【状元之路】2015届高考物理一轮复习 22力的合成与分解同步检测试题
- 格式:doc
- 大小:545.50 KB
- 文档页数:8
开卷速查规范特训课时作业实效精练开卷速查(六) 力的合成与分解A组基础巩固1.[2018·甘肃省民勤四中]物体在三个共点力作用下保持静止状态,已知其中两个力的大小分别是F1=4 N, F2=7 N,则第3个力F3的大小不可能是( )A.3 N B.7 NC.11 N D.15 N解析:当三个共点力平衡时,任意两个力的合力大小与第三个力大小相等,方向相反,两个力的合力范围为3 N≤F≤11 N,A、B、C都在这个范围内,只有D中的15 N超出了这个范围,故D是不可能的.答案:D2.[2018·上海市松江二中测试] 如图6-1所示,水平横梁的一端A插在竖直墙内,与墙相垂直,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一重物m.则下述说法中正确的是( )图6-1A.轻绳对横梁作用力的方向沿横梁指向竖直墙B.绳对横梁的作用力一定大于重物对绳的拉力C.所挂重物m的质量越大,绳对横梁的作用力也越大D.若使绳的C端位置升高,则绳BC段的作用力会减小解析:滑轮两边细绳的拉力均为mg,轻绳对横梁作用力是竖直向下的mg与沿BC斜向上的mg的合力,所以其方向不沿横梁指向竖直墙;其大小也不一定大于重物对绳的拉力mg;所挂重物m的质量越大,则竖直向下的mg与沿BC斜向上的mg的合力越大,绳对横梁的作用力也越大;若使绳的C端位置升高,则绳BC段的作用力仍等于mg.选项C正确.答案:C图6-23.[2018·四川资阳诊断]如图6-2所示,两轻弹簧a 、b 悬挂一小铁球处于平衡状态,a 弹簧与竖直方向成30°角,b 弹簧水平,a 、b 的劲度系数分别为k 1、k 2.则两弹簧的伸长量x 1与x 2之比为( )A.k 1k 2 B.k 2k 1 C.2k 2k 1D.k 22k 1解析:作出小球受力图,由平行四边形定则可知a 弹簧中弹力是b 中2倍,即k 1x 1=2k 2x 2,解得x 1x 2=2k 2k 1,选项C 正确.答案:C图6-34.[2018·上海徐汇测试]如图6-3所示,F 1、F 2为有一定夹角的两个力,L 为过O 点的一条直线,当L 取什么方向时,F 1、F 2在L 上分力之和最大( )A .F 1、F 2合力的方向B .F 1、F 2中较大力的方向C .F 1、F 2中较小力的方向D .以上说法都不正确解析:当L 取F 1、F 2合力的方向,F 1、F 2在L 上分力之和最大,选项A 正确. 答案:A 5.图6-4[2018·湖北省重点中学联考]图6-4是一种晾衣架的结构示意图,其结构是在质量均匀的圆环上对称的安装挂钩,三根等长的细线固定在圆环的三等分点上,细线上端连在一起固定在水平横梁上.已知每根细线长均为20 cm ,圆环半径为12 cm ,晾衣架的总重力为G ,(不计细线重力),则每根细线所受拉力大小是( )A.512G B.13G C.239G D.233G 解析:设每根细绳与竖直方向的夹角为θ,由几何知识可知cos θ=45,根据平衡条件得3Fcos θ=G ,解得F =512G ,故选择A 项.答案:A图6-56.[2018·皖南八校高三联考一]一轻绳一端系在竖直墙M 上,另一端系一质量为m 的物体A ,用一轻质光滑圆环O 穿过轻绳,并用力F 拉住轻环上一点,如图6-5所示,现使物体A 从图中实线位置缓慢下降到虚线位置,则在这一过程中,力F 、绳中张力F T 和力F 与水平方向夹角θ的变化情况是( )A .F 保持不变,F T 逐渐增大,夹角θ逐渐减小B .F 逐渐增大,F T 保持不变,夹角θ逐渐增大C .F 逐渐减小,F T 保持不变,夹角θ逐渐减小D .F 保持不变,F T 逐渐减小,夹角θ逐渐增大解析:物体A 处于平衡状态,受力分析知,绳的张力F T 总和物重相等,F 的作用线一定平分两绳的夹角;两绳夹角越大,合力越小,C项正确.答案:C图6-67.[2018·长江市月考]如图6-6所示,A、B两球用劲度系数为k1的轻弹簧相连,B球用长为L的细线悬于O点,A球固定在O点正下方,且O、A间的距离恰为L,此时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小关系为( ) A.F1<F2B.F1>F2C.F1=F2D.因k1、k2大小关系未知,故无法确定图6-7解析:作出B物体的受力情况如图6-7所示,根据力三角形BFF′与几何三角形ABO相似知,拉力F总等于F′,即总等于重力G,故F1=F2,C项正确.答案:CB组能力提升8.(多选题)如图6-8所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共同固定一个小球,这时绳b的拉力为F1,现保持小球在原位置不动,使绳b在原竖直平面内逆时针转过θ角,绳b的拉力为F2,再逆时针转过θ角固定,绳b的拉力为F3,则( )图6-8A.F1=F3>F2B.F1<F2<F3C.F1=F3<F2D.绳a的拉力减小图6-9解析:画出小球的受力分析如图6-9所示,b绳逆时针转动过程中各力的变化可由图中平行四边形或三角形边长的变化看出,绳a的拉力逐渐减少,绳b的拉力先减小后增大,且F1=F3>F2.答案:AD9.半圆柱体P放在粗糙的水平面上,有一挡板MN,延长线总是过半圆柱体的轴心O,图6-10但挡板与半圆柱不接触,在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态,如图6-10是这个装置的截面图,若用外力使MN绕O点缓慢地顺时针转动,在MN到达水平位置前,发现P始终保持静止,在此过程中,下列说法中正确的是( )A.MN对Q的弹力逐渐增大B.MN对Q的弹力先增大后减小C.P、Q间的弹力先减小后增大D .Q 所受的合力逐渐增大解析:由三角形定则可判断A 正确. 答案:A图6-1110.如图6-11所示,两滑块放在光滑的水平面上,中间用一细线相连,轻杆OA 、OB 搁在滑块上,且可绕铰链O 自由转动,两杆长度相等,夹角为θ,当竖直向下的力F 作用在铰链上时,滑块间细线的张力为多大?解析:根据力F 作用在O 点产生的效果,可把力F 分解为沿OA 、OB 的力F 1、F 2,如图6-12甲所示,图6-12由对称性可知F 1=F 2=F 2cosθ2.对A 物体受力分析如图乙所示,由平衡条件得:F T =F 1·sin θ2=F 2tan θ2.答案:F 2tan θ2图6-1311.如图6-13所示,某同学在地面上拉着一个质量为m =30 kg 的箱子匀速前进,已知箱子与地面间的动摩擦因数为μ=0.5,拉力F1与水平面的夹角为θ=45°,g=10 m/s2.求:(1)绳子的拉力F1为多少?(2)该同学能否用比F1小的力拉着箱子匀速前进?如果能,请求出拉力的最小值;若不能,请说明理由.解析:(1)箱子匀速前进,属于平衡状态,合外力为零.以箱子为研究对象,进行受力分析,其受重力、地面支持力、地面摩擦力、外界拉力,以水平、竖直方向为坐标轴的方向建立坐标系,利用正交分解法可得F1cos45°=μ(mg-F1sin45°),F1=μmgc os45°+μsin45°=100 2 N.(2)设拉力与水平方向的夹角为θ,利用正交分解法,将水平、竖直两个方向的平衡方程整理有Fcosθ=μ(mg-Fsinθ),F=μmgcosθ+μsinθ.当θ=arctanμ时,F有最小值,其值为F min=μmg1+μ2=60 5 N.所以该同学能用比F1小的力拉着箱子匀速前进,最小拉力为60 5 N.答案:(1)100 2 N (2)能,60 5 NC组难点突破12.[2018·浙江省金华一中月考]如图6-14所示,ACB是一光滑的、足够长的、固定在竖直平面内的“∧”形框架,其中CA、CB边与竖直方向的夹角均为θ.P、Q两个轻质小环分别套在CA、CB上,两根细绳的一端分别系在P、Q环上,另一端和一绳套系在一起,结点为O.将质量为m的钩码挂在绳套上,OP、OQ两根细绳拉直后的长度分别用L1、L2表示,若L1 ∶L2=2∶3,则两绳受到的拉力之比F1∶F2等于( )图6-14A.2∶3 B.1∶1C.4∶9 D.3∶2解析:对P、Q小环分析,小环受光滑杆的支持力和绳子的拉力,根据平衡条件,这两个力是一对平衡力,支持力是垂直于杆子向上的,故绳子的拉力也是垂直于杆子的.则由几何关系可知,两绳与竖直方向的夹角相等,两绳的拉力相等,故F1∶F2=1∶1.答案:B。
力的合成与分解选择题〔1~10题为单项选择题,11~14题为多项选择题〕1.如下说法中错误的答案是〔〕A.力的合成遵循平行四边形定如此B.一切矢量的合成都遵循平行四边形定如此C.以两个分力为邻边的平行四边形的两条对角线都是它们的合力D.与两个分力共点的那一条对角线所表示的力是它们的合力2.如图1所示,舰载机保持牵引力F大小不变在匀速航行的航母上降落时受到阻拦而静止,此时阻拦索夹角θ=120°,空气阻力和甲板阻力不计,如此阻拦索承受的张力大小为〔〕图1A.F2B.F C.3F D.2F3.如下列图,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是〔〕4.两个大小相等的共点力F1、F2,当它们的夹角为90°时,合力大小为20 N,那么当它们之间的夹角为120°时,合力的大小为〔〕A.40 N B.10 2 N C.20 2 N D.10 3 N5.如图2所示,作用于O点的三个力F1、F2、F3合力为零。
F1沿-y方向,大小。
F2与+x方向夹角为θ〔θ<90°〕,大小未知。
如下说法正确的答案是〔〕图2A.F3一定指向第二象限B.F3一定指向第三象限C.F3与F2的夹角越小,如此F3与F2的合力越小D.F3的最小可能值为F1cos θ6.在如图3所示的甲、乙、丙、丁四幅图中,滑轮本身所受的重力忽略不计,滑轮的轴O安装在一根轻木杆P上,一根轻绳ab绕过滑轮,a端固定在墙上,b端下面挂一个质量都是m的重物,当滑轮和重物都静止不动时,甲、丙、丁图中木杆P与竖直方向的夹角均为θ,乙图中木杆P竖直。
假设甲、乙、丙、丁四幅图中滑轮受到木杆P的弹力的大小依次为F A、F B、F C、F D,如此以下判断中正确的答案是〔〕图3A.F A=F B=F C=F D B.F D>F A=F B>F CC.F A=F C=F D>F B D.F C>F A=F B>F D7.如图4所示,一条小船在河中向正东方向行驶,船上挂起一风帆,帆受侧向风力作用,风力大小F1为100 N,方向为东偏南30°,为了使船受到的合力能恰沿正东方向,岸上一人用一根绳子拉船,绳子取向与河岸垂直,侧向风力和绳子拉力的合力大小与绳子拉力F2的大小为〔〕图A.50 N 50 N B.50 3 N 50 NC.50 N 25 N D.50 N 50 3 N8.如图5所示,用一样的弹簧测力计将同一个重物m分别按甲、乙、丙三种方式悬挂起来,读数分别是F1、F2、F3、F4,θ=30°,如此有〔〕图5A.F4最大 B.F3=F2C.F2最大 D.F1比其他各读数都小9.〔2016·徐州三模〕如图6所示,在粗糙水平面上放置A、B、C三个物块,物块之间由两根完全一样的轻弹簧相连接,两弹簧的伸长量一样,且它们之间的夹角∠ABC=120°,整个系统处于静止状态。
第3讲 力的合成和分解 基 础 自 测 1.F1、F2是力F的两个分力.若F=10 N,则下列不可能是F的两个分力的是( ). A.F1=10 N,F2=10 N B.F1=20 N,F2=20 N C.F1=2 N,F2=6 N D.F1=20 N,F2=30 N 解析 合力F和两个分力F1、F2之间的关系为|F1-F2|≤F≤F1+F2,则应选C. 答案 C 2.下列各组物理量中全部是矢量的是( ). A.位移、速度、加速度、力 B.位移、长度、速度、电流 C.力、位移、速率、加速度 D.速度、加速度、力、电流 解析 可通过以下表格对各选项逐一分析 选项诊断结论A位移、速度、加速度、力既有大小又有方向,遵循平行四边形定则√B长度只有大小没有方向是标量,电流运算不遵循平行四边形定则×C速率是速度的大小,没有方向×D电流虽然有大小也有方向,但运算不遵循平行四边形定则×答案 A3.一物体受到三个共面共点力F1、F2、F3的作用,三力的矢量关系如图2-3-2所示(小方格边长相等),则下列说法正确的是( ). 图2-3-2A.三力的合力有最大值F1+F2+F3,方向不确定 B.三力的合力有唯一值3F3,方向与F3同向 C.三力的合力有唯一值2F3,方向与F3同向 D.由题给条件无法求出合力大小 解析 考查力的平行四边形定则.对于给定的三个共点力,其大小、方向均确定,则合力的大小唯一、方向确定.排除A、C;根据图表,可先作出F1、F2的合力,不难发现F1、F2的合力方向与F3同向,大小等于2F3,根据几何关系可求出合力大小等于3F3,B对. 答案 B 4.如图2-3-3所示,重力为G的物体静止在倾角为α的斜面上,将重力G分解为垂直斜面向下的力F1和平行斜面向下的力F2,那么( ). 图2-3-3A.F1就是物体对斜面的压力 B.物体对斜面的压力方向与F1方向相同,大小为Gcos α C.F2就是物体受到的静摩擦力 D.物体受到重力、斜面对物体的支持力、静摩擦力、F1和F2共五个力的作用 解析 重力G是物体受的力,其两个分力F1和F2作用在物体上,故A错误;F2与物体受到的静摩擦力等大反向,并不是物体受到的静摩擦力,C错误;F1、F2不能与物体的重力G同时作为物体受到的力,D错误;物体对斜面的压力的大小等于重力G的分力F1=Gcos α,方向与F1方向相同,B正确. 答案 B 5.(2013·苏北四市二次调考)如图2-3-4所示,吊床用绳子拴在两棵树上等高位置.某人先坐在吊床上,后躺在吊床上,均处于静止状态.设吊床两端系绳中的拉力为F1、吊床对该人的作用力为F2,则( ). 图2-3-4A.坐着比躺着时F1大 B.躺着比坐着时F1大 C.坐着比躺着时F2大 D.躺着比坐着时F2大解析 设绳子与水平方向的夹角为θ,在竖直方向上由平衡条件有G=2Fsin θ,所以F=,因坐着比躺着夹角θ小一些,所以拉力大,故选项A正确,选项B错.两种情况吊床对该人的作用力大小等于人的重力,所以选项C、D错. 答案 A。
力的合成与分解物体的平衡1.2008年北京奥运会,我国运动员陈一冰勇夺吊环冠军,其中有一个高难度的动作就是先双手撑住吊环,然后身体下移,双臂缓慢张开到如图2-3-15所示位置,则在两手之间的距离增大过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F的大小变化情况为( )A.F T增大,F不变 B.F T增大,F增大C.F T增大,F减小 D.F T减小,F不变图2-3-15解析:由平衡条件,合力F等于人的重力,F恒定不变;当两手间距离变大时,绳的拉力的夹角由零变大,由平行四边形定则知,F T变大,A正确.答案:A2.如图2-3-16所示,ACB是一光滑的、足够长的、固定在竖直平面内的“∧”形框架,其中CA、CB边与竖直方向的夹角均为θ.P、Q两个轻质小环分别套在CA、CB上,两根细绳的一端分别系在P、Q环上,另一端和一绳套系在一起,结点为O.将质量为m的钩码挂在绳套上,OP、OQ两根细绳拉直后的长度分别用l1、l2表示,若l1∶l2=2∶3,则两绳受到的拉力之比F1∶F2等于( )A.1∶1 B.2∶3 C.3∶2 D.4∶9图2-3-16解析:系统最终将处于平衡状态,两个轻质小环P、Q分别受到两个力作用,一是框架对它们的支持力,垂直AC、BC边向外,二是细绳拉力,这两个力是平衡力.根据等腰三角形知识可知两细绳与水平方向的夹角相等,对结点O受力分析,其水平方向的合力为零,可得出两细绳受到的拉力相等,即F1∶F2等于1∶1,本题选A.注意题目中提到的“轻质小环”可以不计重力,绳子的长短并不能代表力的大小,要与力的平行四边形定则中的边长区别开来,力的平行四边形定则中边长的长与短代表着力的大小.答案:A3.图2-3-17(2010·郑州模拟)如图2-3-17所示,质量为m的质点静止地放在半径为R的半球体上,质点与半球体间的动摩擦因数为μ,质点与球心连线与水平地面的夹角为θ,则下列说法正确的是( )A.质点所受摩擦力大小为μmg sin θB.质点对半球体的压力大小为mg cos θC.质点所受摩擦力大小为mg sin θD.质点所受摩擦力大小为mg cos θ解析:分析质点受力如图所示,因质点静止在半球体上,所以有F N=mg sin θ,F f=mg cos θ.故有D正确,B、C错误;因质点受静摩擦力作用,其大小不能用F f=μF N=μmg sin θ来计算,故A错误.答案:D4.图2-3-18重150 N的光滑球A悬空靠在墙和木块B之间,木块B的重力为1 500 N,且静止在水平地板上,如图2-3-18所示,则( )A.