制冷、制热型空气源热泵系统及分析
- 格式:pdf
- 大小:166.92 KB
- 文档页数:6
【总结篇】14种冷热源及空调系统特点介绍2015-03-17 10:25 专业分类:暖通空调浏览数:56714种冷热源及空调系统特点介绍目录:一、常规电制冷空调系统二、冰蓄冷空调系统三、水源热泵空调系统四、电蓄热空调系统五、风冷热泵空调系统六、溴化锂空调系统七、VRV空调系统八、热泵空调系统九、空气源热泵空调系统十、大温差低温送风空调系统的特点十一、变风量空调系统的特点十二、冰蓄冷与水源热泵的结合十三、水蓄冷系统十四、温湿独控空调系统系统正文:一、常规电制冷空调系统目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点:1)系统简单,占地比其他形式的稍小。
2)效率高,COP(制冷效率)一般大于5.3。
3)设备投资相对于其它系统少。
不足之处:1)冷水机组的数量与容量较大,相应的其他用电设备数量、容量也增加,运动设备的增加加大了维护、维修工作量。
2)总用电负荷大,增加了变压器配电容量与配电设施费。
3)所使用电量均为高峰电,不享受峰谷电价政策,运行费用高。
4)在拉闸限电时出现空调不能使用的状况。
2003、2004年夏季空调主机减半运行,造成大部分中央空调达不到效果。
5)运行方式不灵活,在过渡季节、节假日或休息时间个别区域供冷,需要开主机运行,形成大马拉小车,浪费了机组的配置能力,增加了运行费用。
6)对于大型区域供冷系统较难实现较好的供冷(供水温度不能降低),管网的投资大、输送能耗高、空调品质差。
二、冰蓄冷空调系统冰蓄冷空调是在常规水冷冷水机组系统的基础上减小制冷主机容量增加蓄冰装置,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时释放出来。
该技术在二十世纪30年代开始应用于美国,在70年代能源危机中得到发达国家的大力发展。
从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。
比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。
【热泵培训】手把手教空气能采暖、制冷设计与应用,值得收藏空气源热泵机组原理和结构空气源热泵冷暖机组系统概述空气源热泵,除具备制取出采暖用热水的功能外,空气源热泵机组还能切换到制冷工况制取冷冻水。
空气源热泵的基本原理是基于压缩式制冷循环,利用冷媒做为载体,通过风机的强制换热,从大气中吸取热量或者排放热量,以达到制冷或者制热的需求。
按照逆卡诺循环原理,该系统主要空气源热泵主机和末端两大部分组成。
空气源热泵机组与末端共同使用,前者提供冷水或热水,后者将冷水或热水,通过热交换,提供冷气或采暖。
空气源热泵机组是采暖系统中的主机,由于采用空气源冷凝器不需要冷却塔;而蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。
所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体)。
产品结构:空气源热泵顶出风、侧出风结构设计、选型与配置一、空调负荷计算1.空调负荷计算的组成(QL)(1)由于室内外温差和太阳辐射作用,通过建筑物围护结构传入室内的热量形成的冷负荷;(2)人体散热、散湿形成的冷负荷;(3)灯光照明散热形成的冷负荷;(4)其他设备散热形成的冷负荷;(5)渗透空气所形成的冷负荷(6)新风量负荷2.空调负荷计算方法简单介绍空调动态负荷的计算显得比较繁琐,即便是采用一些简化手段,计算工作量也是比较大的。
