二次函数的综合复习.pdf
- 格式:pdf
- 大小:364.57 KB
- 文档页数:6
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
【最新整理,下载后即可编辑】二次函数性质二次函数的图象与性质的是二次函数重点内容,而与二次函数的图象与性质密切相关,是图象的开口方向、对称轴、顶点坐标、增减范围、对称性。
这些内容是中考二次函数重点考查内容,关于这些知识点的考查常以下面的题型出现。
一、确定抛物线的开口方向、顶点坐标例1、对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,二、求抛物线的对称轴例2、二次函数322-+=x x y 的图象的对称轴是直线 。
三、求二次函数的最值例3、若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B.有最大值4m - C.有最小值4m D.有最小值4m- 四、根据图象判断系数的符号例4、已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <0五、比较函数值的大小例5、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 六、二次函数的平移例6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =---B. 2(1)3y x =-+-C. 2(1)3y x =--+D. 2(1)3y x =-++例7将抛物线23x y =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为( )A.1)1(32---=x yB. 1)1(32-+-=x yC.1)1(32+--=x yD. 1)1(32++-=x y例8在直角坐标平面内,二次函数图象的顶点为A(1,-4)且过B(3,0).(1) 求该二次函数解析式;(2) 将该函数向右平移几个单位,可使得平移后所得图象经过原点,并直接写出平移后所得图象与x 轴的另一个交点的坐标.(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式. (2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的?(3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).七、求代数式的值例9、已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2006 B .2007C .2008D .2009八、求与坐标轴的交点坐标例10、抛物线 y=x 2+x-4与y 轴的交点坐标为 . 例11、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是 。
二次函数y =ax 2+bx +c 的图象及性质一、 知识要点:1.二次函数y =ax 2+bx +c 的图象二次函数y =ax 2+bx +c 的图象是对称轴平行于(包括重合)y 轴的抛物线.(1)二次函数y =ax 2+bx +c 用配方法可化成:y =a (x -h )2+k 的形式,其中h =ab 2-,k =ab ac 442-.(2)二次函数由特殊到一般,可分为以下几种形式:①y =ax 2;②y =ax 2+k ;③y =a (x -h )④y =a (x -h )2+k ;⑤y =ax 2+bx +c .(3)顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.(4)几种特殊的二次函数的图象特征如下(5)抛物线的平移抛物线y =a (x -h )2+k 可以由抛物线y =ax 2经过适当平移得到,具体平移方法如图所示:2.抛物线与a 、b 、c 、△符号的关系:(1)抛物线开口:由a 的符号决定⎩⎨⎧<>开口向下开口向上,0,0a a .(2)抛物线与y 轴交点位置:由c 的符号决定⎪⎩⎪⎨⎧=<>抛物线过原点轴下方交点在轴上方交点在,0,0,0c x c x c .(3)抛物线与对称轴的位置:由a 、b 符号决定(不妨设0>a)⎪⎩⎪⎨⎧=<>轴对称轴是轴右侧对称轴在轴左侧对称轴在y b y b y b ,0,0,0.(4)抛物线与x 轴交点的个数:由△的符号决定⎪⎩⎪⎨⎧=∆<∆>∆有一个交点无交点有两个交点,0,0,03.二次函数与一元二次方程的关系:令y =0得一元二次方程ax 2+bx +c =0,其根是抛物线与x 轴交点的横坐标.二、典型例题 例1已知二次函数的图象经过点(0,-1),(-2,0)和(21,0),求这个二次函数的解析式.分析 1 已知图象上任意三点的坐标,可选用一般式,从而得到关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值,得到二次函数的解析式. 解法一设二次函数的解析式为y =ax 2+bx +c .将(0,-1),(-2,0)和(21,0)分别代入上式得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+--=021410241c b a c b a c 解得⎪⎪⎩⎪⎪⎨⎧-===1231c b a ∴二次函数的解析式为1232-+=x x y .分析2已知(—2,0)和(21,0)两点是x 轴上两点,故对称轴是这两点的中垂线,利用顶点式可求得其解析式.解法二∵二次函数的图象经过(-2,0)和(21,0)两点,故对称轴是这两点的中垂线,即直线x =-43,设二次函数的解析式为 y =a (x +43)2+k ,将(-2,0)(或(21,0))、(0,-1)两点坐标代入上式得⎪⎪⎩⎪⎪⎨⎧-=+⎪⎭⎫ ⎝⎛⨯=+⎪⎭⎫⎝⎛+-⨯143043222k a k a 解得⎪⎩⎪⎨⎧-==16251k a .∴二次函数的解析式为12316254322-+=-⎪⎭⎫ ⎝⎛+=x x x y分析3已知(-2,0)、(21,0)两点是抛物线与x 轴的两个交点,所以选用交点式y=a (x —x 1)(x —x 2),再将点(0,—1)的坐标代如上式,可求得待定系数a ,即可得解析式.解法三∵点(-2,0)和(21,0)是抛物线与x 轴的两个交点.∴设抛物线的解析式为⎪⎭⎫ ⎝⎛-+=21)2(x x a y .将(0,-1)代入上式得)210)(20(1-+=-a .∴12321)2(,12-+=⎪⎭⎫ ⎝⎛-+=∴=x x x x y a 即二次函数的解析式为1232-+=x x y .点评 由于用待定系数求二次函数的解析式有三个待定系数a 、b 、c (或a 、h 、k 或a 、x 1、x 2),所以确定二次函数的解析式需要已知三个独立的条件,当已知抛物线上任意三个点的坐标时,选用一般式比较简便;当已知抛物线的顶点坐标时,可选用顶点式较为简便;当已知抛物线与x 轴两个交点的坐标时,可选用交点式较为简便。
二次函数综合复习学校:___________姓名:___________班级:___________考号:___________一、单选题 1.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5- C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大2.如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S 与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系3.二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.如图,已知抛物线22y ax bx =+-的对称轴是=1x -,直线l x ∥轴,且交抛物线于点()()1122,,,P x y Q x y ,下列结论错误..的是( )A .28b a >-B .若实数1m ≠-,则2a b am bm -<+C .320a ->D .当2y >-时,120x x ⋅<5.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(﹣1,0).则下面的四个结论:①2a +b =0;①4a ﹣2b +c >0;①abc >0;①当y <0时,x <﹣1或x >3.其中正确的是( )A .①①B .①①C .①①D .①①6.记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( ) A .y =﹣(x ﹣60)2+1825 B .y =﹣2(x ﹣60)2+1850 C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+20007.