墙所受压力的大小为150 3 NB.木块A对木块B压力的大小为150 NC.水平地板所受的压力为1 500 ND.木块B所受摩擦力大小为150 3 N解析:小球A和木块B受力分析如图所示,对A:F N1cos 60°=G A,F N1sin 60°=F N2,可得:F N1=300 N,F N2=150 3 N,可知选项A正确、B错误;对B:由F N1′=F N1,F N1′cos 60°+G B=F N3及F N1′sin 60°=F f可得:F N3=1 650 N,F f=150 3 N,所以选项C错误、D正确.答案:AD1.图2-3-19如图2-3-19所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向是( )A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右解析:物体M受四个力作用,支持力和重力都在竖直方向上,故推力F与摩擦力的合力一定在竖直方向上,由于推力F的方向斜向下,由此可断定力F与摩擦力的合力一定竖直向下.答案:A2.图2-3-20如图2-3-20所示,物体A置于倾斜的传送带上,它能随传送带一起向上或向下做匀速运动,下列关于物体A在上述两种情况下的受力描述,正确的是( )A.物体A随传送带一起向上运动时,A所受的摩擦力沿斜面向下B.物体A随传送带一起向下运动时,A所受的摩擦力沿斜面向下C.物体A随传送带一起向下运动时,A不受摩擦力作用D.无论传送带向上或向下运动,传送带对物体A的作用力均相同解析:由于物体A做匀速运动,故物体A受力平衡,所以无论传送带向上运动还是向下运动,传送带对物体A的作用力相同,均等于物体A的重力沿斜面的分力,故D对.答案:D3.图2-3-21(2010·山西省实验中学模拟)如图2-3-21所示,A、B两物体的质量分别为m A、m B,且m A>m B,整个系统处于静止状态,滑轮的质量和一切摩擦均不计,如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化情况是( )A.物体A的高度升高,θ角变大B.物体A的高度降低,θ角变小C.物体A的高度升高,θ角不变D.物体A的高度不变,θ角变小解析:最终平衡时,绳的拉力F大小仍为m A g,由二力平衡可得2F sin θ=m B g,故θ角不变,但因悬点由Q到P,左侧部分绳子变长,故A应升高,所以C正确.答案:C4.图2-3-22如图2-3-22所示,水平横杆上套有两个质量均为m 的铁环,在铁环上系有等长的细绳,共同拴着质量为M 的小球.两铁环与小球均保持静止,现使两铁环间距离增大少许,系统仍保持静止,则水平横杆对铁环的支持力F N 和摩擦力F f 将( ) A .F N 增大 B .F f 增大 C .F N 不变 D .F f 减小解析:本题考查受力分析及整体法和隔离体法.以两环和小球整体为研究对象,在竖直方向始终有F N =Mg +2mg ,选项C 对A 错;设绳子与水平横杆间的夹角为θ,设绳子拉力为T ,以小球为研究对象,竖直方向有,2T sin θ=Mg ,以小环为研究对象,水平方向有,F f =T cos θ,由以上两式联立解得F f =12Mg cot θ,当两环间距离增大时,θ角变小,则F f 增大,选项B 对D 错. 答案:BC5.一个质量为3 kg 的物体,被放置在倾角为α=30°的固定光滑斜面上,在如图2-3-23所示的甲、乙、丙三种情况下物体能处于平衡状态的是(g =10 m/s 2)( )图2-3-23A .仅甲图B .仅乙图C .仅丙图D .甲、乙、丙图解析:本题考查共点力的平衡条件.物体受三个力的作用,重力、支持力、拉力.重力沿斜面向下的分力大小为15 N ,故只有乙图中能保持平衡.选项B 正确.本题较易. 答案:B 6.图2-3-24用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L .现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为L .斜面倾角为30°,如图2-3-24所示.则物体所受摩擦力( ) A .等于零B .大小为12mg ,方向沿斜面向下C.大小为32mg,方向沿斜面向上 D.大小为mg,方向沿斜面向上解析:以m为研究对象,受力情况如右图所示,则kL=mg以2m为研究对象,受力情况如右图所示F=kL=mg2mg sin 30°=mg即F=2mg sin 30°,故正确选项为A.答案:A7.图2-3-25如图2-3-25所示,放在斜面上的物体处于静止状态,斜面倾角为30°,物体质量为m,若想使物体沿斜面从静止开始下滑,至少需要施加平行斜面向下的推力F=0.2mg,则( )A.若F变为大小0.1mg,沿斜面向下的推力,则物体与斜面的摩擦力是0.1mgB.若F变为大小0.1mg沿斜面向上的推力,则物体与斜面的摩擦力是0.2mgC.若想使物体沿斜面从静止开始上滑,F至少应变为大小1.2mg沿斜面向上的推力D.若F变为大小0.8mg沿斜面向上的推力,则物体与斜面的摩擦力是0.7mg解析:由题意可知,物体和斜面间的最大静摩擦力F f m=0.7mg,故若物体上滑,其最小推力F=0.5mg+0.7mg=1.2mg,C正确;若F=0.8mg上推时,F f=0.8mg-0.5mg=0.3mg,D错误;当F=0.1mg向下时,F f=0.5mg+0.1mg=0.6mg,A错;当F=0.1mg向上时,F f=0.5mg-0.1mg=0.4mg,B错.答案:C8.图2-3-26如图2-3-26所示,物体A 、B 用细绳连接后跨过定滑轮.A 静止在倾角为30°的斜面上,B 被悬挂着.已知质量m A =2m B ,不计滑轮摩擦,现将斜面倾角由30°增大到50°,但物体仍保持静止,那么下列说法中正确的是( ) A .绳子的张力将增大 B .物体A 对斜面的压力将减小C .物体A 受到的静摩擦力将先增大后减小D .滑轮受到的绳的作用力不变解析:由于B 物体的质量保持不变,且B 物体静止,所以绳的张力保持不变,A 项错误;以A 物体为研究对象,在垂直于斜面的方向上有m A g cos θ=N ,沿斜面方向有2m B g sin θ-m B g =F f ,当斜面的倾角为30°时,摩擦力恰好为0,当斜面的倾角增大时,支持力减小,静摩擦力增大,B 项正确,C 项错误;在斜面倾角增大的过程中,绳子的张力不变,但是夹角减小,所以合力增大,因此D 项错误. 答案:B 9.图2-3-27完全相同的直角三角形滑块A 、B ,按如图2-3-27所示叠放,设A 、B 接触的斜面光滑,A 与桌面间的动摩擦因数为μ,现在B 上作用一水平推力F ,恰好使A 、B 一起在桌面上匀速运动,且A 、B 保持相对静止.则A 与桌面间的动摩擦因数μ与斜面倾角θ的关系为( ) A .μ=tan θ B .μ=12tan θC .μ=2tan θD .μ与θ无关解析:利用整体法对AB 受力分析如图甲,则F =F f =2μmg ① 对物体B 受力分析如图乙 则F cos θ=mg sin θ② 由①②得μ=12tan θ,故选B.答案:B 10.图2-3-28如图2-3-28所示,光滑水平地面上放有截面为14圆周的柱状物体A ,A 与墙面之间放一光滑的圆柱形物体B ,对A 施加一水平向左的力F ,整个装置保持静止.若将A 的位置向左移动稍许,整个装置仍保持平衡,则( ) A .水平外力F 增大B .墙对B 的作用力减小C .地面对A 的支持力减小D .B 对A 的作用力减小解析:受力分析如图所示,A 的位置左移,θ角减小,F N 1=G tan θ,F N 1减小,B 项正确;F N =G /cos θ,F N 减小,D 项正确;以AB 为一个整体受力分析,F N 1=F ,所以水平外力减小,A 项错误;地面对A 的作用力等于两个物体的重力,所以该力不变,C 项错误.本题难度中等. 答案:BD 11.图2-3-29(2010·烟台模拟)如图2-3-29所示,半径为R 的半球支撑面顶部有一小孔.质量分别为m 1和m 2的两只小球(视为质点),通过一根穿过半球顶部小孔的细线相连,不计所有摩擦.请你分析:(1)m 2小球静止在球面上时,其平衡位置与半球面的球心连线跟水平方向的夹角为θ,则m 1、m 2、θ和R 之间应满足什么关系;(2)若m 2小球静止于θ=45°处,现将其沿半球面稍稍向下移动一些,则释放后m 2能否回到原来位置?解析:(1)根据平衡条件有m 2g cos θ=m 1g ,所以m 1=m 2cos θ(或cos θ=m 1m 2),与R 无关.(2)不能回到原来位置,m 2所受的合力为m 2g cos θ ′-m 1g =m 2g (cos θ′-cos 45°)>0(因为θ′<45°),所以m 2将向下运动. 答案:(1)m 1=m 2cos θ与R 无关 (2)不能 m 2向下运动12.图2-3-30如图2-3-30所示,质量M=2 3 kg的木块套在水平杆上,并用轻绳与质量m= 3 kg 的小球相连.今用跟水平方向成α=30°角的力F=10 3 N拉着球带动木块一起向右匀速运动,运动中M、m的相对位置保持不变,g=10 m/s,求运动过程中轻绳与水平方向的夹角θ及木块M与水平杆间的动摩擦因数.解析:以M、m整体为研究对象.由平衡条件得:水平方向:F cos 30°-μF N =0 ①竖直方向:F N+F sin 30°-Mg-mg =0 ②由①②得:μ=3 5以m为研究对象,由平衡条件得F cos 30°-F T cos θ=0 ③F sin 30°+F T sin θ-mg =0 ④由③④得:θ=30°.答案:30°3 5。
【金版教程】2015届高考物理大一轮总复习 2-2 力的合成与分解模拟提能训(含解析)1. [2011·广东高考]如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止.下列判断正确的是( )A. F 1>F 2>F 3B. F 3>F 1>F 2C. F 2>F 3>F 1D. F 3>F 2>F 1解析:由于三力共点平衡,故三力首尾相连构成封闭三角形,如图所示,由三角形的边角关系可知,B 正确.答案:B2. [2010·课标全国卷]如图所示,一物块置于水平地面上.当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为 ( )A. 3-1B. 2- 3C.32-12D. 1-32解析:本题意在考查考生对力的正交分解的理解以及对平衡条件的理解与应用.当用F 1拉物块时,由平衡条件可知F 1cos60°=μ(mg -F 1sin60°);当用F 2推物块时,有F 2cos30°=μ(mg +F 2sin30°),又F 1=F 2,联立解得μ=cos30°-cos60°sin30°+sin60°=2-3,B 正确.答案:B3. [2013·重庆高考]如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G ,则椅子各部分对他的作用力的合力大小为( )A .GB .G sin θC .G cos θD .G tan θ解析:本题主要考查受力分析和平衡条件的应用.以人为研究对象进行受力分析(如图所示),他受到竖直向下的重力和椅子对他竖直向上的合力而处于静止状态,由人受力平衡可知:椅子各部分对他的作用力的合力大小与重力大小相等,故选项A 正确.答案:A 二、模拟题组4. [2014·陕西西安八校联考]如图所示,小圆环A 吊着一个质量为m 2的物块并套在另一个竖直放置的大圆环上,有一细线一端拴在小圆环A 上,另一端跨过固定在大圆环最高点B 的一个小滑轮后吊一个质量为m 1的物块.如果小圆环、滑轮、绳子的大小和质量以及相互之间的摩擦都可以忽略不计,绳子又不可伸长,若平衡时弦AB 所对应的圆心角为α,则两物块的质量比m 1∶m 2应为( )A. 2sin α2B. 2cos α2C. cos α2D. sin α2解析:绳AB 中的张力为m 1g ,m 2对小圆环A 的拉力为m 2g ,大圆环对小圆环A 的弹力沿大圆环半径向外,因为小圆环A 静止不动,故绳AB 对小圆环的拉力与m 2对小圆环的拉力的合力沿大圆环半径方向指向圆心O ,由几何关系可知,选项A 正确.答案:A5. [2013·安徽合肥一模]如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态,若把A 向右移动少许后,它们仍处于静止状态,则( )A.B对墙的压力增大B.A与B之间的作用力增大C.地面对A的摩擦力减小D.A对地面的压力减小解析:受力分析如图,A右移少许.由图解法可知,B对墙压力F减小,A、B间作用力N减少,A、B选项错.由整体法可知,地面对A的摩擦力等于F,故减小,C选项正确.A 对地面的压力等于A、B两物块的重力,保持不变,故D选项错.答案:C。
B3 力的合成与分解【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))15.如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ。
若此人所受重力为G,则椅子对他的作用力大小为A.GB.G sinθC.G cosθD.G tanθ【知识点】力的合成.B3 B4【答案解析】 A 解析:人受多个力处于平衡状态,人受力可以看成两部分,一部分是重力,另一部分是椅子各部分对他的作用力的合力.根据平衡条件得椅子各部分对他的作用力的合力与重力等值,反向,即大小是G.故选:A.【思路点拨】人受多个力处于平衡状态,合力为零.人受力可以看成两部分,一部分是重力,另一部分是椅子各部分对他的作用力的合力.根据平衡条件求解.通过受力分析和共点力平衡条件求解,注意矢量叠加原理.【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))20.在粗糙水平地面上放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑半圆球B,整个装置处于平衡状态.已知A、B两物体的质量分别为M和m,则下列说法正确的是A.A物体对地面的压力大小为MgB.A物体对地面的压力大小为(M+m)gC.B物体对A物体的压力小于MgD.A物体对地面的摩擦力可能大于Mg【知识点】共点力平衡的条件及其应用;力的合成与分解的运用.B3 B4 B7【答案解析】 BD 解析:对B物体受力如右上图,根据合力等于0,运用合成法得,墙壁对B的弹力N1=mgtanα,A对B的弹力N2则B物体对A的压力大于mg.对整体分析得,地面的支持力N3=(M+m)g,摩擦力f=N1=mgtanα<mg.因为m和M的质量大小未知,所以A物体对地面的摩擦力可能大于Mg.故A、C错误,B、D正确.故选BD.【思路点拨】隔离对B分析,根据合力为零,求出A对B的弹力,墙壁对B的弹力,再对整体分析,求出地面的支持力和摩擦力.解决本题的关键能够合适地选择研究对象,正确地进行受力分析,抓住合力为零,运用共点力平衡知识求解.【题文】(理综卷·2015届广东省广州市第六中学高三上学期第一次质量检测(2014.09))21.右下图是给墙壁粉刷涂料用的“涂料滚”的示意图.使用时,用撑竿推着粘有涂料的涂料滚沿墙壁上下缓缓滚动,把涂料均匀地粉刷到墙上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长,粉刷工人站在离墙壁一定距离处缓缓上推涂料滚,关于该过程中撑竿对涂料滚的推力F1,涂料滚对墙壁的压力F2,以下说法中正确的是A.F1增大B.F1减小C.F2增大D.F2减小【知识点】共点力平衡的条件及其应用.B3 B4【答案解析】BD 解析:以涂料滚为研究对象,分析受力情况,作出力图.设撑轩与墙壁间的夹角为α,根据平衡条件得:F12=Gtanα由题,撑轩与墙壁间的夹角α减小,cosα增大,tanα减小,则 F1、F2均减小.故选:BD.【思路点拨】以涂料滚为研究对象,分析受力情况,作出力图,根据平衡条件得到竿对涂料滚的推力为F1和墙壁对涂料滚的弹力的表达式,再分析两个力的变化.本题是动态平衡问题,采用函数法分析的,也可以采用图解法更直观反映出两个力的变化情况.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))18.三个共点力大小分别是F1、F2、F3,关于它们的合力F的大小,下列说法中正确的是 ( ) A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零【知识点】力的合成.B3【答案解析】 C 解析:A、三个力的合力最小值不一定为零,三个力最大值等于三个力之和.故A错误.B、合力可能比三个力都大,也可能比三个力都小.故B错误.C、若F1:F2:F3=3:6:8,设F1=3F,则F2=6F,F3=8F,F1、F2的合力范围为[3F,9F],8F在合力范围之内,三个力的合力能为零.故C正确.D、若F1:F2:F3=3:6:2,设F1=3F,则F2=6F,F3=2F,F1、F2的合力范围为[3F,9F],2F不在合力范围之内,三个力的合力不可能为零.故D错误.故选C.【思路点拨】当三个力的方向相同时,合力最大,三个力的合力不一定为零,当第三个力不在剩余两个力的合力范围内,合力不能为零.解决本题的关键掌握两个力的合力范围,从而会通过两个力的合力范围求三个力的合力范围.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))19.如图所示装置,两物体质量分别为m1,m2,不计一切摩擦、滑轮质量和滑轮的直径,若装置处于静止状态,则A.m1可以大于m2B.m1一定大于m2/2C.m2可能等于m1/2D.θ1一定等于θ 2【知识点】共点力平衡的条件及其应用;力的合成与分解的运用.B3 B7【答案解析】 AD 解析:对m2分析可知,m2受拉力及本身的重力平衡,故绳子的拉力等于m2g;对滑轮分析,由于滑轮跨在绳子上,故两端绳子的拉力相等,它们的合力一定在角平分线上;由于它们的合力与m1的重力大小相等,方向相反,故合力竖直向上,故两边的绳子与竖直方向的夹角θ1和θ2相等;故D正确;由以上可知,两端绳子的拉力等于m2g,而它们的合力等于m1g,因互成角度的两分力与合力组成三角形,故可知2m2g>m1g,故m21,故A 正确,B错误故选:AD.【思路点拨】对m2分析可知绳子的拉力大小,对滑轮分析,由于滑轮放在一根绳子上,绳子两端的张力相等,故可知两绳子和竖直方向上的夹角相等,由共点力的平衡关系可得出两质量的关系.本题要注意题目中隐含的信息,记住同一绳子各部分的张力相等,即可由几何关系得出夹角的关系;同时还要注意应用力的合成的一些结论.【题文】(理综卷·2015届宁夏银川一中高三上学期第一次月考(2014.08))21.如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球。