估算最简便,捷径行路,人之通性,慢慢的被它取而代之了。
但是估算的根据并不坚定,偏于保守是不可避免的,总是顾虑怕估算的小了,这也是可以理解的。
估算法也要注意与实际相符合,要根据实际的经验以及不同建筑的各自不同的情况。
目前空调负荷的计算还是以估算为主。
3.民用建筑空调单位面积冷负荷(qL)4.负荷计算——单位面积冷负荷法QL=qL×S式中:QL——建筑物空调房间总冷负荷 (W)QL——冷负荷 (W/m2 )S——空调房间面积 (m2)二、空调末端(风机盘管)的计算与选择(1)根据风量:房间面积、层高(吊顶后)和房间气体循环次数三者的乘积即为房间的循环风量。
热泵空调的制冷制热工作原理
热泵空调是一种能够将低位热源转化为高位热源的装置,它可以在夏季制冷和冬季制热,因此被广泛应用于家庭、商业和工业领域。
热泵空调的工作原理基于热力学原理,通过四个主要过程来实现制冷和制热功能,这四个过程包括:压缩过程、冷凝过程、膨胀过程和蒸发过程。
1. 压缩过程
在压缩过程中,低压低温的制冷剂气体被吸入热泵压缩机,经过压缩后成为高温高压的气体,这个过程需要消耗一部分电能。
这个高温高压的气体被称为压缩过热蒸汽,它所包含的热量足以用来供热或制冷。
2. 冷凝过程
压缩过热蒸汽进入冷凝器中,与周围环境进行热交换,放出热量并凝结成液体。
这个液态制冷剂在经过节流阀时,压力和温度都会降低,变成低温低压的湿蒸汽。
这个过程会将热量从制冷剂传递给冷却水或空气。
3. 膨胀过程
低温低压的湿蒸汽进入蒸发器中,压力和温度进一步降低,直到变成过冷的液体。
这个过程需要消耗一部分能量,使得制冷剂的体积增大,压力降低。
这个过程被称为膨胀过程。
4. 蒸发过程
过冷的液体在蒸发器中吸收来自周围环境(如室内空气或冷却水)的热量,变成干饱和蒸汽。
这个蒸汽随后被吸入压缩机中,开始下一个
压缩过程。
这个过程将热量从周围环境传递给制冷剂,实现了制冷或制热的效果。
在制冷模式下,热泵空调将室内的热量吸收并传递给室外环境;在制热模式下,热泵空调将室外的热量吸收并传递给室内环境。
通过这四个过程的循环进行,热泵空调可以实现制冷或制热的功能。
空气源热泵制冷原理
空气源热泵制冷系统是一种利用空气中的热能进行制冷的环保节能技术。
其工
作原理是通过空气源热泵循环系统,利用压缩机、蒸发器、冷凝器和膨胀阀等组件,将低温低压的制冷剂蒸发吸热,然后通过压缩机压缩成高温高压的气体,释放热量,最终通过冷凝器散热,使制冷剂再次变成液态,从而实现制冷的目的。
首先,空气源热泵制冷系统中的压缩机起着至关重要的作用。
压缩机负责将低
温低压的制冷剂吸入,然后压缩成高温高压的气体。
在这个过程中,制冷剂的温度和压力都会显著上升,从而释放出热量。
其次,蒸发器是空气源热泵制冷系统中的另一个重要组件。
蒸发器接收来自压
缩机的高温高压制冷剂,使其在蒸发器内部迅速蒸发,吸收外界空气中的热量,从而降低空气温度,实现制冷效果。
冷凝器也是空气源热泵制冷系统中不可或缺的部分。
冷凝器接收来自蒸发器的
低温低压制冷剂,将其冷却成液态,然后释放出热量。
这个过程中,制冷剂的温度和压力都会显著下降,从而实现制冷效果。
最后,膨胀阀在空气源热泵制冷系统中起着调节制冷剂流量和压力的作用。
膨
胀阀能够控制制冷剂流速,使其在蒸发器和冷凝器之间形成合适的压力差,从而保证系统正常运行。
总的来说,空气源热泵制冷系统是通过循环利用空气中的热能来实现制冷的技术。
通过压缩机、蒸发器、冷凝器和膨胀阀等组件的协同作用,实现了制冷剂的循环流动和相应的温度、压力变化,从而达到制冷的效果。
这种制冷方式不仅能够节约能源,减少对环境的影响,还具有较高的效率和稳定性,因此在现代社会得到了广泛的应用和推广。
