5)3.1 项目技术方案 (5)3.2 煤层瓦斯压力测定 (6)3.3 煤层瓦斯含量 (13)3.4煤层透气性系数及衰减 (14)4 煤层瓦斯基本参数测定结果分析 (15)4.1 测定方法分析 (15)4.2 测定结果评价 (17)4.3煤层瓦斯基本参数测定结果 (18)5. 煤层可抽性评价 (18)5.1根据煤层透气性系数评价 (19)5.2根据钻孔瓦斯流量衰减系数评价 (19)5.3 煤层可抽性综合评价 (19)6 采掘工作面瓦斯治理 (19)6.1 掘进工作面瓦斯治理 (19)6.2 采煤工作面瓦斯治理 (22)7 结论与建议 (24)1 前言对于高瓦斯矿井而言,瓦斯事故是煤矿的重大灾害和安全隐患之一。
为了在瓦斯综合防治中避免盲目性,做到有效、可靠和有预见性,需要对煤层的瓦斯基本情况有一个准确的把握。
煤层瓦斯参数测定是掌握煤层瓦斯情况的基本途径。
通过瓦斯参数测定,可以确定煤层的瓦斯压力、瓦斯含量、煤的相关物理性质以及煤吸附瓦斯的一些特性。
从而为煤层的瓦斯抽放可行性论证、突出防治措施的制定、瓦斯综合治理方案的确定,以及为瓦斯抽放和综合利用提供依据和基础。
为此,贵州黔西金坡煤业有限责任公司与煤炭科学研究总院重庆研究院签订了《黔西金坡煤业有限责任公司4#煤层、9#煤层瓦斯基本参数测定》的项目合同。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
关于煤矿瓦斯的几个参数1、瓦斯压力:煤层瓦斯压力是指煤层孔隙中所含游离瓦斯呈现的压力,即瓦斯作用于孔隙壁的压力。
煤层瓦斯压力是瓦斯涌出和突出的动力,也是煤层瓦斯含量多少的标志。
煤层孔隙内气体分子自由热运动撞击所产生的作用力; 在一个点上力的各向大小相等,方向与孔隙的壁垂直。
瓦斯压力的测定:瓦斯压力测定方法是:自井下巷道内打钻进入煤层,在钻孔中,密封一根刚性导气管,实测管内稳定的气压,即为瓦斯压力。
煤层瓦斯压力大小受多种地质因素的影响,变化较大。
在一个井田内的同一地质单元里,甲烷带的瓦斯压力通常随深度的增加而增大。
煤层瓦斯压力是决定煤层瓦斯含量和煤层瓦斯动力学特征的基本参数。
2、煤的坚固性系数:煤的坚固性系数时指煤块抵抗破坏能力的综合指标。
岩石分级:根据岩石的坚固性系数(f),可把岩石(煤为岩石的一类)分成10级(表3-1),等级越高的岩石越容易破碎。
为了方便使用又在第Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ级的中间加了半级。
考虑到生产中不会大量遇到抗压强度大于200MPa的岩石,故把凡是抗压强度大于200MPa的岩石都归入Ⅰ级。
由于岩石的坚固性区别于岩石的强度,强度值必定与某种变形方式(单轴压缩、拉伸、剪切)相联系,而坚固性反映的是岩石在几种变形方式的组合作用下抵抗破坏的能力。
因为在钻掘施工中往往不是征的是岩石抵抗破碎的相对值。
因为岩石的抗压能力最强,故把岩石为致密粘土的抗压强度为10MPa。
岩石坚固性系数的计算公式简洁明了,f值可用于预计岩石抵抗破碎的能力及其钻掘以后的稳定性)。
岩石极限压碎强度(坚固系数)=0.1×岩石饱和抗压强度÷软化系数[1]3、煤的瓦斯放散初速度:单位mL/S煤的瓦斯放散初速度指标是煤自身的煤质指标之一,表征了煤的微观结构。
它不仅反映了煤的放散瓦斯能力,还反映出瓦斯渗透和流动的规律,在突出区域预测中起着重要的作用。
煤的这种放散瓦斯的能力大小与突出的发生有直接关系。
关于煤矿瓦斯的几个参数
1、瓦斯压力:
煤层瓦斯压力是指煤层孔隙中所含游离瓦斯呈现的压力,即瓦斯作用于孔隙壁的压力。
煤层瓦斯压力是瓦斯涌出和突出的动力,也是煤层瓦斯含量多少的标志。
煤层孔隙内气体分子自由热运动撞击所产生的作用力; 在一个点上力的各向大小相等,方向与孔隙的壁垂直。
瓦斯压力的测定:瓦斯压力测定方法是:自井下巷道内打钻进入煤层,在钻孔中,密封一根刚性导气管,实测管内稳定的气压,即为瓦斯压力。
煤层瓦斯压力大小受多种地质因素的影响,变化较大。
在一个井田内的同一地质单元里,甲烷带的瓦斯压力通常随深度的增加而增大。
煤层瓦斯压力是决定煤层瓦斯含量和煤层瓦斯动力学特征的基本参数。
2、煤的坚固性系数:
煤的坚固性系数时指煤块抵抗破坏能力的综合指标。
岩石分级:
根据岩石的坚固性系数(f),可把岩石(煤为岩石的一类)分成10级(表3-1),等级越高的岩石越容易破碎。
为了方便使用又在第Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ级的中间加了半级。
考虑到生产中不会大量遇到抗压强度大于200MPa的岩石,故把凡是抗压强度大于200MPa的岩石都归入Ⅰ级。
由于岩石的坚固性区别于岩石的强度,强度值必定与某种变形方式(单轴压缩、拉伸、剪切)相联系,而坚固性反映的是岩石在几种变形方式的组合作用下抵抗破坏的能力。
因为在钻掘施工中往往不是
征的是岩石抵抗破碎的相对值。
因为岩石的抗压能力最强,故把岩石
为致密粘土的抗压强度为10MPa。
岩石坚固性系数的计算公式简洁明了,f值可用于预计岩石抵抗破碎的能力及其钻掘以后的稳定性)。
岩石极限压碎强度(坚固系数)=0.1×岩石饱和抗压强度÷软化系数[1]
3、煤的瓦斯放散初速度:单位mL/S
煤的瓦斯放散初速度指标是煤自身的煤质指标之一,表征了煤的微观结构。
它不仅反映了煤的放散瓦斯能力,还反映出瓦斯渗透和流动的规律,在突出区域预测中起着重要的作用。
煤的这种放散瓦斯的能力大小与突出的发生有直接关系。
我国一直采用瓦斯放散初速度指标△P来对煤的这种能力进行评价,并结合煤的坚固性系数,,形成新的综合指标K=△P/f。
其中f是煤的坚固性系数。
当煤的放散初速度大于10时,煤层有突出危险。
4、煤的破坏类型:
是指煤在构造应力作用下,煤层发生碎裂和揉皱的程度,即按照煤被破碎的程度划分的类型。
中国采煤界为预测和预防煤与瓦斯突
出,将煤被破碎的程度分成五种类型。
第Ⅰ类型:煤未遭受破坏,原生沉积结构、构造清晰;第Ⅱ类型:煤遭受轻微破坏,呈碎块状,但条带结构和层理仍然可以识别;第Ⅲ类型:煤遭受破坏,呈碎块状,原生结构、构造和裂隙系统已不保存;第Ⅳ类型:煤遭受强破坏,呈粒状;第Ⅴ类型:煤被破碎成粉状。
第Ⅲ、Ⅳ、Ⅴ(3、4、5)类型的煤具有煤与瓦斯突出的危险性。