限时检测(五) 力的合成与分解 (时间:45分钟 满分: 100分) 知识点题号易中难合成(含合力分力关系)1、2、45、7、8分解(含正交分解)36、910综合11、12一、选择题(本题共10小题,每小题7分,共70分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得7分,选对但不全的得4分,有选错的得0分.) 1.已知两个共点力的合力为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N.则( ) A.F1的大小是唯一的 B.F2的方向是唯一的 C.F2有两个可能的方向 D.F2可取任意方向 【解析】 如下图,F2可能有两个方向. 【答案】 C 2.我国选手陈一冰多次勇夺吊环冠军,是世锦赛四冠王.图2-2-18为一次比赛中他先用双手撑住吊环(如图甲所示),然后身体下移,双臂缓慢张开到图乙位置.则每条绳索的张力( ) 图2-2-18 A.保持不变 B.逐渐变小 C.逐渐变大 D.先变大后变小 【解析】 绳索之间的夹角变大,但合力不变(等于人的重力),所以绳索上的张力应变大,C正确. 【答案】 C 3. 图2-2-19 如图2-2-19所示,固定在水平地面上的物体A,左侧是圆弧面,右侧是倾角为θ的斜面,一根轻绳跨过物体A顶点上的小滑轮,绳两端分别系有质量为m1、m2的小球,当两球静止时,小球m1与圆心连线跟水平方向的夹角也为θ,不计一切摩擦,圆弧面半径远大于小球直径,则m1、m2之间的关系是( ) A.m1=m2 B.m1=m2tan θ C.m1=m2cot θ D.m1=m2cos θ 【解析】 通过光滑的滑轮相连,左右两侧绳的拉力大小相等,两小球都处于平衡状态,又由受力分析可得:对m1有,FT=m1gcos θ.对m2有,FT=m2gsin θ,联立两式可得m1gcos θ=m2gsin θ,所以选项B正确. 【答案】 B 4. 图2-2-20 (2014·哈尔滨二中检测)如图2-2-20所示,一根轻绳跨过定滑轮后系在质量较大的球上,球的大小不可忽略.在轻绳的另一端加一个力F,将球沿斜面由图示位置缓慢拉上顶端,各处的摩擦不计,在这个过程中拉力F( ) A.逐渐增大 B.保持不变 C.先增大后减小 D.先减小后增大 【解析】 因为缓慢拉动,所以球始终处于平衡状态.对球受力分析,其共受到三个力的作用,如图所示,根据平衡条件可知,这三个力首尾相接可组成闭合三角形,随着球的上升,拉力F与斜面间的夹角逐渐增大,而拉力F的大小也逐渐增大,所以选项A正确. 【答案】 A 图2-2-21 5.如图2-2-21所示,光滑斜面倾角为30°,轻绳一端通过两个滑轮与A相连,另一端固定于天花板上,不计绳与滑轮的摩擦及滑轮的质量.已知物块A的质量为m,连接A的轻绳与斜面平行,挂上物块B后,滑轮两边轻绳的夹角为90°,A、B恰保持静止,则物块B的质量为( )A.mB.m C.m D.2m 【解析】 设绳上的张力为F,对斜面上的物体A受力分析可知 F=mgsin 30°=mg 对B上面的滑轮受力分析如图 mBg=F合=F=mg 所以mB=m,选项A正确. 【答案】 A 6. 图2-2-22 如图2-2-22所示,轻质工件通过轻质杆与滑块B连接,当作用在滑块B上的水平推力F=100 N时,整个装置静止,此时α=30°.已知滑块与水平间的摩擦力不计,则工件上受到的压力为( ) A.100 N B.100 N C.50 N D.200 N 【解析】 对B受力分析如图甲所示,则F2=F/sin α=2F,对上部分受力分析如图乙所示,其中F=F2,得FN=F·cos α=100 N,故B正确. 【答案】 B 7. 图2-2-23 如图2-2-23所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小( ) A.可能为mg B.可能为mg C.可能为mg D.可能为mg 【解析】 本题相当于一悬线吊一质量为2m的物体,悬线OA与竖直方向夹角为30°,与悬线OA垂直时外力F最小,大小为mg,所以外力F大于或等于mg,故B、C、D正确. 【答案】 BCD 8.在如图2-2-24所示装置中,m1由轻质滑轮悬挂在绳间,两物体质量分别为m1、m2,悬点a、b间的距离远大于滑轮的直径,不计一切摩擦,整个装置处于静止状态,则( ) 图2-2-24 A.α一定等于β B.m1一定大于m2 C.m1可能等于2m2 D.m1可能等于m2 【解析】 拉滑轮的两个力是同一条绳的张力,因此两力相等,这两力的合力与重力等大反向,作出的平行四边形为菱形,因此合力方向为角平分线,α=β,A正确;对m2由平衡条件FT=m2g,而对滑轮两个拉力FT与m1g是合力与分力的关系,根据互成角度的两个力与合力的关系,即任意一个力大于另外两力差、小于两力和,故0<m1<2m2,B、C错,D正确. 【答案】 AD 9.如图2-2-25所示,两根光滑细棒在同一竖直平面内,两棒与水平面成37°角,棒上各穿有一个质量为m的相同小球,两球用轻质弹簧连接,两小球在图中位置处于静止状态,此时弹簧与水平面平行,则下列判断正确的是( ) 图2-2-25 A.弹簧处于拉伸状态 B.弹簧处于压缩状态 C.弹簧的弹力大小为mg D.弹簧的弹力大小为mg 【解析】 若弹簧处于压缩状态,右侧小球受到竖直向下的重力,水平向右的弹簧弹力和垂直细杆斜向左下方的弹力,小球不可能平衡,所以弹簧处于拉伸状态,对左侧小球受力分析如图所示,由平衡条件知F=mgtan 37°=mg,则A、C对,B、D错. 【答案】 AC 10. 图2-2-26 两物体M、m用跨过光滑定滑轮的轻绳相连,如图2-2-26所示,OA、OB与水平面的夹角分别为30°、60°,物体M的重力大小为20 N,M、m均处于静止状态,则( ) A.绳OA上的拉力大小为10 N B.绳OB上的拉力大小为10 N C.m受到水平面的静摩擦力大小为10 N D.m受到水平面的静摩擦力的方向水平向左 【解析】 如图所示,对O点分析,其受到轻绳的拉力分别为FA、FB、Mg,O点处于平衡状态,则有FA==10 N,FB=Mg=10 N,物体m受到轻绳向左的拉力为10 N,向右的拉力为10 N,处于静止状态,故水平面对物体m的静摩擦力水平向左,大小为(10-10) N,A、D选项正确. 【答案】 AD 二、非选择题(本题共2小题,共30分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.) 11. 图2-2-27 (14分)如图2-2-27所示,将一条轻而柔软的细绳一端固定在天花板上的A点,另一端固定在竖直墙上的B点,A、B两点到O点的距离相等,绳的长度为OA的两倍.K为一质量和半径可忽略的动滑轮,滑轮下悬挂一质量为m的重物,设摩擦力可忽略.现将动滑轮和重物一起挂到细绳上,在达到平衡时,绳所受的拉力是多大? 【解析】 将滑轮挂到细绳上,对滑轮进行受力分析如图所示,滑轮受到下面悬绳的拉力T=mg和AK、BK的拉力F,且AK、BK的拉力相等,由于对称,因此T作用线必过AK和BK的角平分线.延长AK交墙壁于C点,因KB=KC,所以由已知条件AK+KC=AC=2AO,所以图中的角度α=30°,即两拉力F与拉力T作用线的夹角.两个拉力的合力F合与T等大反向,所以:2Fcos 30°=F合=mg,所以F=mg/2cos 30°= mg/3. 【答案】 mg/3 12.(16分)(2014·南昌模拟)质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图2-2-28所示,求: 图2-2-28 (1)当α=θ时,拉力F有最小值,求此最小值; (2)拉力F最小时,木楔对水平面的摩擦力. 【解析】 (1)木块刚好可以沿木楔上表面匀速下滑,mgsin θ=μmgcos θ,则μ=tan θ, 用力F拉着木块匀速上滑,受力分析如图所示,Fcos α=mgsin θ+Ff,FN+Fsin α=mgcos θ,Ff=μFN 解得,F=. 当α=θ时,F有最小值,Fmin=mgsin 2θ. (2)对木块和木楔整体受力分析如图所示,由平衡条件得,f=Fcos(θ+α),当拉力F最小时,f=Fmin·cos2θ=mgsin 4θ. 【答案】 (1)mgsin 2θ (2)mgsin 4θ。
2-2 力的合成与分解一、选择题1.(2013·山东理综)如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.34 B.4 3C.12 D.21[答案] D[解析]选两个小球及弹簧B作为一个整体进行受力分析,在水平方向上有kx A sin30°=kx C,则x Ax C=2,选项D正确。
2.(2013·安徽黄山联考)一个倾角为α、质量为M的斜面体置于粗糙水平地面上,斜面体与粗糙水平地面间动摩擦因数为μ。
现施加一个垂直斜面体表面的外力F,斜面体依然保持静止状态,如图所示。
地面对斜面体的摩擦力等于()A.F sinαB.F cosαC.μ(F cosα+Mg) D.μ(F sinα+Mg)[答案] A[解析]对斜面体受力分析,斜面受到重力、支持力、推力和静摩擦力作用,根据平衡条件得f=F sinα,A正确。
3.(2013·广东理综)如图所示,物体P静止于固定的斜面上,P的上表面水平,现把物体Q轻轻地叠放在P上,则()A.P向下滑动B.P静止不动C.P所受的合外力增大D.P与斜面间的静摩擦力增大[答案]BD[解析]原P静止不动,说明重力沿斜面向下的分力小于或等于最大静摩擦力,即mg sinθ≤μmg cosθ,此式与质量无关,把物体Q 轻放在P上,把PQ看成一体,相当于P的质量变大,P仍能静止,所受合外力为零,由平衡条件可知,P与斜面间的静摩擦力f=m总g sinθ变大,选项B、D正确。
4.(2013·云南昆明教学质量检测)如图所示,用绳子将一质量为m 的均质球悬挂在光滑竖直墙壁上,已知绳子长度与球的半径相等。
静止时绳子拉力大小为F T,墙面对球的支持力大小为F N,则下列关系式中正确的是()A.F T=mg F N=3mgB.F T=233mg F N=33mgC.F T=33mg F N=233mgD.F N=3mg F N=2mg[答案] B[解析]以球为研究对象,球受到重力、绳的拉力、墙壁的支持力作用,设绳与墙的夹角为θ,根据共点力的平衡条件得:F N=mg tanθ,F T=mgcosθ,由几何关系得,θ=30°,故F N=33mg,F T=233mg,故B正确。
高考进行时 一轮总复习·物理(新课标通用版)考点调查·答案解析必修1第一章 运动的描述 匀变速直线运动的研究第1讲 描述运动的基本概念回扣教材 抓基础———————————————— 知识梳理参考 地面 运动 同一参考系 质量 理想化 大小 形状 位置 □10有向线段 □11轨迹 □12初 □13末 □14等于 □15小于 □16位移 □17时间 □18xt□19时刻 □20切线 □21大小 □22标量 □23变化快慢 □24ΔvΔt□25相同 □26矢量 考点自测 1.答案:BD2.解析:在解答本题时,很多同学受生活习惯的影响,往往错误地认为参考系只能选地面,其实不然,如A 选项,可以选择与地面相对静止的三楼地板为参考系.参考系的选择没有对错之分,只有合理与不合理的区别,只要有利于问题的研究,选择哪个物体为参考系都可以.答案:AD3.解析:位移是矢量,路程是标量,不能说这个标量就是这个矢量,所以A 错,B 正确.路程是物体运动轨迹的实际长度,而位移是从物体运动的起始位置指向终止位置的有向线段,如果物体做的是单向直线运动,路程就和位移的大小相等.如果物体在两位置间沿不同的轨迹运动,它们的位移相同,路程可能不同.如果物体从某位置开始运动,经一段时间后回到起始位置,位移为零,但路程不为零,所以C 、D 正确.答案:BCD4.解析:运动员的位移x 相同,由v =xt知,孙培萌用时短,则其平均速度大,C 正确.答案:C 5.答案:B6.解析:正、负号表示运动方向,不表示大小,A 错误;甲的加速度与速度同向,做匀加速直线运动,乙的加速度与速度方向相反,做匀减速直线运动,B 正确;甲、乙的速度无法比较,C 错误;加速度大小相等,相等时间内速度变化的大小相等,D 正确.答案:BD题型分类 学方法————————————————【例1】 解析:楼房和地面相当于同一参考系,所以,甲是匀速下降.乙看到甲匀速上升,说明乙匀速下降,且v 乙>v 甲.甲看到丙匀速上升,丙有三种可能:①丙静止;②丙匀速上升;③丙匀速下降,且v 丙<v 甲.丙看到乙匀速下降,丙也有三种可能:①丙静止;②丙匀速上升;③丙匀速下降,且v 丙<v 乙.经上述分析,A 、B 均有可能.答案:AB变式训练1 解析:河岸上的旗帜右飘,说明有向右吹的风,A 船的旗帜向右飘,无法判断A 船的运动情况;B 船的旗帜向左飘,所以B 船一定向右运动,且其运动速度大于风速.答案:C【例2】 解析:物体在AB 段的平均速度v =xt=1 m/s ,A 正确;ABC 段的平均速度v=22+122= m/s =52m/s ,B 正确;时间间隔越短,越接近A 点的瞬时速度,C 正确;在匀变速直线运动中,平均速度等于中间时刻的瞬时速度,D 错误.答案:ABC变式训练2 解析:设全程位移为x ,则有t 1=23x v 1,t 2=13x v 2,v =xt 1+t 2,解得v 1=70 km/h.答案:D【例3】 解析:对于加速直线运动,当加速度减小时,速度还在增加,只不过增加变慢,A 可能;加速度方向发生改变,即加速度存在,有加速度存在速度就改变,B 不可能;加速度仅反映速度改变的快慢,若加速度方向与速度方向相反,加速度最大时,速度减小得最快,当然速度可能最小,若加速度方向与速度方向相同,当加速度最小时,速度增大得最慢,加速度为零时,速度取得最大值,C 可能;加速度方向不变,物体可能做初速度不为零的匀减速运动,而后做反向的匀加速运动,D 可能.故选B.答案:B变式训练3 解析:做变速直线运动的物体可以是加速,也可以是减速,加速度不断减小到零表明物体速度变化的越来越慢至速度不变,故A 、B 、C 、D 都正确.答案:ABCD特色一角 提技能————————————————亲身体验 解析:物体的形状和大小对所研究的问题影响很小,可以忽略时,物体可以看成质点.研究火车通过隧道的时间时,火车的长度不能忽略,火车不能看成质点;同学的身体姿态、动作,飞船的飞行姿态均不能忽略,所以同学和“神舟”十号均不能看成质点;用“北斗”导航系统确定海监船的位置时,海监船的大小可以忽略,可以看成质点,D 正确.