空气源热泵供热原理及特点分析摘要:为贯彻落实国家“可持续发展”的政策方针,近年来空气源热泵技术凭借其来源性广、适应性高以及可操作性强的显著优势,被广泛应用于各行各业的生产作业中,由此在降低传统设备能源损耗量的同时,也极大地提高了不可再生性资源的利用率,最终为国家可持续发展目标的实现奠定了良好基础。
鉴于此,本文主要基于空气源热泵技术的工作原理,对其作业特点进行了全面探析,为人与自然的和谐相处奠定良好基础。
关键词:空气源热泵;技术工作原理;技术作业特点一、空气源热泵技术的基本概述(一)空气源热泵技术的定义简单来讲,所谓的“空气源热泵技术”本质上是一项高效节能环保型技术,在具体应用过程中依靠电能的拖动,热泵装置主要用于将低位热源热量使其流动到高位热源,由此在把不能为人们直接利用的低品位热能(空气、太阳能、土壤、井水河水以及工业废水)转换为可让人们直接利用的高位能的同时,降低原有有限高位能(煤炭、燃气、电能)的损耗,为节能环保作业目标的实现奠定良好基础,而在当前伴随原有高位能源损耗量的持续增加,环境污染问题也愈发严重,为从根本上贯彻国家“可持续发展”的战略方针,将热泵技术广泛应用于企业生产作业中式极为必要的。
(二)空气源热泵技术的作用随着社会主义市场经济的不断发展和科学技术的不断进步,在人们环保意识不断提高的新产业时代背景下,空气源热泵技术的研究作业也得到了各界的高度关注。
经大量调研数据分析可知,在热泵热水机组使用过程中,“空气+电”是机组主要的利用能源,这种无污染型可再生原料的使用,在一定程度上不仅极大地降低了原有能源物质的损耗,确保了国家经济的可持续发展,与此同时运用空气源热泵为供热系统输送能量,还有效地降低了空气污染物的排放量,有效地规避了温室效应的产生,在实现我国“低碳环保”战略发展要求的同时,优化了人们生活环境,保障了人们生命财产安全。
作为一种新型技术手段,热泵技术的应用不仅曹组简单、可控性强,与此同时还具有降低使用风险以及减少资金投入的显著优势,在热泵热水机组的广泛利用下,把机组放在建筑物的顶层或者室外的平台上不仅有效实现了水、电分离,还极大地降低了使用过程中的事故发生率,进而为人们提供了更好的用水体验。
空气源热泵研究报告引言空气源热泵(Air Source Heat Pump,简称ASHP)是一种利用空气中的热能进行供暖和制冷的设备。
它通过抽取空气中的热能,并将其转移到室内或室外来实现温度调节。
本报告将对空气源热泵的工作原理、应用领域、优缺点以及未来发展进行详细研究和分析。
一、工作原理1. 热泵循环过程空气源热泵的工作原理基于热力学中的制冷循环过程。
它包括蒸发器、压缩机、冷凝器和节流装置。
在蒸发器中,制冷剂吸收空气中的热能并蒸发成气体。
然后,压缩机将气体压缩,使其温度升高。
接下来,热量通过冷凝器散发到室内或室外环境中,制冷剂重新变成液体。
最后,通过节流装置,制冷剂压力降低,继续循环。
2. 热能转移空气源热泵通过空气中的热能转移来实现供暖和制冷。
在供暖模式下,室外空气中的热能被吸收,通过制冷剂的循环转移到室内。
而在制冷模式下,室内的热能被吸收,通过制冷剂的循环转移到室外。
这种热能转移的过程既节约了能源,又减少了环境污染。
二、应用领域1. 住宅建筑空气源热泵在住宅建筑中得到广泛应用。
它可以提供室内的供暖和制冷,并且与传统的电暖器、燃气锅炉相比,具有更高的能效和更低的运行成本。
在一些气候温和的地区,空气源热泵已成为主流的供暖和制冷设备。
2. 商业建筑除了住宅建筑,空气源热泵也在商业建筑中得到广泛应用。
例如,办公楼、酒店、商场等场所都可以采用空气源热泵进行空调和供暖。
它不仅节约能源,还能提高室内环境的舒适度,满足人们对于温度和湿度的需求。
三、优缺点分析1. 优点(1)环保节能:空气源热泵利用空气中的可再生能源,不产生二氧化碳等有害气体,对环境友好。
(2)节约成本:相较于传统的供暖和制冷设备,空气源热泵具有更高的能效,能够节约能源和运行成本。
(3)灵活性:空气源热泵可以实现制冷和供暖的双重功能,适用于不同的气候和季节需求。
2. 缺点(1)低温效能下降:在极端寒冷的环境中,空气源热泵的效能会下降,需要额外的辅助供暖设备。
科普:空气能热泵系统的供暖、制冷原理大解析空气能,是指空气中所蕴含的低品位热能量。
将空气能收集利用起来的装置叫热泵,被称为空气能热泵技术。
那么,空气能热泵系统究竟是怎样的?其如何供暖、制冷呢?太阳雨就这几个问题作出解答:一、空气能热泵原理机组运行基本原理依据是逆卡循环原理,液态工质首先在蒸发器内吸收空气中的热量而蒸发形成蒸汽(汽化),汽化潜热即为所回收热量,而后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需要的加热的水中,液态工质经膨胀阀降压膨胀后重新回到膨胀阀内,吸收热量蒸发而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。
二、空气能热泵供暖原理在制热时,液态制冷剂在空气换热器中汽化,吸收空气中的热量,低温低压的气态制冷剂经压缩机压缩后变为高温高压气体送至水换热器。
由于制冷剂的温度高于水的温度。
制冷剂从气态冷却为液态,液体制冷剂经膨胀阀节流后,在压力作用下进入空气换热器,低压气体制冷剂再次汽化,完成一次循环。
在这个循环中,随着制冷剂状态的变动,实现了热量从空气侧向水侧的转移。
三、空气能热泵制冷原理在制冷时,液态制冷剂在水换热器中汽化,使水温降低。
低温低压的气态制冷剂经压缩机压缩,变为高温高压气体,进入空气换热器,由于制冷剂温度高于空气温度,制冷剂向空气传热,制冷剂经气体冷凝为高压液体,高压液态制冷剂经膨胀阀节流后进入水换热器,低压液体制冷剂再次汽化,完成一个循环。
在这个循环过程中,随着制冷剂状态的变动,实现了热量从水侧向空气侧的转移。
空气能热泵有着安全、省钱、舒服、环保、经久耐用的优点,也因为运行成本较低,节能性好,所以成为大众选择的一个重要原因。
“制冷、制热、卫生热水”型空气源热泵系统及分析摘要:本文结合实际提出一种小型中央空调用“制冷、制热、卫生热水”型空气源热泵系统,能够利用空调部分冷凝热提供生活用卫生热水。
该系统可与家用中央热水系统连接。
本文也论述了系统各部件的设计修正,并对该系统进行了全年运行分析。
关键词:小型中央空调热泵热水热回收0前言在全世界共同面临越来越升温的能源危机面前,我国作为耗能大国,能量利用率仍然不高,但是随着国家各种政策激励、法规限制、奖励机制的促进,人们对节能越来越关注。
在能源收支平衡中,热损失占很大一部分,空调系统中的冷凝热属于低温余热,利用方便而且从焓平衡角度来看,热损失也不大。
在我国,中央空调在运行时产生大量的冷凝热,白白排放至大气环境中,造成可用能量的损失。
同时采用中央空调的酒店、宾馆全年需要提供热水,一般采用蒸汽供热水,由于冬高夏低的热水需求量,按照冬季热水需求设计的锅炉在夏季常常处于低负荷运行。
如能够回收冷凝热产生卫生热水,满足夏季热水需求,在冬季分担锅炉供热量,降低能耗,将是一条变废为宝的节能途径。
1系统1.1不带热回收的风冷冷热水机组制冷循环图1用全封闭往复式压缩机地风冷热泵机组lgp-h图由图1,2~5点的过程为整个冷凝过程,其中2~3点是制冷剂的过热段放显热,3~4点制冷剂放潜热,4~5点是过冷段放显热过程。