答案:D第2讲 匀变速直线运动的规律回扣教材 抓基础———————————————— 知识梳理v =v 0+at x =v 0t +12at 2 v 2-v 20=2ax 中间 一半 aT 2 1∶2∶3∶……∶n 1∶22∶32∶……∶n 2 1∶3∶5∶……∶(2n -1) □101∶(2-1)∶(3-2)∶……∶(n -n -1) □11gt □1212gt 2 □132gh □14v 0-gt □15v 0t -12gt 2□16v 2-v 20 □17v 202g□18v 0g考点自测1.解析:由题意,飞机的初速度为0,所以x =12at 2,将x =1 600 m ,t =40 s 代入得a=2×1 600 m (40 s )2=2 m/s 2,故v =at =2 m/s 2×40 s =80 m/s.答案:A2.解析:根据v =v 0+at ,则a =-10-102m/s 2=-10 m/s 2.由于物体做匀变速运动,所以v =v +v 02=0.即C 正确,其余均错.答案:C3.解析:根据位移公式x =12at 2,从开始运动起,连续通过的三段位移分别为x 1=12at 21=12a 、x 2=12a (t 2+t 1)2-12at 21=4a 、x 3=12a (t 3+t 2+t 1)2-12a (t 1+t 2)2=272a ,再根据平均速度公式可得选项B 正确.答案:B4.解析:设飞机滑行前需要获得的最小初速度为v 0,则v 2-v 20=2ax ,即502-v 20=2×6×200,解得v 0=10 m/s ,B 正确.答案:B5.解析:由匀加速直线运动的位移公式可知x =v -t =0+v 2t =12v t ,选项A 错误,选项B 正确;匀减速直线运动可以看成初速度为0的匀加速直线运动的逆过程,故返回后的加速度、位移的大小和起飞前相同,选项C 错误,选项D 正确.答案:BD6.解析:本题考查的是自由落体运动规律的应用,意在考查考生建立物理模型的能力和应用物理规律解决实际问题的能力.由自由落体的规律,得h =12gt 2=20 m.答案:B题型分类 学方法————————————————【例1】 解析:由于物体连续做匀减速直线运动,可以直接应用匀变速运动公式.以v 0的方向为正方向.(1)设经时间t 1回到出发点,此过程中位移x =0,代入公式x =v 0t +12at 2,并将a =-5 m/s 2代入,得t =-2v 0a =-2×20-5s =8 s.(2)由公式v =v 0+at 知,6 s 末物体的速度 v =v 0+at =[20+(-5)×6] m/s =-10 m/s.负号表示此时物体的速度方向与初速度方向相反.答案:(1)8 s (2)大小为10 m/s ,方向与初速度方向相反变式训练1 解析:(1)以初速度方向为正方向,则有a =-6 m/s 2飞机在地面滑行最长时间t =Δv a =0-60-6s =10 s所以飞机12 s 内滑行的位移等于10 s 内滑行的位移由v 2-v 20=2ax 可得x =-v 202a =-6022×(-6)m =300 m.(2)解法一:v =v t +v 02=0+602 m/s =30 m/s解法二:v =Δx Δt =30010m/s =30 m/s.(3)可看成反向的初速度为零的匀加速直线运动x ′=12at 2=12×6×42 m =48 m.答案:(1)300 m (2)30 m/s (3)48 m 【例2】 解析:解法一:逆向思维法物体向上匀减速冲上斜面,可看成向下匀加速滑下斜面.故s BC =at 2BC /2,s AC =a (t +t BC )2/2. 又s BC =s AC /4,解得:t BC =t . 解法二:比例法对于初速度为零的匀加速直线运动,在连续相等的时间里通过的位移之比为s 1∶s 2∶s 3∶…∶s n =1∶3∶5∶…∶(2n -1).现有s BC ∶s BA =(s AC /4)∶(3s AC /4)=1∶3,通过s AB 的时间为t ,故通过s BC 的时间t BC =t . 解法三:中间时刻速度法利用教材中的推论:中间时刻的瞬时速度等于这段位移的平均速度.v AC =(v t +v 0)/2=(v 0+0)/2=v 0/2.又v 20=2as AC ① v 2B =2as BC ② s BC =s AC /4③解①②③得:v B =v 0/2.可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置. 因此有t BC =t .解法四:图象面积法利用相似三角形面积之比,等于对应边平方比的方法,作出v -t 图象,如图所示.S △AOC /S △BDC =CO 2/CD 2.且S △AOC =4S △BDC ,OD =t , OC =t +t BC .故4/1=(t +t BC )2/t 2BC. 得t BC =t .对于初速度为零的匀加速直线运动,通过连续相等的各段位移所用的时间之比 t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(4-3)∶…∶(n -n -1).现将整个斜面分成相等的四段,如图所示.设通过BC 段的时间为t x ,那么通过BD 、DE 、EA 的时间分别为t BD =(2-1)t x ,t DE =(3-2)t x ,t EA =(4-3)t x , 又t BD +t DE +t EA =t ,得t x =t . 答案:t变式训练2 解析:本题考查匀变速直线运动规律的应用,意在考查考生灵活应用运动学公式解题的能力.第一段Δx 的中间时刻的速度为v 1=Δxt 1,第二段Δx 的中间时刻的速度为v 2=Δxt 2,则加速度a =v 2-v 1t 1+t 22=2Δx (t 1-t 2)t 1t 2(t 1+t 2),A 项正确.答案:A【例3】 解析:解法一:把竖直上抛运动过程分段研究. 设重物离开气球后,经过t 1时间上升到最高点,则t 1=v 0g =1010s =1 s.上升的最大高度 h 1=v 202g =1022×10m =5 m.故重物离地面的最大高度为H =h 1+h =5 m +175 m =180 m. 重物从最高处自由下落,落地时间和落地速度分别为t 2=2H g = 2×18010s =6 s.v t =gt 2=10×6 m/s =60 m/s.所以重物从气球上掉落至落地共历时t =t 1+t 2=7 s.解法二:取全过程作一整体进行研究,从物体自气球上掉落计时,经时间t 落地,规定初速度方向为正方向,画出运动草图如图所示,则物体在时间t 内的位移h =-175 m.由位移公式h =v 0t -12gt 2有-175=10t -12×10t 2,解得t =7 s 和t =-5 s(舍去), 所以重物落地速度为v 1=v 0-gt =10 m/s -10×7 m/s =-60 m/s. 其中负号表示方向向下,与初速度方向相反. 解法三:对称法根据速度对称,重物返回脱离点时,具有向下的速度v 0=10 m/s ,设落地速度为v t ,则v 2t -v 20=2gh .解得v t =60 m/s ,方向竖直向下.经过h 历时Δt =v t -v 0g=5 s.从最高点到落地历时t 1=v tg=6 s.由时间对称可知,重物脱落后至落地历时t =2t 1-Δt =7 s. 答案:7 s 60 m/s变式训练3解析:小球下落的情况如图所示(1)初速度为零的匀加速直线运动中,由开始起相邻相等时间间隔内位移比为1∶3∶5∶…∶(2n -1),自由落体运动符合这一规律.如图所示,11个小球将125 m 分成10段,设由上至下为x 1、x 2…x 10. h =12gt 2,t = 2h g =5 s Δt =t10=0.5 s.(2)因为t 1=Δt ,故x 1=h 1=12gt 21=12×10×0.25 m =1.25 m. 第3个球与第5个球之间的距离为h 7+h 8,而根据此例:h 7=13x 1,h 8=15x 1Δh =h 7+h 8=28h 1=28×1.25 m =35 m. 答案:(1)0.5 s (2)35 m特色一角 提技能————————————————亲身体验 解析:由Δx =aT 2得:9-7=a ·12,a =2 m/s 2,由v 0T -12aT 2=x 1得:v 0×1-12×2×12=9,v 0=10 m/s ,汽车刹车时间t m =v 0a =5 s <6 s ,故刹车后6 s 内的位移为x =v 202a =25 m ,C 正确.答案:C第3讲 运动图象 追及和相遇问题回扣教材 抓基础———————————————— 知识梳理位移 时间 速度 速度 速度 时间 加速度 加速度 位移大小 □10正方向 □11负方向 □12同一 □13相等 □14等于 考点自测1.解析:物体的位移随时间的变化关系图线不表示物体的运动轨迹,其斜率表示速度,故物体做变速直线运动,选项B 正确.答案:B 2.解析:x -t 图象中,质点能回到初始位置,则初末时刻纵坐标相同,A 正确;B 表示末位置在初位置关于坐标原点的对称点,B 错误;速度-时间图线与横轴所围的面积表示该过程的位移,且有正负之分,C 中所围的面积为正,D 中横轴上下方面积恰好抵消,故C 错误,D 正确.答案:AD3.解析:0~0.5 s 甲、乙运动方向相反,A 错误;在v -t 图象中,图线与时间轴包围的面积为物体的位移,B 正确;在0~4 s 内,甲的速度始终为正,即始终向正方向运动,C 错误;在v -t 图象中,图线斜率的正负表示加速度的方向,6 s 时斜率均为负,所以D 正确. 答案:BD4.解析:如图汽车A 以v 0=20 m/s 的初速度做匀减速直线运动经40 s 停下来.据加速度公式可求出a =-0.5 m/s 2.当A 车减为与B 车同速时是A 车逼近B 车距离最近的时刻,这时若能超过B 车则相撞,反之则不能相撞.据v 21-v 20=2as可求出A 车减为与B 车同速时的位移s 1=364 m所用时间t =v 1-v 0a=28 s所以B 车位移s 2=v 1t =168 m Δs =364 m -168 m =196 m>180 m 所以两车会相撞. 答案:能题型分类 学方法———————————————— 【例1】 解析:在x -t 图象中表示的是直线运动的物体的位移随时间的变化情况,而不是物体运动的轨迹,由甲、乙两车在0~t 1时间内做单向的直线运动,故在这段时间内两车通过的位移和路程均相等,A 、B 两项均错.在v -t 图象中,t 2时刻丙、丁速度相等,故两者相距最远,C 项正确.由图线可知,0~t 2时间内丙的位移小于丁的位移,故丙的平均速度小于丁的平均速度,D 项错误.答案:C变式训练1 解析:根据位移图象中图线的斜率表示速度可知,该质点的x -t 关系图象可大致表示为B 图.答案:B【例2】 解析:解法一(解析法):(1)当甲车速度减至等于乙车速度时两车的距离最大,设该减速过程时间为t ,则v 乙=v 甲-at ,解得t =12 s ,此时甲、乙间距离为Δx =v 甲t -12at 2-v 乙t =10×12 m -12×0.5×122 m -4×12 m =36 m.(2)设甲车减速到零所需时间为t 1,则有 t 1=v 甲a=20 s ,t 1时间内,x 甲=v 甲2t 1=102×20 m =100 m ,x 乙=v 乙t 1=4×20 m =80 m ,此后乙车运动时间t 2=x 甲-x 乙v 乙=204 s =5 s.故乙车追上甲车需t 1+t 2=25 s. 解法二(图象法): 作出两车运动的v -t 图象如图所示.(1)甲、乙两车速度相等时,两车间距离最大,由图象得此时刻即为交点对应时刻t =12 s ,最大距离为阴影部分面积Δx =12×(10-4)×12 m =36 m.(2)乙车追上甲车,即两车位移相等,x 甲=12×10×20 m =100 m.x 乙=x 甲=4t . 则t =25 s.答案:(1)36 m (2)25 s变式训练2 解析:以小汽车起动位置为坐标的起点,并从它起动时开始计时,则小汽车的位移x 1与大卡车的位移x 2随时间t 的变化关系式如下:x 1=12at 21①x 2=v 0t 2 ②(1)小汽车追上大卡车的条件是:运动相同时间且位移相同. x 1=x 2=x ③ t 1=t 2=t ④由①~④式解得t =2v 0a =2×102s =10 s ,x =v 0t =10×10 m =100 m.(2)小汽车追上大卡车时的速度为 v =at =2×10 m/s =20 m/s.(3)两车之间的距离大小与两车的相对速度有关,当两车的速度相等时,两车间的距离最大.设两车速度相等的时刻为t ′,则有v 0=at ′ ⑤由⑤式解得t ′=v 0a =102s =5 s.故两车间的最大距离为x m =v 0t ′-12at ′2=10×5-12×2×25 m =25 m.答案:(1)100 m (2)20 m/s (3)25 m特色一角 提技能———————————————— 亲身体验1的初速度沿同一方向做匀减速直线运动,在t =10 s 时,两车达到相同速度.因此,在0~10 s 内,乙车速度大于甲车,而10 s 以后甲车速度大于乙车.由于t =0时刻,两车处于同一位置,所以0~10 s 内乙车在前,甲车在后,且甲、乙两车逐渐远离;10~20 s 内,仍然乙车在前,但甲、乙车开始相互靠近.答案:C亲身体验2 解析:(1)设甲从离接力区13.5 m 处到赶上乙所用时间为t ,乙从开始起跑到被甲追上,跑的路程为x ,甲、乙二人所用时间相等.由几何关系知,对甲13.5+xv =t ,对乙x =12at 2,且v =at =9 m/s ,由以上各式可解得a =3 m/s 2, t =3 s , x =13.5 m.(2)完成交接棒时,乙离接力区末端的距离为L -x =20 m -13.5 m =6.5 m. 答案:(1)3 m/s 2 (2)6.5 m第4讲 实验:研究匀变速直线运动回扣教材 抓基础———————————————— 知识梳理加速度 0.02 匀变速直线 3aT 2 0.1 s 考点自测1.解析:A 中应先接通电源,再放开纸带.C 中应调整滑轮的高度,使细绳与平板平行,D 中应先断开电源,使打点计时器停止工作,E 属于多余步骤.应补充G ,换上新纸带,重复操作两次.H.断开电源,整理好器材.正确合理的顺序应为B 、F 、C 、A 、D 、G 、H.答案:见解析2.解析:a =(x 6+x 5+x 4)-(x 3+x 2+x 1)9T 2=(2.78+2.00+1.22)-(5.18+4.40+3.62)9×0.12cm/s 2 =-80 cm/s 2=-0.80 m/s 2,“-”号表示加速度方向与纸带运动方向相反,即方向为A →B .v 3=x 3+x 42T =3.62+2.782×0.1 cm/s =32.0 cm/s =0.32 m/s.方向从B →A .答案:(1)0.1 (2)0.80 A →B (3)0.32 B →A题型分类 学方法———————————————— 【例1】 解析:(1)相邻两个计数点间的时间间隔为0.1 s ,所以v B =x AC 2×0.1 s =0.050.2m/s =0.25 m/s ,v CE =x CE2×0.1 s=0.14-0.050.2 m/s =0.45 m/s.(2)v -t 图象如图所示.(3)在v -t 图象中,图线的斜率表示加速度,即a =0.55-0.250.3m/s 2=1.0 m/s 2答案:(1)0.25 0.45 (2)见上图 (3)1.0变式训练1 解析:(1)DCBA (2)T =5×0.02 s =0.10 s(3)v 5=s 4+s 52T (4)a =(s 4+s 5+s 6)-(s 1+s 2+s 3)9T 2答案:(1)DCBA (2)0.10 s (3)v 5=s 4+s 52T(4)(s 4+s 5+s 6)-(s 1+s 2+s 3)9T 2【例2】 解析:物体只在重力的作用下做匀加速直线运动,通过对纸带数据的处理,可以求出当地的重力加速度数值.方法A :g =g 1+g 2+g 3+g 4+g 55=x 2-x 1T 2+x 3-x 2T 2+x 4-x 3T 2+x 5-x 4T 2+x 6-x 5T 25=x 6-x 15T 2所以方法A 中只有x 1和x 6起作用.方法B :g =g 1+g 2+g 33=x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 23=(x 4+x 5+x 6)-(x 1+x 2+x 3)9T 2所以方法B 中x 1、x 2、x 3、x 4、x 5、x 6均起作用. 因此选择方法B 更合理,更易减小偶然误差.本实验中误差来源较多,例如:阻力不恒定、交流电频率不稳定、长度测量不准确、数据处理方法等.答案:x 1、x 6 x 1、x 2、x 3、x 4、x 5、x 6 B 偶然 阻力不恒定、交流电频率不稳定等 变式训练2 解析:(1)d =10 mm +0.05 mm ×2=10.10 mm=1.010 cm.(2)v 1=d t 1=1.010×10-21.0×10-2m/s =1.0 m/s ;v 2=d t 2=1.010×10-24×10-3m/s =2.5 m/s. (3)v 1、v 2实质上是通过光电门1和2时的平均速度,要使瞬时速度的测量值更接近于真实值,可将滑块的宽度减小一些.答案:(1)1.010 (2)1.0 2.5 (3)平均速度 滑块特色一角 提技能————————————————亲身体验 解析:实验中看到空间有一串仿佛固定不动的水滴时,频闪仪的闪光频率满足的条件是:频闪仪频率等于水滴滴落的频率;由Δx =gT 2和逐差法解得当地重力加速度g =9.72 m/s 2;该实验存在的系统误差可能有:存在空气阻力,水滴滴落的频率变化等.答案:(1)频闪仪的闪光频率等于水滴滴落的频率 (2)9.72 2.27(3)存在空气阻力(或水滴滴落的频率变化)第二章 相互作用 第1讲 常见的三种力回扣教材 抓基础———————————————— 知识梳理 大小 方向 作用点 地球 正比 mg 弹簧测力计 竖直向下 质量 □10形状 □11弹性形变 □12接触 □13弹性形变 □14相反 □15弹性形变 □16正比 □17kx □18劲度系数 □19N/m □20改变量 □21相对静止 □22相对运动 □23粗糙 □24压力 □25相对运动趋势 □26粗糙 □27压力 □28相对运动 □290 □30F f m □31相反 □32μF N □33相反 □34相对运动趋势 □35相对运动 考点自测1.解析:物体所受的重力等于质量跟该处重力加速度的乘积,地球各处的重力加速度不一定相等,而认为重力作用在物体的重心上,只是物体各部分都受重力作用的等效处理,所以重心由物体的几何形状和质量分布决定.答案:C2.解析:物体相互接触并发生弹性形变时才能产生弹力,一个物体受到的弹力,一定是和它接触的另一个物体提供的.答案:C3.解析:不拉A 时,对A :kx 1=mg ① B 刚要离开地面时,对B :kx 2=mg ② L =x 1+x 2③由①②③得:L =2mgk.答案:B4.解析:静摩擦力的大小与该处的正压力没有直接关系,选项A 错误,B 正确;摩擦力的方向与接触面相切,弹力方向与接触面垂直,故摩擦力方向一定与弹力方向垂直,选项C 错误;水平匀速旋转的转盘上的物体受到的摩擦力与运动方向垂直,所以选项D 错误.答案:B5.解析:甲图是静摩擦力,由平衡条件得:F 1=80 N ,乙图是滑动摩擦力,由F f =μF N得F f =0.45×200 N =90 N ,故选项C 正确. 答案:C题型分类 学方法————————————————【例1】 解析:(1)小车静止,小球所受合外力为零,所以杆对球的弹力与重力平衡,即F 1=mg, 方向竖直向上 .(2)车向右做匀加速运动时,受力分析如图,设杆对球的弹力方向与竖直方向夹角为θ,由牛顿第二定律得F 2sin θ=ma ,F 2cos θ=mg ,解得F 2=m g 2+a 2,θ=arctan a g. (3)将a =g tan α 代入(2)问结论得F 2=mg cos α,θ=α,即弹力沿杆向上. 答案:(1)mg ,方向竖直向上(2)m g 2+a 2,方向与竖直方向夹角为arctan a g(3)mg cos α,沿杆向上 变式训练1解析:取球受力分析如图所示,由平衡条件知F 杆=62+82 N =10 N ,设F 杆与竖直方向的夹角为θ,则tan θ=F G =68,所以θ=37°. 答案:C【例2】 解析:对A 、B 整体受力分析如图甲所示,滑动摩擦力F f1使整体产生加速度a ,设A 与地面间的动摩擦因数为μ,根据牛顿第二定律得F f1=μ(m A +m B )g =(m A +m B )a ,解得a =μg ,保持不变,方向水平向左.乙再隔离B ,B 的受力分析如图乙所示,为获得加速度a ,B 受到A 的静摩擦力只能水平向左,且大小F f2=m B a =μm B g ,故A 正确.答案:A变式训练2 解析:因小球受到竖直向下的重力和斜向右上方的绳的拉力作用,因此,合力一定向右,故汽车的加速度水平向右,但有可能是向左做匀减速运动,故A 错误,B 正确;分析m 1的受力可知,只有受到的摩擦力水平向右,m 1才能产生向右的加速度,故C 正确,D 错误.答案:BC【例3】 解析:(1)因A 、B 向右匀速运动,B 物体受到的合力为零,所以B 物体受到的摩擦力为零.(2)因A 、B 无相对滑动,所以B 受到的摩擦力是静摩擦力,此时不能用滑动摩擦力公式F f =μF N 来计算,用牛顿第二定律对B 物体分析有F 合=ma 得F f =ma ,方向水平向右.(3)因A 、B 发生了相对滑动,所以B 受到的摩擦力是滑动摩擦力,即F f =μF N =μmg ,方向水平向右.(4)因滑动摩擦力的大小与物体间的接触面积大小无关,所以F f =μmg ,方向水平向右. 答案:(1)0(2)ma ,方向水平向右(3)μmg,方向水平向右(4)μmg,方向水平向右变式训练3解析:木块P对长木板的滑动摩擦力大小为F=μ2mg,长木板始终静止,则地面对长木板的静摩擦力大小为F′=F=μ2mg.故只有C选项正确.答案:C特色一角提技能————————————————亲身体验解析:设木板与水平面间的夹角增大到θ时,铁块开始滑动,显然当α<θ时,铁块与木板相对静止.由力的平衡条件可知,铁块受到的静摩擦力的大小为F f=mg sinα;当α≥θ时铁块与木板间的摩擦力为滑动摩擦力.设动摩擦因数为μ,由滑动摩擦力公式得,铁块受到的滑动摩擦力为F f=μmg cosθ.通过上述分析知道:α<θ时,静摩擦力随α角增大按正弦函数增加;当α≥θ时,滑动摩擦力随α角增大按余弦规律减小,所以正确选项为C.答案:C第2讲力的合成与分解回扣教材抓基础————————————————知识梳理效果效果合力分力合力平行四边形合力分力力的合成□10大小□11方向□12平行四边形定则□13大小□14方向考点自测1.解析:以人为研究对象,根据人处于平衡状态,由平衡条件知椅子对人的力F和重力大小相等,A正确.答案:A2.解析:合力可以大于任何一个分力,也可以小于任何一个分力、两分力之间的夹角越大,合力越小;夹角越小,则合力越大.答案:C3.解析:对c而言,帆面与风向平行,风力不起作用;对a而言,风力垂直于帆面,无法分解出沿航行方向的力;对d而言,风力在沿航行方向的分力对船来说是阻力;只有b情况下,风力沿航行方向的分力提供船航行的动力,B正确.答案:B4.答案:ABD5.解析:当物体沿墙向下运动时,分析物体的受力如图所示,把F沿竖直和水平方向正交分解.水平方向:F cosα=F N竖直方向:mg=F sinα+F f,又F f=μF N,得F=mgsinα+μcosα.答案:mgsinα+μcosα题型分类学方法————————————————【例1】解析:本题考查力的合成.二力合成合力的范围在|F1-F2|≤F≤|F1+F2|,代入数据可得,合力的范围:20 N≤F≤80 N,所以D不可能.答案:D变式训练1解析:以日光灯为研究对象,日光灯受到两绳拉力和自身的重力,三力的作用线必然交于一点,选项C正确,选项D错误;由三力平衡可知在水平方向有T a sin60°=T b sin45°,故T a<T b,选项A、B错误.答案:C【例2】解析:按照作用效果进行分解,物体的重力产生了垂直压半球体的效果和沿斜面下滑趋势的效果,受力如图所示,因质点静止在半球体上,所以有F N =mg sin θ,F f =mg cos θ,A 项正确,D 项正确.因质点受静摩擦力作用,其大小不能用F f =μF N =μmg sin θ来计算.答案:AD变式训练2 解析:将两木块与重物视为整体,竖直方向上平衡,则2F f =(2m +M )g ,故F f 不变,选项A 错误,B 正确;设硬杆对转轴的弹力大小均为F N1,对轴点O 受力分析可知,竖直方向上:2F N1cos θ=Mg ,对木块m 受力分析可知,水平方向上:F N =F N1sin θ,两式联立解得F N =12Mg tan θ,当两板间距离增大时,θ增大,F N 增大,选项C 错误,D 正确. 答案:BD【例3】 解析:以重物为研究对象,受力分析如图所示.以C 点为坐标原点,沿水平方向和竖直方向建立平面直角坐标系.沿x 轴方向有F B sin45°-F A sin30°=0,沿y 轴方向有F A cos30°+F B cos45°-G =0,联立两方程解得绳AC 对物体的拉力F A =100(3-1) N.绳BC 对物体的拉力F B =502(3-1) N.答案:100(3-1) N 502(3-1) N变式训练3 解析:本题意在考查考生对力的正交分解法的应用以及对平衡条件的理解与应用.当用F 1拉物块时,由平衡条件可知:F 1cos60°=μ(mg -F 1sin60°),当用F 2推物块时,又有F 2cos30°=μ(mg +F 2sin30°),又F 1=F 2,求得μ=cos30°-cos60°sin30°+sin60°=2-3,B 正确. 答案:B特色一角 提技能————————————————亲身体验 解析:题图甲和乙中的两个物体M 1、M 2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C 点和G 点为研究对象, 甲(1)图甲中轻绳AD 跨过定滑轮拉住质量为M 1的物体,物体处于平衡状态,轻绳AC 段的拉力F T AC =F T CD =M 1g图乙中由于F T EG sin30°=M 2g ,得F T EG =2M 2g .所以F T AC F T ED =M 12M 2. (2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F N C =F T AC =M 1g ,方向和水平方面成30°,指向右上方.(3)图乙中,根据平衡方程有F T EG sin30°=M 2g ,F T EG cos30°=F N G ,所以F N G =M 2g cot30°=3M 2g ,方向水平向右.答案:(1)M 12M 2(2)M 1g 方向和水平方向成30°指向右上方 (3)3M 2g 方向水平向右第3讲 受力分析 共点力的平衡回扣教材 抓基础————————————————知识梳理场力 接触力 速度 加速度 相等 相反 相等 相反 相等 □10相反 考点自测1.解析:两木块一起做匀速运动,P 不受摩擦力,只受到重力和Q 的支持力;以整体为研究对象,由平衡条件可知Q 必定受到地面的摩擦力作用,Q 共受到5个力(重力、压力、支持力、摩擦力、推力).答案:C2.解析:对AB 构成的整体,由平衡得竖直方向的恒力F 等于总重力,水平方向上不受力,故对A 物体受力分析,其受到重力、斜面对A 的支持力和沿斜面向上的摩擦力作用,B 正确.答案:B3.解析:B 物体受力如图所示,B 处于平衡态,由图可知m B g m A g=cos θ, 所以m A m B =1cos θ,B 项正确. 答案:B4.解析:本题考查物体的受力分析以及平衡问题.意在考查学生的分析综合能力.以楔形石块为研究对象,它受到竖直向下的重力和垂直侧面斜向上的两个支持力,利用正交分解法可解得:2F sin α=mg ,则F =mg 2sin α,A 正确. 答案:A5.解析:对木块受力分析,如图甲所示,由平衡条件得F f =mg sin α,F N =mg cos α,故A 、B 错误.乙对M 和m 组成的整体受力分析,如图乙所示,可知水平方向没有力的作用,C 错误;由平衡条件得,F N ′=(M +m )g ,D 正确.答案:D题型分类 学方法————————————————【例1】 解析:木板P 一定受到的力:自身的重力Mg 、斜面对P 的支持力F N 和滑块Q 的压力F N ′.用“状态法\”确定斜面与P 之间的摩擦力F f :选木板P 、滑块Q 和弹簧构成的系统为研究对象,由于系统一起匀速下滑,斜面对P 一定有沿斜面向上的滑动摩擦力F f ,且F f =(M +m )g sin θ,如图甲所示.甲乙用“转换法\”确定弹簧对P 的弹力F :隔离滑块并受力分析,因木板P 上表面光滑,当其匀速下滑时,滑块必受到弹簧沿斜面向上的弹力F ′,且F ′=mg sin θ.根据牛顿第三定律推知,弹簧必给木板P 沿斜面向下的弹力F ,且F =F ′=mg sin θ.综上可知,木板P 受到5个力的作用,如图乙所示,C 正确.答案:C变式训练1 解析:A 、B 两物体均受到重力、支持力和摩擦力作用,AB 间绳无拉力作用.答案:C【例2】 解析:小球m 2受重力和细线的拉力处于平衡状态,由二力平衡条件得,细线的拉力F T =m 2g .方法一:合成法小球m 1受F T 、F N 、m 1g 三力作用而处于平衡状态.受力分析如图所示,小球m 1处于平衡状态,故F N 与F T 的合力F =m 1g .根据合力公式可得F =F 2N +F 2T +2F N F T cos θ=m 1g , 将F N =F T =m 2g ,θ=60°代入上式解得m 2m 1=33,故选项A 正确.。
1.关于两个共点力的合成,下列说法正确的是( )A .合力必大于每一个力B .合力必大于两个力的大小之和C .合力的大小随两个力夹角的增大而减小D .合力可以和其中一个力相等,但小于另一个力答案:C2.关于合力和它的两个分力,下列说法正确的是( )A .一个5 N 的力可以分解为10 N 和4 N 的两个分力B .一个5 N 的力能够分解成8 N 和4 N 的两个分力C .一个100 N 的力可以分解为58 N 和39 N 的两个分力D .一个100 N 的力可以分解为两个100 N 的分力答案:BD3.(2010年北京西城区模拟)小东在体育课上做单杠练习时,两臂伸直,双手平行握住单杠,之后逐渐增加双手间距.此过程中手臂上的拉力变化情况为( )A .逐渐变小B .逐渐变大C .先变大后变小D .先变小后变大解析:选B.对小东受力分析可知,他受到重力和两臂的拉力而处于平衡状态,所以两臂拉力的合力与重力等大反向,是一定值.当两拉力间的夹角随两手间距的增大而增大时,两拉力也一直增大,B 项正确.4.在研究两个共点力合成的实验中,得到如图1-2-15所示的合力跟两个分力间夹角θ的关系曲线.下列说法中正确的是( )A .两个分力大小分别为1 N 、4 NB .两个分力大小分别为6 N 、4 NC .合力大小的范围为1 N ≤F ≤7 ND .合力大小的范围为1 N ≤F ≤5 N解析:选C.当θ=π时,F 1-F 2=1 N当θ=π2时,F 12+F 22=25 N 2 由此得F 1=4 N ,F 2=3 N ,其合力范围1 N ≤F ≤7 N ,故C 正确.5.如图1-2-16所示,两个大人和一个小孩沿河岸拉一条船前进,两个大人的拉力F 1=200 N ,F 2=100 N ,方向如图所示,要使船在河中间平行河岸行驶,则小孩对船施加的最小力是多大?解析:将F 1、F 2正交分解如右图所示,因为F y 1=F 1sin30°=100 NF y 2=F 2sin60°=50 3 N =86.6 N船在河中间平行河岸行驶,须F y =0当小孩子用力与河岸垂直时用力最小,所以F y 3=F y 1-F y 2=100 N -86.6 N =13.4 N ,用力方向与F y 2同向. 图1-2-15图1-2-16答案:13.4 N。