在制冷工况下运行,4℃蒸发,49℃冷凝,5℃吸气过热,5℃节流过冷,冷凝热可达制冷量的1.15~1.3倍。
等熵时,压缩机排气口t2s为70℃左右,实际中,压缩机排气过热,t2可达到83℃左右,有可能提供55~65℃的生活热水。
以R22为例,单位制冷剂可回收的低温余热为2-3段的热量,占冷凝热的17%左右,剩余的液相可冷凝的热量仍大于6-1可蒸发的热量,故即使有部分热量被回收后,在冬季仍可以满足设计的热负荷。
1.2带热回收的风冷冷热水机组1.2.1本热回收机组的装置示意图:1.压缩机9.热力膨胀阀17.除垢装置2.电磁三通阀10.单向阀18.水压传感器3.热回收换热器11.单向阀19.空调出水温度传感器4.电磁四通阀12.单向阀20.出水管5.空气侧换热器13.热力膨胀阀的感温包21.进水管6.风机14.气液分离器22.生活热水出水管7.单向阀15.空调水泵23.自来水进水管8.高压贮液器16.水侧换热器图2热回收机组装置示意图制冷剂循环回路:压缩机1的排气口依次连接四通阀4,空气侧换热器5,单向阀7,高压贮液器8,热力膨胀阀9,单向阀11,水侧换热器16,四通阀4,气液分离器14,再返回压缩机1的吸气口,在单向阀11出口与单向阀7的出口之间设置单向阀12,热膨胀阀9的感温包13安装在四通阀4与气液分离器14之间的连接管路上;1.2.2本热回收机组的特征(1)在该空调装置的压缩机的排气口与四通阀入口之间设置一个热回收换热器,该压缩机的排气管与热回收换热器内部的制冷剂通道的入口相连,该热回收换热器的出口与四通阀的入口相连,生活热水通道的进出口分别与生活热水进水管和热回收换热器水通道的入口相连。
空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析一、两种中央空调机组工作原理1.水源热泵机组工作原理是以水为载体,冬季把地下水中的低品位热能利用热泵原理,通过消耗部分电能,将提取出来的热量供房间取暖所用,而夏季把房间内的热量释放到地下水中,以达到夏季制冷的目的。
2.空气源热泵机组工作原理是以室外空气为载体,冬季把室外空气中的低品位热能利用热泵原理,通过消耗部分电能,将提取出来的热量供房间取暖所用,而夏季把房间内的热量释放到室外空气中,达到夏季制冷的目的。
二、两种中央空调机组设备机构特点1.水源热泵机组是由:压缩机、冷凝器、蒸发器及膨胀阀四大主要部件构成,制冷时主要依靠蒸发器与室内散热系统热交换从而达到空调制冷的目的,冬季时主要依靠冷凝器与室内散热系统热交换。
2.空气源热泵机组也是由压缩机、冷凝器、蒸发器及膨胀阀四大主要部件构成,空气源热泵一般采用翅片换热器夏季充当冷凝器、冬季充当蒸发器使用。
空气源热泵机组通过机组内部安装的四通换向阀,在夏季制冷时其翅片换热器充当冷凝器使用与室外空气进行换热进行冷却;冬季时翅片换热器充当蒸发器使用与室外空气进行换热吸取空气中的热量。
三、两种中央空调机组制冷时冷凝器冷却方式分析中央空调机组在夏季制冷使用时,其冷凝器均需要通过外界不同类型的低品位能源进行冷却,将机组制冷时输出的电机功率产生的热量及房间热交换产生的热量带走或吸收从而达到一种热平衡。
1.水源热泵机组冷凝器的冷却方式:水源热泵机组夏季制冷时是依靠地下井水进行冷却,即地下井水与机组的的冷凝器进行循环换热,地下井水抽水后经过机组冷凝器,将热量通过直接回灌的方式把热量带走从而达到对机组冷却的目的。
地下水温不受天气气候的变化而受影响,常年地下水温保持恒温。
2.空气源热泵机组换热器的冷却方式:空气源热泵机组夏季制冷时是依靠室外空气为低品位能源进行冷却,即室外空气与机组的翅片换热器进行热交换,将换热器释放的热量直接排放到室外空气中,从而达到对机组冷却的目的。