【高考调研】2015高考历史总复习 2-3力的合成与分解训练试题新人教版1.(单选)(2013·成都一模)下列说法正确的是( )A.合力的大小一定大于每个分力的大小B.合速度的大小一定大于每个分速度的大小C.物体的加速度方向一定与它所受合力方向相同D.物体实际运动方向一定与它所受合力方向相同解析合力(合速度)可能等于、大于或小于分力(分速度),A、B项错误;根据牛顿第二定律知,物体加速度的方向一定与合力的方向相同,C项正确;物体的实际运动方向与合力方向不一定相同,D项错误.答案 C2.(单选)(利用三角形法求合力)如图所示,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是( )解析由矢量合成法则可知A图的合力为2F3,B图的合力为0,C图的合力为2F2,D 图的合力为2F3,因F2为直角三角形的斜边,故这三个力的合力最大的为C图.答案 C3.(单选)(2013·苏北四市二模)如图所示,A、B为同一水平线上的两个绕绳装置,转动A、B改变绳的长度,使光滑挂钩下的重物C缓慢下降.关于此过程绳上拉力大小的变化,下列说法中正确的是( )A.不变B.逐渐减小C.逐渐增大D.可能不变,也可能增大解析当光滑挂钩下的重物C缓慢下降时,设绳AC和BC与竖直方向的夹角为α,绳的拉力为F,绳AC和BC在水平方向上的分力为F x=F sinα,大小相等,方向相反,是一对平衡力,绳AC和BC在竖直方向的分力都为F y=F cosα,两绳的合力与重力是一对平衡力,所以2F y =2F cos α=mg ,即F =mg2cos α,重物C 缓慢下降时,α角逐渐减小,所以两绳的拉力F 都逐渐减小,选项B 正确.答案 B4.(单选)(利用三角形法求分力)如图所示,将一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向成30°角且绷紧,小球A 处于静止,对小球施加的最小的力等于( )A.3mgB.32mgC.12mg D.33mg 解析 球受重力mg 、绳的拉力F T 、外力F 三个力作用,合力为零.则mg 与F 的合力一定与F T 等大反向,画出力的三角形可知,当F 与F T 垂直时F 最小,F min =mg sin30°=12mg ,选项C 正确.答案 C5.(单选)F 1、F 2是力F 的两个分力.若F =10 N ,则下列哪组力不可能...是F 的两个分力( )A .F 1=10 N F 2=10 NB .F 1=20 N F 2=20 NC .F 1=2 N F 2=6 ND .F 1=20 N F 2=30 N解析 合力F 和两个分力F 1、F 2之间的关系为|F 1-F 2|≤F ≤|F 1+F 2|,则应选C 项. 答案 C6.(单选)如图所示,用一根长1 m 的轻质细绳将一幅质量为1 kg 的画框对称悬挂在墙壁上.已知绳能承受的最大张力为10 N .为使绳不断裂,画框上两个挂钉的间距最大为(g 取10 m/s 2)( )A.32m B.22mC.12m D.33m解析对画框进行受力分析,并把两绳拉力作用点平移至重心处.如图所示,则有2F T1cosα=2F T2cosα=mg,其中F T1=F T2≤10 N,所以cosα≥12.设挂钉间距为x,则有sinα=x212=x,解得x≤32m,故A项正确.答案 A7.(单选)2011年9月24日,在湖南张家界、美国冒险家杰布克里斯身着翼装从距离天门洞约一公里、飞行高度约2 000米的直升飞机上出舱起跳,成功穿过天门洞后继续飞行约40秒,安全降落在盘山公路上.若杰布·克里斯离开飞机后,通过调整飞行姿态,最终与地平线成α=37°角以速度v匀速飞行,飞行过程中空气升力大小F1=k1v2,方向与飞行方向垂直,空气阻力大小F2=k2v2,方向与速度方向相反,则下列关系正确的是( ) A.k1=34k2B.k2=34k1C.k2=35k1D.k1=35k2解析杰布·克里斯匀速飞行时,受力分析如图所示,由平衡条件可知F2=F1tanα,即k2v2=k1v2tan37°,所以k2=34k1,B项对.答案 B8.(单选)(2012·广东)如图所示,两根等长的轻绳将日光灯悬挂在天花板上,两绳与竖直方向的夹角都为45°,日光灯保持水平,所受重力为G,左右两绳的拉力大小分别为( )A.G和G B.22G和22GC.12G和32G D.12G和12G解析根据对称性知两绳拉力大小相等,设为F,日光灯处于平衡状态,由2F cos45°=G解得F=22G,B项正确.答案 B9.(单选)如图所示,斜劈静止在水平面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F做的功相等.则下列判断中正确的是( )A.物体可能加速下滑B.物体可能受三个力作用,且合力为零C.斜劈受地面的摩擦力方向一定水平向左D.撤去F后斜劈一定受到地面的摩擦力解析对物体受力分析如图,由重力做的功与克服力F做的功相等可知,重力的分力G1=F1,若斜劈表面光滑,则物体匀速运动,若斜劈表面粗糙,则物体减速运动,故A项错误,B项正确.若F N与F f的合力方向竖直向上,则斜劈与地面间无摩擦力,C项错误,撤去F后,若F N与F f的合力方向竖直向上,则斜劈与地面间无摩擦力,故D项错误.答案 B10.(多选)(2012·山东)如图所示,两相同轻质硬杆OO1、OO2可绕其两端垂直纸面的水平轴O 、O 1、O 2转动,在O 点悬挂一重物M ,将两相同木块m 紧压在竖直挡板上,此时整个系统保持静止.F f 表示木块与挡板间摩擦力的大小,F N 表示木块与挡板间正压力的大小.若挡板间的距离稍许增大后,系统仍静止且O 1、O 2始终等高,则( )A .F f 变小B .F f 不变C .F N 变小D .F N 变大解析 对两木块和重物整体受力分析可得,2F f =(2m +M )g ,故F f 不变,A 项错误,B 项正确;设OO 1与竖直方向夹角为θ,对点O 受力分析可得,2F N1cos θ=Mg ,对木块受力分析可得,F N =F N1sin θ,两式联立解得,F N =12Mg tan θ,当两板间距离增大时,θ增大,F N 增大,C 项错误,D 项正确.答案 BD11.所受重力G 1=8 N 的砝码悬挂在绳PA 和PB 的结点上.PA 偏离竖直方向37°角,PB 在水平方向,且连在所受重力为G 2=100 N 的木块上,木块静止于倾角为θ=37 °的斜面上,如图所示.试求:木块与斜面间的摩擦力大小和木块所受斜面的弹力大小.解析 对P 点进行受力分析,建立如图甲所示的坐标系. 由水平方向和竖直方向列方程,得F =F 1sin37°,G 1=F 1cos37°联立解得F =G 1tan37°=8×34 N =6 N对G 2进行受力分析建立如图乙所示的坐标系.平行斜面方向上,F cos θ+G 2sin θ=F f 解得摩擦力F f =6×0.8 N+100×0.6 N=64.8 N 垂直斜面方向上,F sin θ+F N =G 2cos θ解得弹力F N=100×0.8 N-6×0.6 N=76.4 N答案64.8N 76.4 N12.如图所示,两滑块放在光滑的水平面上,中间用一细线相连,轻杆OA、OB搁在滑块上,且可绕铰链O自由转动.两杆长度相等,夹角为θ,当竖直向下的力F作用在铰链上时,滑块间细线的张力为多大?解析把竖直向下的力F沿两杆OA、OB方向分解,如图甲所示,可求出作用于滑块上斜向下的力为F1=F2=F2cosθ2斜向下的压力F1将产生两个效果:竖直向下压滑块的力F1″和沿水平方向推滑块的力F′1,因此,将F1沿竖直方向和水平方向分解,如图乙所示,考虑到滑块不受摩擦力,细线上的张力等于F1在水平方向上的分力F′1,即F′1=F1cosπ-θ2=F1sinθ2解得F′1=F2tanθ2答案F2tanθ2。
【创新教程】2015届高考物理一轮总复习 2.2 力的合成与分解提能课时冲关新人教版对应学生用书课时冲关(五)第225页一、选择题1.如图所示,两根等长的轻绳将日光灯悬挂在天花板上,两绳与竖直方向的夹角都为45°,日光灯保持水平,所受重力为G,左右两绳的拉力大小分别为( )A.G和G B.22G和22GC.12G和32G D.12G和12G解析:根据对称性知两绳拉力大小相等,设为F,日光灯处于平衡状态,由2F cos 45°=G解得F=22G,B项正确.答案:B2.生活中的物理知识无处不在.如图所示是我们衣服上的拉链的一部分,在把拉链拉开的时候,我们可以看到有一个类似三角形的东西在两链中间运动,使很难直接分开的拉链很容易地被拉开,关于其中的物理原理,以下说法正确的是( )A.在拉开拉链的时候,三角形的物体增大了分开两拉链的力B.在拉开拉链的时候,三角形的物体只是为了将拉链分开,并没有增大拉力C.在拉开拉链的时候,三角形的物体增大了分开拉链的力,但合上拉链时减小了合上的力D.以上说法都不正确解析:在拉开拉链的时候,三角形的物体在两链间和拉链一起运动,手的拉力在三角形的物体上产生了两个分力,如图所示,分力大于手的拉力,所以很难直接分开的拉链可以很容易地被三角形物体分开,同理可知,合上拉链时增大了合上的力.答案:A3.如图所示,相隔一定距离的两个相同的圆柱体A、B固定在等高的水平线上,一细绳套在两圆柱体上,细绳下端悬挂一重物.绳和圆柱体之间无摩擦,当重物一定时,绳越长( )A.绳对圆柱体A的作用力越小,作用力与竖直方向的夹角越小B.绳对圆柱体A的作用力越小,作用力与竖直方向的夹角越大C.绳对圆柱体A的作用力越大,作用力与竖直方向的夹角越小D.绳对圆柱体A的作用力越大,作用力与竖直方向的夹角越大解析:题中装置关于AB连线的中垂线对称,因此,三段绳中的张力相等.对物体,两段绳的张力的合力等于物体的重力,若绳越长,则两段绳间的夹角越小,则张力越小.对A 圆柱体,两段绳的张力的合力即对圆柱体的作用力,绳越长,两绳的夹角越大,则合力越小,合力方向与竖直方向的夹角越小,选项A正确.答案:A4.有两个大小相等的共点力F1和F2,当它们夹角为90°时的合力为F,它们的夹角变为120°时,合力的大小为( )A.2F B.2 2 FC.2FD.3 2 F解析:根据题意可得,F=2F1.当两个力的夹角为120°时,合力F合=F1=22F.答案:B5.如图所示,物体放在光滑斜面上,所受重力为G ,斜面支持力为F N ,设使物体沿斜面下滑的力是F 1,则下列说法中错误的是( )A .G 是可以分解为F 1和对斜面的压力F 2B .F 1是G 沿斜面向下的分力C .F 1是F N 和G 的合力D .物体受到G 、F N 的作用 答案:A6.如图所示,某同学通过滑轮组将一重物吊起,该同学对绳的竖直拉力为F 1,对地面的压力为F 2,不计滑轮与绳的重力及摩擦,则在重物缓慢上升的过程中,下列说法正确的是( )A .F 1逐渐变小B .F 1逐渐变大C .F 2先变小后变大D .F 2先变大后变小解析:由题图可知,滑轮两边绳的拉力均为F 1,对滑轮有:2F 1cos θ2=mg ,当重物上升时,θ2变大,cos θ2变小,F 1变大.对该同学来说,应有F 2′+F 1=mg .而F 1变大,mg 不变,F 2′变小,即对地面的压力F 2变小,综上述可知选项B 正确.答案:B7 .如图所示,用两根细线把A、B两小球悬挂在天花板上的同一点O,并用第三根细线连接A、B两小球,然后用某个力F作用在小球A上,使三根细线均处于直线状态,且OB 细线恰好沿竖直方向,两小球均处于静止状态,则该力可能为图中的( ) A.F1B.F2C.F3D.F4解析:因为OB线沿竖直方向,所以悬线AB张力为零(否则球B不能静止于竖直方向),而球A在重力、细线OA的拉力和外力F的作用下处于平衡状态,所以外力F一定与球A所受重力与拉力的合力等大、方向相反.答案:B、C8.如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C 固定在墙上的A点,滑轮与绳的质量及摩擦均不计,若将绳一端从A点沿墙稍向上移,系统再次平衡后,则( )A.绳的拉力增大B.轻杆受到的压力减小,且杆与AB的夹角变大C.绳的拉力大小不变D.轻杆受的压力不变解析:绳端从A点上移后,绳的拉力大小不变(等于重物的重力),但AC与CD夹角变大,合力变小,轻杆受的压力变小,仍沿杆,方向为∠ACD的角平分线方向.综上述可知,选项B、C正确,A、D错误.答案:B、C9.如图所示是剪式千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105N,此时千斤顶两臂间的夹角为120°,则下列判断正确的是( )A.此时两臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为2.0×105 NC.若继续摇动把手,将汽车顶起,两臂受到的压力将增大D.若继续摇动把手,将汽车顶起,两臂受到的压力将减小解析:将汽车对千斤顶的压力F分解为沿两臂的两个分力F1、F2,根据对称性可知,两臂受到的压力大小相等且与竖直线的夹角θ=60°.由2F1cos θ=F得F1=F2cos 60°=1.0×105N,选项A错误;根据牛顿第三定律得知:千斤顶对汽车的支持力等于汽车对千斤顶的压力,为1.0×105N.选项B错误;由F1=F2cos θ可知,F不变,当θ减小时,cos θ增大,F1减小.选项C错误D正确.答案:D二、非选择题10.如图所示,轻绳AC与水平面夹角α=30°,BC与水平面夹角β=60°,若AC、BC 能承受的最大拉力不能超过100 N ,那么重物G 不能超过多少?(设悬挂重物G 的绳CD强度足够大)解析:选结点C 为研究对象,由于C 点只受三个力且合力为零,所以最简单的求解方法就是把力按作用效果分解.由于重物静止时对C 点的拉力F T =G ,拉力产生两个效果:对BC 的拉力F T BC 和对AC 的拉力F T AC ,其力的矢量关系如图所示.从图中关系可以看出F T BC >F T AC ,即当重力G 增加时,F T BC 先达到100 N .因此重力G 的极限值就等于F T BC =100 N 时所对应的F T 的数值,由几何关系得:F T =F T BC cos 30°=20033 N .所以重物的重力G 不能超过20033 N.答案:20033N11.物体A 的质量为2 kg ,两根轻细绳b 和c 的一端连接于竖直墙上,另一端系于物体A 上,在物体A 上另施加一个方向与水平线成θ角的拉力F ,相关几何关系如图所示,θ=60°.若要使两绳都能伸直,求拉力F 的大小范围.(g 取10 m/s 2)解析:作出物体A 的受力分析图如图所示,由平衡条件得 F sin θ+F 1sin θ-mg =0① F cos θ-F 2-F 1cos θ=0② 由①式得F =mgsin θ-F 1③由②③式得F =mg 2sin θ+F 22cos θ④要使两绳都伸直,则有F 1≥0,F 2≥0所以由③式得F max =mg sin θ=4033 N由④式得F min =mg2sin θ=2033N综合得F 的取值范围为2033 N≤F ≤4033N.答案:2033N≤F ≤4033N规范思维:①本题中物体受多个力的作用而保持平衡状态,其合力为零.求多个力的合力要用正交分解法.②本题求F 的大小范围,实质上需找到使b 绳和c 绳都伸直的临界值,也就是保证两绳的拉力都大于或者等于零.[备课札记]。
课时强化作业六力的合成与分解一、选择题1.一物体受到三个共面共点力F1、F2、F3的作用,三力的矢量关系如图所示(小方格边长相等),则下列说法正确的是( )A.三力的合力有最大值F1+F2+F3,方向不确定B.三力的合力有唯一值3F3,方向与F3同向C.三力的合力有唯一值2F3,方向与F3同向D.由题给条件无法求出合力大小解析:以F1、F2为邻边作平行四边形,其对角线必沿F3方向,其大小F12=2F3,再与F3求合力,故F =3F3,方向与F3方向相同,故选项B正确.答案:B2.如图所示,一轻质弹簧只受一个拉力F1时,其伸长量为x,当弹簧同时受到两个拉力F2和F3作用时,伸长量也为x,现对弹簧同时施加F1,F2,F3三个力作用时,其伸长量为x′,则以下关于x′与x关系正确的是( )A.x′=x B.x′=2xC.x<x′<2x D.x′<2x解析:由题述可知同时受到两个拉力F2和F3作用时,作用效果等同于只受一个拉力F1作用;同时施加F1,F2,F3三个力作用时,其伸长量为x′=2x,选项B正确.答案:B3.(2015届哈三中高三上学期第一次考试)如图所示,大小分别为F1、F2、F3的三个力围成封闭三角形.下列4个图中,这三个力的合力为零的是( )解析:根据三角形定则或平行四边形定则,知选项A合力为2F2,选项B合力为2F1,选项C合力为2F3,选项D合力为零,故选项D正确,选项A、B、C错误.答案:D4.如图所示,水平地面粗糙,A 、B 两同学站在地上水平推墙.甲中A 向前推B ,B 向前推墙;乙中A 、B 同时向前推墙.每人用力的大小都为F ,方向水平.则以下说法正确的是( )A .甲方式中墙受到的推力为2FB .乙方式中墙受到的推力为2FC .甲方式中两位同学受到地面的摩擦力大小都为FD .乙方式中两位同学受到地面的摩擦力大小都为F解析:甲方式中,对A 同学受力分析,水平方向受B 对A 的向后的弹力和地面对A 的静摩擦力,方向向前;再对B 同学受力分析,受A 对B 的弹力和墙壁对B 的弹力,根据平衡条件可知,墙壁对B 的弹力等于A 对B 的弹力,即B 同学不受地面的静摩擦力作用,故选项A 、C 错误;乙方式中,墙壁受到两位同学的推力均为F ,两力同向,故合力为2F ,两同学受到地面的静摩擦力大小都为F ,故选项B 、D 正确.答案:BD5.有两个互成角度的共点力,夹角为θ,它们的合力F 随θ变化的关系如图所示,那么这两个力的大小分别是( )A .1 N 和6 NB .2 N 和5 NC .3 N 和4 ND .3 N 和3.5 N解析:当θ=0时,F =F 1+F 2=7 N ,当θ=π时,F ′=F 1-F 2=1 N ,由以上两式解得F 1=4 N ,F 2=3 N ,故选项C 正确.答案:C6.如图所示,在水平天花板的A 点处固定一根轻杆a ,杆与天花板保持垂直.杆的下端有一个轻滑轮O .另一根细线上端固定在该天花板的B 点处,细线跨过滑轮O ,下端系一个重为G 的物体,BO 段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是( )A .细线BO 对天花板的拉力大小是G2B .a 杆对滑轮的作用力大小是G2C.a杆和细线对滑轮的合力大小是GD.a杆对滑轮的作用力大小是G解析:由于细线跨过定滑轮.所以细线内部各处张力相等,且等于重物的重力G,细线BO对天花板的拉力大小等于G,故选项A错误;以滑轮为研究对象,滑轮受到杆的作用力F,两段绳的作用力,如图所示,两段绳的作用力夹角为120°,其合力大小为G,由平衡条件F=G,故选项B错误,选项D正确;滑轮处于平衡状态,a杆和细线对滑轮作用力的合力为零,选项C错误.答案:D7.如图为节日里悬挂灯笼的一种方式,A、B点等高,O为结点,轻绳AO、BO长度相等,拉力分别为F A、F B,灯笼受到的重力为G.下列表述正确的是( )A.F A一定小于GB.F A与F B大小相等C.F A与F B是一对平衡力D.F A与F B大小之和等于G解析:由于A、B等高,轻绳AO、BO长度相等,F A、F B两力对称,大小相等,但方向不同,且不在同一直线上,故选项B正确,选项C错误;由于两绳夹角未知,所以F A的大小可能大于G,选项A错误;以灯笼为研究对象,受到重力G,拉力F A、F B,这三个力的合力为零,物体处于平衡状态,所以F A和F B的矢量和的大小等于G,故选项D错误.答案:B8.(2015届安徽省六校联考)如图所示,重物A被绕过小滑轮P的细线所悬挂,小滑轮P被一根细线系于天花板上的O点.B放在粗糙的水平桌面上,O′是三根线的结点,bO′水平拉着B物体,aO′、bO′与cO′夹角如图所示.细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态.若悬挂小滑轮的细线OP的张力是20 3 N,则下列说法中错误的是(g=10 m/s2)( )A.重物A的质量为2 kgB.桌面对B物体的摩擦力为10 3 NC.重物C的质量为1 kgD .OP 与竖直方向的夹角为60°解析:以P 为研究对象,受力如图所示,且F PO ′=m A g ,由题意可知PO ′与水平方向夹角为30°,所以PO ′与竖直方向夹角为60°,由数学知识可知PO 与竖直方向夹角为30°,故选项D 错误;由平衡条件可知F PO =2m A g cos30°=3m A g .所以m A =2 kg ,选项A 正确;以O ′点为研究对象由平衡条件有F PO ′·sin30°=m C g ,F PO ′·cos30°=F f ,解得m C =m A2=1 kg ,F f =10 3 N ,故选项B 、C 正确.答案:D9.(2015届北京四中高三开学考试)半圆柱体P 放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN ,在半圆柱体P 和MN 之间放一个光滑均匀的小圆柱体Q ,整个装置处于静止状态,如图所示是这个装置的纵截面图.若用外力使MN 保持竖直并且缓慢地向右移动,在Q 落到地面以前发现P 始终保持静止,则在此过程中下列说法正确的是( )A .MN 对Q 的弹力逐渐增大B .地面对P 的摩擦力逐渐增大C .P 、Q 间的弹力先减小后增大D .Q 所受的合力逐渐增大解析:以Q 为研究对象,受到重力G Q ,MN 对Q 的弹力F 1,P 对Q 的支持力F 2,且F 1、F 2的合力始终等于Q 的重力,随挡板MN 向右移动,F 1的方向不变,F 2的方向发生变化,F 2与水平方向的夹角逐渐减小,如图所示可知,MN 对Q 的弹力逐渐增大,P 、Q 之间的弹力F 2逐渐增大,Q 始终处于平衡状态,其受到合力始终为零,故选项A 正确;选项C 、D 错误;以P 、Q 整体为研究对象,受到重力、MN 的弹力,以及地面支持力和静摩擦力,在水平方向随着MN 对Q 的弹力逐渐增大,地面对P 的静摩擦力逐渐增大,故选项B 正确.答案:AB10.如图所示,绳与杆均不计重力,承受力的最大值一定.A 端用铰链固定,滑轮O 在A 点正上方(滑轮大小及摩擦均可忽略),B 端吊一重物P ,现施加拉力F T 将B 缓慢上拉(均未断),在杆达到竖直前( )A .绳子越来越容易断B .绳子越来越不容易断C .杆越来越容易断D .杆越来越不容易断解析:以B 点为研究对象,受到三个力作用,OB 绳的拉力F T ,重物竖直向下的拉力G ,由于杆用铰链固定在A 点,所以杆对B 点的力始终沿杆由A 指向B ,受力如图所示,矢量三角形与三角形OAB 相似,有OB F T =OA G =ABF N,随着杆缓慢拉起,OB 逐渐减小,AB 、OA 不变则可知F N不变,F T减小,故选项B正确.答案:B二、非选择题11.如图所示,光滑斜面的倾角为θ,有两个相同的小球,分别用光滑挡板A、B 挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球压力的大小之比为________,斜面受到两个小球压力大小之比为________.解析:球1重力分解为如图(a)所示.F1=G tanθ.F2=Gcosθ.球2重力分解为如图(b)所示F1′=G sinθ,F2′=G cosθ,则挡板A、B所受压力之比F1F1′=G tanθG sinθ=1cos θ.斜面受小球压力之比F2F2′=GcosθG cosθ=1cos2θ.答案:1cosθ1cos2θ12.如图所示,α=30°,装置的重力和摩擦力均不计,若用F=100 N的水平推力使滑块B保持静止,则工件上受到的向上的弹力多大?解析:将推力F分解为F1′,F2′如图a所示,工件受到向上的弹力为F2′的竖直分力F N,故将F2′分解为竖直向上的F N和水平力F T,如图b所示.则F N=F2′cosα=Fsinα·cosα=100 3 N.答案:100 3 N13.如图所示,重100 N的物体A沿倾角为30°的斜面向上滑动,斜面对物体A的摩擦力的大小为10 N.求:(1)物体A受哪几个力的作用?(2)将物体A所受各力在沿斜面方向和垂直斜面方向进行分解,求各力在这两个方向上分力的合力;(3)物体A与斜面间的动摩擦因数为多大?解析:(1)物体A受重力mg,支持力F N及滑动摩擦力f的作用.(2)由于物体A在垂直斜面方向没有发生运动,故垂直斜面方向上各分力的合力为0,即F N-mg cosθ=0,沿斜面方向的合力F=mg sinθ+f=60 N.(3)由f=μF N得μ=fF N =315.答案:见解析。
2025年高考人教版物理一轮复习专题训练—力的合成与分解(附答案解析)1.三个共点力大小分别是F1、F2、F3,关于它们合力F的大小,下列说法正确的是() A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个力大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零2.(2021·重庆卷·1)如图所示,人游泳时若某时刻手掌对水的作用力大小为F,该力与水平方向的夹角为30°,则该力在水平方向的分力大小为()A.2F B.3F C.F D.3F23.用两根等长轻绳将木板挂在竖直木桩上等高的两点,制成一简易秋千。
某次维修时将两轻绳各剪去一小段,但仍保持两绳等长且悬点不变。
木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小4.(多选)(2023·四川绵阳市盐亭中学一模)图甲、乙、丙、丁所示的四种情况是某一质点在同一平面内同时受到的三个共点力,若坐标纸中每格边长表示1N的大小的力,则下列关于质点所受的合力的说法中正确的是()A.图甲中质点所受的合力大小是12N,方向水平向右B.图乙中质点所受的合力等于0C.图丙中质点所受的合力大小是8N,方向竖直向上D.图丁中质点所受的合力大小等于5N5.(多选)(2024·河北衡水市武强中学检测)如图,家用小型起重机拉起重物的绳子一端固定在起重机斜臂顶端,另一端跨过动滑轮A和定滑轮B之后与电动机C相连。
起重机正将重为G 的重物匀速竖直上拉,忽略绳子与滑轮的摩擦以及绳子和动滑轮A的重力,∠ABC=60°,则()A.绳子对定滑轮B的作用力方向竖直向下B.绳子对定滑轮B的作用力方向与BA成30°角斜向下C.绳子对定滑轮B的作用力大小等于GD.绳子对定滑轮B的作用力大小等于3G26.(2024·湖北襄阳市第一中学月考)在药物使用中应用到很多物理知识。
专题2.2力的合成与分解(精练)1.(2019·山西康杰中学模拟)如图所示,重物的质量为m,轻细绳AO的A端和BO的B端固定,平衡时AO 水平,BO与水平方向的夹角为60°.AO的拉力F1和BO的拉力F2与物体重力的大小关系是()A.F1>mg B.F1<mg C.F2<mg D.F2>mg【答案】BD【解析】以结点O为研究对象,分析受力,利用平行四边形定则画出各力,可知,F2>mg,F1<mg,选项B、D正确,A、C错误.2.(2019·长春十一中模拟)如图所示,AB是半圆的直径,O为圆心,P点是圆上的一点,在P点作用了三个共点力F1、F2、F3.若F2的大小已知,则这三个力的合力为()A.F2B.2F2C.3F2D.4F2【答案】C【解析】以F1、F3为邻边作平行四边形,由几何特征,可知平行四边形是矩形,则合力F13=2F2,故F1、F2、F3的合力F=3F2,C正确.3.(2019·江苏金陵中学模拟)如图,弹性杆AB的下端固定,上端固定一个质量为m的小球,用水平向右的力F缓慢拉球,使杆发生弯曲.逐步增加水平力F的大小,则弹性杆AB对球的作用力的方向()A.水平向左B.斜向右下方,与竖直方向夹角增大C.斜向左上方,与竖直方向夹角减小D.斜向左上方,与竖直方向夹角增大【答案】D【解析】对球受力分析,受重力、拉力和杆的弹力,根据平衡条件,杆的弹力与拉力、重力的合力等值、反向、共线;拉力方向不变、大小变大,重力大小和方向都不变,根据平行四边形定则,两个力的合力大小逐渐增大,方向向右下方,根据平衡条件,杆的弹力斜向左上方,与竖直方向夹角增大,故D 正确,A 、B 、C 错误.4.(2019·杭州高级中学模拟)刀、斧、凿等切削工具的刃部叫做劈,如图是用斧头劈木柴的示意图.劈的纵截面是一个等腰三角形,使用劈的时候,垂直劈背加一个力F ,这个力产生两个作用效果,使劈的两个侧面推压木柴,把木柴劈开.设劈背的宽度为d ,劈的侧面长为l ,不计斧头的自身重力,则劈的侧面推压木柴的力约为()A .d lF B .l d F C .l 2d F D .d 2lF 【答案】B 【解析】斧头劈木柴时,设两侧面推压木柴的力分别为F 1、F 2且F 1=F 2,利用几何三角形与力三角形相似有d F =l F 1,得推压木柴的力F 1=F 2=l dF ,所以B 正确,A 、C 、D 错误.5.(2019·四川绵阳一中模拟)一同学用如图所示方式体验力的作用效果.水平放置的一根铅笔,O 端用轻绳拉住,轻绳的另一端套在食指上的B 点.铅笔的O 端用另一根轻绳吊一重物,铅笔的笔尖在手掌上的A 点,手掌和手指在同一个竖直平面内,铅笔始终水平.若将轻绳在食指上的端点稍稍下移,下列说法正确的是()A .B 点感受到的拉力变小B .A 点感受到的压力不变C.B点感受到的拉力不变D.A点感受到的压力变大【答案】D【解析】重物对点O的拉力产生两个效果,即沿着OA方向的压力和沿着BO方向的拉力,如图所示,根据平行四边形定则,有F OB cosα=mg,F OB sinα=F OA.若将轻绳在食指上的端点稍稍下移,则角度α变大,cosα变小,sinα变大,故F OB、F OA变大,选项D正确.6.(2019·福建仙游一中模拟)共点的两个大小均为10N的力,当它们的合力在0~10N范围时,它们夹角可能值是()A.27°B.79°C.121°D.173°【答案】CD【解析】由题意,两个相等的共点力大小为10N,而合力的大小也为10N,因此由等边三角形的知识可知,当它们之间的夹角为120°时,合力即为10N,如图所示,而当夹角为180°时,则合力为零,因此它们的合力在0~10N范围时,它们夹角在120°~180°之间,故选项C、D正确.7.(2019·广东深圳中学调研)如图所示,用缆绳将沉在海底的球形钢件先从a处竖直吊起到b,再水平移到c,最后竖直下移到d.全过程,钢件受到水的阻力大小不变,方向与运动方向相反,所受浮力恒定.则上升、平移、下降过程中的匀速运动阶段,缆绳对钢件拉力F1、F2、F3的大小关系是()A.F1>F2>F3B.F1>F3>F2C.F2>F1>F3D.F3>F2>F1【答案】A【解析】因为均做匀速运动,处于平衡状态,钢件一直在水中,所受浮力不变,设浮力为F,阻力为f,上升阶段:F1=mg+f-F,水平阶段:F2sinα=f,F2cosα=mg-F,F2=f2+(mg-F)2,下降阶段:F3+f =mg-F,即F3=mg-f-F,所以F1>F2>F3,所以A正确,B、C、D错误,故选A.8.(2019·广东肇庆一中模拟)如图所示,被轻绳系住静止在光滑斜面上的小球,若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4B.3和4C.2和4D.3和2【答案】B【解析】小球的重力产生两个效果,一是拉伸绳子,二是压紧斜面,故应按这两个方向分解,分别是3和4,故B正确,A、C、D错误。
【金版教程】2016高考物理一轮总复习 2.2力的合成与分解随堂集训【高考题组——明考向】考向一力的合成〈高考常见设题点5年5考,以选择题为主〉1. [2011·广东高考]如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P在F1、F2和F3三力作用下保持静止。
下列判断正确的是( )A. F1>F2>F3B. F3>F1>F2C. F2>F3>F1D. F3>F2>F1解析:由于三力共点平衡,故三力首尾相连构成封闭三角形,如图所示,由三角形的边角关系可知,B正确。
答案:B考向二力的分解〈高考灵活设题点5年5考,以选择题为主〉2. [2012·浙江高考]如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0 kg 的物体。
细绳的一端与物体相连,另一端经摩擦不计的定滑轮与固定的弹簧测力计相连。
物体静止在斜面上,弹簧测力计的示数为4.9 N。
关于物体受力的判断(g取9.8 m/s2),下列说法正确的是( )A. 斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9 N,方向沿斜面向上C. 斜面对物体的支持力大小为4.9 3 N,方向竖直向上D. 斜面对物体的支持力大小为4.9 N,方向垂直斜面向上解析:由题图可知,细绳上拉力等于弹簧测力计的示数,F绳=4.9 N。
设物体受到一个沿斜面向下的摩擦力F f,则物体静止在斜面上受到四个力的作用:重力G、斜面对物体的支持力F N、绳拉力F绳、斜面对物体的静摩擦力F f,将重力G分解成沿斜面向下的分力G x和垂直斜面向下的分力G y。
则G x=mg sin30°=4.9 N,G y=mg cos30°=4.9 3 N,物体受力平衡,F N=G y=4.9 3 N,选项D错;斜面对物体的支持力F N垂直斜面向上,选项C错;由F f +G x=F绳,代入数据,得F f=0,斜面对物体没有摩擦力,选项A正确;选项B错误。
六力的合成与分解(学生用书对应页码P267)1.(2014·某某徐汇)如下列图,F1、F2为有一定夹角的两个力,L为过O点的一条直线,当L取什么方向时,F1、F2在L上的分力之和最大( )A.F1、F2合力的方向B.F1、F2中较大力的方向C.F1、F2中较小力的方向D.以上说法都不正确解析:当L取F1、F2合力的方向时,F1、F2在L上的分力之和最大,选项A正确.答案:A2.2012年8月7日上午,世界留下了中国的遗憾.伦敦奥运会田径男子110米栏预赛中刘翔摔倒了,受伤后他坚持单脚跳继续完成了比赛.如下列图是刘翔伤后治疗的牵引装置示意图,绳的一端固定,绕过定滑轮和动滑轮后挂着一个重物,与动滑轮相连的帆布带拉着他的脚,整个装置在同一竖直平面内.为了使脚所受的拉力增大,可采取的方法是( )A.增加绳的长度B.增加重物的质量C.将他的脚向左移动D.将两定滑轮的间距变大解析:脚所受的拉力等于两绳拉力的合力,增加绳的长度,两绳拉力大小、方向不变,其合力也不变,选项A错误;增加重物的质量,两绳拉力大小增大、方向不变,其合力增大,选项B正确;将他的脚向左移动,两绳拉力大小不变,两拉力的夹角减小,合力增大,选项C正确;将两定滑轮的间距变大,两绳拉力大小不变,夹角增大,合力减小,选项D错误.答案:BC3.两个共点力的合力为F,如果它们之间的夹角θ固定不变,使其中一个力增大,如此( )A.合力F一定增大B .合力F 的大小可能不变C .合力F 可能增大,也可能减小D .当0°<θ<90°时,合力F 可能减小解析:设两共点力F a 、F b 之间的夹角θ为钝角,由如下图所示的平行四边形可知,当F a 逐渐增大为F a 1、F a 2、F a 3时,其合力由原来的F 1变为F 2、F 3、F 4,它们可能小于F 1、可能等于F 1,也可能大于F 1,所以A 项错,B 、C 两项正确.同理知,当0°<θ<90°时,如此随着其中的一个力增大,合力一定也增大,D 项错. 答案:BC4.如下列图,在细绳的下端挂一物体,用力F 拉物体,使细绳偏离竖直方向α角,且保持α角不变.当拉力F 与水平方向夹角β为多大时,拉力F 取得最小值( )A .β=0B .β=π2C .β=αD .β=2α解析:对结点受力分析如下列图.由图解法可知,假设拉力F 最小如此F 方向与细绳垂直.如下列图,如此α=β.答案:C5.2012年伦敦奥运会,我国运动员陈一冰在吊环项目中取得了亚军.如图是比赛中的一个场景,此时人静止不动,两根吊带对称并与竖直方向有一定夹角.如下判断正确的答案是( )A .两根吊带受到环的拉力大小不等B .手对吊环作用力方向竖直向下C .每根吊带受到环的拉力大小都等于人重量的一半D .两根吊带受到环的拉力的合力一定竖直向下解析:①由对称性可知,两根吊带受到环的拉力大小相等,故A 错.②由于吊带与竖直方向有一定夹角,所以手对吊环的作用力方向不沿竖直方向,每根吊带受到环的拉力大小也不等于人重量的一半,故B 、C 错.③由平衡条件可知,两根吊带对环的拉力的合力与人的重力大小相等方向相反,即沿竖直向上的方向,所以环对两根吊带拉力的合力一定竖直向下,故D 对.答案:D6.(2014·无锡模拟)如图甲所示,在广州亚运会射箭女子个人决赛中,中国选手程明获得亚军,创造了中国女子箭手在亚运会个人赛历史上的最好成绩.那么射箭时,假设刚释放的瞬间弓弦的拉力为100 N ,对箭产生的作用力为120 N ,其弓弦的拉力如图乙中F 1和F 2所示,对箭产生的作用力如图中F 所示.弓弦的夹角应为(cos 53°=0.6)()A .53°B .127°C .143°D .106°解析:弓弦拉力合成如下列图, 由几何知识得cos α2=F 合2F 1=60100=35=0.6所以α2=53°可得α=106°.故D 正确. 答案:D7.(2014·大连模拟)如下列图,作用于O 点的三个力F 1、F 2、F 3合力为零.F 1沿-y 方向,大小.F 2与+x 方向夹角为θ(θ( )A .F 3一定指向第二象限B .F 3一定指向第三象限C .F 3与F 2的夹角越小,如此F 3与F 2的合力越小D .F 3的最小可能值为F 1cos θ解析:因F 1、F 2、F 3的合力为零,故F 3应与F 2、F 1的合力等大反向,故F 3可能在第二象限,也可能在第三象限,A 、B 均错;F 3、F 2的合力与F 1等大反向,而F 1大小、方向均,故F 3与F 2的合力与其夹角大小无关,C 错;当F 3与F 2垂直时,F 3最小,其最小值为F 1cos θ,D正确.答案:D8.如下列图,轻杆A端用光滑水平铰链装在竖直墙面上,B端用水平绳连在墙C处,在B端悬挂一重物P,在水平向右的力F缓慢拉起重物P的过程中,杆AB所受压力的变化情况是( )A.变大B.变小C.先变小再变大D.不变解析:根据力的合成与分解可知,CB绳的拉力增大,BP绳的拉力也增大,但杆与竖直方向的夹角不变,杆所受压力沿竖直方向的分力始终与重物的重力大小相等,故杆所受压力不变,D正确.答案:D9.(2014·苏北三市二次调研)如下列图,A、B为同一水平线上的两个绕绳装置,转动A、B改变绳的长度,使光滑挂钩下的重物C缓慢下降.关于此过程绳上拉力大小变化,如下说法中正确的答案是( )A.不变B.逐渐减小C.逐渐增大D.可能不变,也可能增大解析:在重物C缓慢下降的过程中,两绳上拉力的夹角逐渐减小,但两力的合力大小方向都不变,根据平行四边形定如此可知,两绳上的拉力逐渐减小,故B正确.答案:B10.如图甲所示,在圆柱体上放一物块P,圆柱体绕水平轴O缓慢转动,从A转至A′的过程,物块与圆柱体保持相对静止,如此图乙反映的是该过程中( )A.重力随时间变化的规律B.支持力随时间变化的规律C.摩擦力随时间变化的规律D.合外力随时间变化的规律解析:在圆柱体缓慢转动的过程中,物块P的重力是定值,不随时间发生变化,A错误;物块P受三个力的作用,竖直向下的重力mg,沿半径指向外的支持力F N的静摩擦力F f,因圆柱体缓慢移动,所以物块P误;对三力正交分解,设重力mg与支持力F N方向所夹锐角为θ,如此F N=mg cos θ,F f=mg sin θ,从A转至A′的过程中,θ先减小后增大,所以F N先增大后减小,F f先减小后增大,B正确,C错误.答案:B11.(2014·河南洛阳一练)轻杆的一端安装有一个小滑轮P的另一端支持着悬挂重物的绳子,如下列图,现保持滑轮的位置不变,使杆向下转动一个角度到虚线位置,如此如下关于杆对滑轮P的作用力的判断正确的答案是(A.变大B.不变C.变小D.无法确定解析:以滑轮和绳的切点为研究对象,受到两局部绳子的拉力作用和杆的弹力作用,两拉力的大小均为mg,在杆向下转动一个角度到虚线位置时,根据平衡条件得杆对滑轮P的作用力与两拉力的合力等大反向,两拉力的合力不变,故杆对滑轮P的作用力不变,B正确.答案:B12.如下列图,不计质量的光滑小滑轮用细绳悬挂于墙上的O点,跨过滑轮的细绳连接物块A、B,A、B都处于静止状态,将B移至C点后,A、B仍保持静止,如下说法中正确的答案是( )A.B与水平面间的摩擦力增大B.细绳对B的拉力增大C.悬于墙上的细绳所受拉力不变D.A、B静止时,图中α、β、θ三角始终相等解析:因为将B移至C点后,A、B仍保持静止,所以绳子中的拉力大小始终等于A的重力,通过定滑轮绳子对B的拉力大小也是等于A的重力大小,而B移至C点后,右侧绳子与水平方向的夹角减小,对B进展受力分析可知,B受到水平面的静摩擦力增大,所以A正确,B错误;对滑轮进展受力分析可知,悬于墙上的绳子所受拉力等于滑轮两边绳子拉力的合力,由于两边绳子的夹角变大,两边绳子拉力的合力将减小,C错误;由几何关系可知α、β、θ三角始终相等,D正确.答案:AD13.有一直角V形槽固定在水平面上,其截面如下列图,BC面与水平面之间的夹角为60°,有一质量为m 的均匀的正方体木块放在槽内,木块与BC 面之间的动摩擦因数为μ,与AB 面间无摩擦.现用垂直于纸面向里的力推木块使之沿槽运动,如此木块所受的摩擦力为( )A.12μmg B .32μmg C.22μmg D .μmg解析:由受力分析可知BC 面对木块的支持力为F BC =mg sin 30°,木块运动后受到的摩擦力为F f =μF BC =μmg sin 30°=12μmg ,所以A 正确.答案:A14.(某某南宁联考理科综合试题)图中AO 、BO 、CO 是完全一样的三条绳子,将一根均匀的钢梁吊起.当钢梁足够重时,结果AO 先断,如此( )A .α=120°B .α<120°C .α>120°D .不能确定解析:设AO 绳上的弹力大小为F A ,BO 、CO 绳上的弹力大小均为F BC ,对节点O 受力分析并根据平衡条件可得,F A =2F BC cos α2;要使AO 绳先断,需要满足F A >F BC ,即2F BC cos α2>F BC ,据此可求得α<120°,选项B 正确.答案:B15.(2013·江苏涟水期末考试)在汶川大地震的救援行动中,千斤顶发挥了很大作用,如下列图是剪式千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105N ,此时千斤顶两臂间的夹角为120°,如此如下判断正确的答案是( )A .此时两臂受到的压力大小均为5.0×104N B .此时千斤顶对汽车的支持力为2.0×105 NC .假设继续摇动手把,将汽车顶起,两臂受到的压力将减小D.假设继续摇动手把,将汽车顶起,两臂受到的压力将增大解析:将汽车对千斤顶的压力F分解为沿两臂的两个分力F1,根据对称性可知,两臂受到的压力大小相等.由2F1cos θ=F得F1=F/2cos 60°,F1=1.0×105 N,故A错误;根据牛顿第三定律得知:千斤顶对汽车的支持力等于汽车对千斤顶的压力,为1.0×105N,故B错误;继续摇动把手,两臂靠拢,夹角θ减小,分析可知,F不变,当θ减小时,cos θ增大,F1减小,故D错误,C正确.答案:C。
力的合成与分解
A组基础巩固
1.[2014·甘肃省民勤四中]物体在三个共点力作用下保持静止状态,已知其中两个力的大小分别是F1=4 N, F2=7 N,则第3个力F3的大小不可能是( )
A.3 N B.7 N
C.11 N D.15 N
解析:当三个共点力平衡时,任意两个力的合力大小与第三个力大小相等,方向相反,两个力的合力范围为3 N≤F≤11 N,A、B、C都在这个范围内,只有D中的15 N超出了这个范围,故D是不可能的.
答案:D
2.[2014·上海市松江二中测试] 如图6-1所示,水平横梁的一端A插在竖直墙内,与墙相垂直,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一重物m.则下述说法中正确的是( )
图6-1
A.轻绳对横梁作用力的方向沿横梁指向竖直墙
B.绳对横梁的作用力一定大于重物对绳的拉力
C.所挂重物m的质量越大,绳对横梁的作用力也越大
D.若使绳的C端位置升高,则绳BC段的作用力会减小
解析:滑轮两边细绳的拉力均为mg,轻绳对横梁作用力是竖直向下的mg与沿BC斜向上的mg 的合力,所以其方向不沿横梁指向竖直墙;其大小也不一定大于重物对绳的拉力mg;所挂重物m的质量越大,则竖直向下的mg与沿BC斜向上的mg的合力越大,绳对横梁的作用力也越大;若使绳的C端位置升高,则绳BC段的作用力仍等于mg.选项C正确.
答案:C
图6-2
3.[2013·四川资阳诊断]如图6-2所示,两轻弹簧a、b悬挂一小铁球处于平衡状态,a弹簧与竖直方向成30°角,b弹簧水平,a、b的劲度系数分别为k1、k2.则两弹簧的伸长量x1与x2之比为( )
解析:作出小球受力图,由平行四边形定则可知a弹簧中弹力是b中2倍,即k1x1=2k2x2,解
得x1
x2
=
2k2
k1
,选项C正确.答案:C
图6-3
4.[2013·上海徐汇测试]如图6-3所示,F1、F2为有一定夹角的两个力,L为过O点的一条直线,当L取什么方向时,F1、F2在L上分力之和最大( )
A.F1、F2合力的方向
B.F1、F2中较大力的方向
C.F1、F2中较小力的方向
D.以上说法都不正确
解析:当L取F1、F2合力的方向,F1、F2在L上分力之和最大,选项A正确.
答案:A
5.
图6-4
[2013·湖北省重点中学联考]图6-4是一种晾衣架的结构示意图,其结构是在质量均匀的圆环上对称的安装挂钩,三根等长的细线固定在圆环的三等分点上,细线上端连在一起固定在水平横梁上.已知每根细线长均为20 cm ,圆环半径为12 cm ,晾衣架的总重力为G ,(不计细线重力),则每根细线所受拉力大小是( )
G G G
G
解析:设每根细绳与竖直方向的夹角为θ,由几何知识可知cos θ=45,根据平衡条件得3F cos θ
=G ,解得F =5
12
G ,故选择A 项.
答案:A
图6-5
6.[2013·皖南八校高三联考一]一轻绳一端系在竖直墙M 上,另一端系一质量为m 的物体A ,用一轻质光滑圆环O 穿过轻绳,并用力F 拉住轻环上一点,如图6-5所示,现使物体A 从图中实线位置缓慢下降到虚线位置,则在这一过程中,力F 、绳中张力F T 和力F 与水平方向夹角θ的变化情况是( )
A .F 保持不变,F T 逐渐增大,夹角θ逐渐减小
B.F逐渐增大,F T保持不变,夹角θ逐渐增大
C.F逐渐减小,F T保持不变,夹角θ逐渐减小
D.F保持不变,F T逐渐减小,夹角θ逐渐增大
解析:物体A处于平衡状态,受力分析知,绳的张力F T总和物重相等,F的作用线一定平分两绳的夹角;两绳夹角越大,合力越小,C项正确.
答案:C
图6-6
7.[2013·长江市月考]如图6-6所示,A、B两球用劲度系数为k1的轻弹簧相连,B球用长为L的细线悬于O点,A球固定在O点正下方,且O、A间的距离恰为L,此时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小关系为( )
A.F1<F2
B.F1>F2
C.F1=F2
D.因k1、k2大小关系未知,故无法确定
图6-7
解析:作出B物体的受力情况如图6-7所示,根据力三角形BFF′与几何三角形ABO相似知,拉力F总等于F′,即总等于重力G,故F1=F2,C项正确.
答案:C
B组能力提升
8.(多选题)如图6-8所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共同固定一个小球,这时绳b的拉力为F1,现保持小球在原位置不动,使绳b在原竖直平面内逆时针转过θ角,绳b的拉力为F2,再逆时针转过θ角固定,绳b的拉力为F3,则( )
图6-8
A.F1=F3>F2B.F1<F2<F3
C.F1=F3<F2D.绳a的拉力减小
图6-9
解析:画出小球的受力分析如图6-9所示,b绳逆时针转动过程中各力的变化可由图中平行四边形或三角形边长的变化看出,绳a的拉力逐渐减少,绳b的拉力先减小后增大,且F1=F3>F2.
答案:AD
9.半圆柱体P放在粗糙的水平面上,有一挡板MN,延长线总是过半圆柱体的轴心O,
图6-10
但挡板与半圆柱不接触,在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态,如图6-10是这个装置的截面图,若用外力使MN绕O点缓慢地顺时针转动,在MN到达水平位置前,发现P始终保持静止,在此过程中,下列说法中正确的是( )
A.MN对Q的弹力逐渐增大
B.MN对Q的弹力先增大后减小
C.P、Q间的弹力先减小后增大
D.Q所受的合力逐渐增大
解析:由三角形定则可判断A正确.
答案:A
图6-11
10.如图6-11所示,两滑块放在光滑的水平面上,中间用一细线相连,轻杆OA、OB搁在滑块上,且可绕铰链O自由转动,两杆长度相等,夹角为θ,当竖直向下的力F作用在铰链上时,滑块间细线的张力为多大?
解析:根据力F作用在O点产生的效果,可把力F分解为沿OA、OB的力F1、F2,如图6-12甲所示,
图6-12
由对称性可知F1=F2=
F
2cos
θ
2
.对A物体受力分析如图乙所示,由平衡条件得:F T=F1·sin
θ
2
=
F
2
tan
θ
2
.
答案:
F
2
tan
θ
2
图6-13
11.如图6-13所示,某同学在地面上拉着一个质量为m=30 kg的箱子匀速前进,已知箱子与地面间的动摩擦因数为μ=,拉力F1与水平面的夹角为θ=45°,g=10 m/s2.求:
(1)绳子的拉力F1为多少?
(2)该同学能否用比F1小的力拉着箱子匀速前进?如果能,请求出拉力的最小值;若不能,请说明理由.
解析:(1)箱子匀速前进,属于平衡状态,合外力为零.以箱子为研究对象,进行受力分析,其受重力、地面支持力、地面摩擦力、外界拉力,以水平、竖直方向为坐标轴的方向建立坐标系,利用正交分解法可得
F1cos45°=μ(mg-F1sin45°),
F1=μmg
cos45°+μsin45°
=100 2 N.
(2)设拉力与水平方向的夹角为θ,利用正交分解法,将水平、竖直两个方向的平衡方程整理有
F cosθ=μ(mg-F sinθ),F=μmg
cosθ+μsinθ
.
当θ=arctanμ时,F有最小值,其值为F min=μmg
1+μ2
=60 5 N.
所以该同学能用比F1小的力拉着箱子匀速前进,最小拉力为60 5 N.
答案:(1)100 2 N (2)能,60 5 N
C组难点突破
12.[2014·浙江省金华一中月考]如图6-14所示,ACB是一光滑的、足够长的、固定在竖直平面内的“∧”形框架,其中CA、CB边与竖直方向的夹角均为θ.P、Q两个轻质小环分别套在CA、CB上,两根细绳的一端分别系在P、Q环上,另一端和一绳套系在一起,结点为O.将质量为m的钩码挂在绳套上,OP、OQ两根细绳拉直后的长度分别用L1、L2表示,若L1 ∶L2=2∶3,则两绳受到的拉力之比F1∶F2等于( )
图6-14
A.2∶3 B.1∶1
C.4∶9 D.3∶2
解析:对P、Q小环分析,小环受光滑杆的支持力和绳子的拉力,根据平衡条件,这两个力是一对平衡力,支持力是垂直于杆子向上的,故绳子的拉力也是垂直于杆子的.则由几何关系可知,两绳与竖直方向的夹角相等,两绳的拉力相等,故F1∶F2=1∶1.
答案:B。