已知抛物线22()1y x =-+,下列结论错误的是( ) A .抛物线开口向上 B .抛物线的对称轴为直线2x = C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大8.已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0;①2c ﹣3b <0;①5a +b +2c =0;①若B (43,y 1)、C (13,y 2)、D (13-,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4二、填空题 9.如图,已知P 是函数y 214x =-1图象上的动点,当点P 在x 轴上方时,作PH ①x 轴于点H ,连接PO .小华用几何画板软件对PO ,PH 的数量关系进行了探讨,发现PO ﹣PH 是个定值,则这个定值为 _____.10.如图,二次函数2(0)y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;①9a +c <3b ;①8a +7b +2c >0;①若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:①若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则1215.x x <-<<其中正确的结论有__________. (只填序号)11.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______.12.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.13.北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.14.如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.三、解答题 15.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y 件. (1)求y 与x 的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少? 16.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x 元(x 为整数),每个月的销售量为y 件.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围; (2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式.17.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的,正常水位时,大孔水面宽度为20m ,顶点距水面6m ,小孔顶点距水面4.5m .当水位上涨刚好淹没小孔时,求大孔的水面宽度.18.如图,点(),3P a 在抛物线C :()246y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.19.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?20.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x (元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y 与x 的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元? (3)当销售单价为多少元时,每天获利最大?最大利润是多少元?21.在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;①当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 23.在平面直角坐标系中,设二次函数22y ax bx =++(a ,b 是常数,0a ≠). (1)若1a =,当=1x -时,4y =.求y 的函数表达式.(2)写出一题a ,b 的值,使函数22y ax bx =++的图象与x 轴只有一个公共点,并求此函数的顶点坐标.(3)已知,二次函数22y ax bx =++的图象和直线4y ax b =+都经过点(2,m ),求证2212a b +≥.24.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.(1)c的值为__________;(2)①若运动员落地点恰好到达K点,且此时19,5010a b=-=,求基准点K的高度h;①若150a=-时,运动员落地点要超过K点,则b的取值范围为__________;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.参考答案:1.D【分析】由抛物线的表达式和函数的性质逐一求解即可. 【详解】解:对于y =(x -1)2+5, ①a =1>0,故抛物线开口向上,故A 错误; 顶点坐标为(1,5),故B 错误;该函数有最小值,最小值是5,故C 错误; 当1x >时,y 随x 的增大而增大,故D 正确, 故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 2.D【分析】先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论.【详解】设AB =m (m 为常数).在△AMP 中,①A =45°,AM ①PM , ①△AMP 为等腰直角三角形, ①AM =PM ,又①在矩形PMBN 中,PN =BM ,①x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m , ①y 与x 成一次函数关系,①S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +212m ,①S 与x 成二次函数关系. 故选D .【点睛】本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式. 3.A【分析】先分析二次函数21y ax bx =++的图像的开口方向即对称轴位置,而一次函数2y ax b =+的图像恒过定点(,0)2ba-,即可得出正确选项.【详解】二次函数21y ax bx =++的对称轴为2bx a=-,一次函数2y ax b =+的图像恒过定点(,0)2b a -,所以一次函数的图像与二次函数的对称轴的交点为(,0)2ba-,只有A 选项符合题意. 故选A .【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数2y ax b =+的图像恒过定点(,0)2ba-,本题蕴含了数形结合的思想方法等. 4.C【分析】先根据抛物线对称轴求出2b a =,再由抛物线开口向上,得到0a >,则228480b a a a +=+>由此即可判断A ;根据抛物线开口向上在对称轴处取得最小值即可判断B ;根据当1x =时,20y a b =+-<,即可判断C ;根据2y >-时,直线l 与抛物线的两个交点分别在y 轴的两侧,即可判断D .【详解】解:①抛物线22y ax bx =+-的对称轴是=1x -, ①12ba-=-, ①2b a =,①抛物线开口向上, ①0a >,①228480b a a a +=+>,①28b a >-,故A 说法正确,不符合题意; ①抛物线开口向下,抛物线对称轴为直线x =-1, ①当x =-1时,=2y a b --最小值,①当实数1m ≠-,则222a b am bm --<+-,①当实数1m ≠-时,2a b am bm -<+,故B 说法正确,不符合题意; ①当1x =时,20y a b =+-<,①a +2a -2<0,即3a -2<0,故C 说法错误,符合题意; ①2y >-,①直线l 与抛物线的两个交点分别在y 轴的两侧,①120x x ⋅<,故D 说法正确,不符合题意;故选C .【点睛】本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.5.C【分析】根据对称轴为x =1可判断①;当x =﹣2时,4a ﹣2b +c <0即可判断①;根据开口方向,对称轴以及与y 轴交点即可判断①,求出A 点坐标,根据图象即可判断①.【详解】解:①对称轴为x =1,①x =﹣2b a=1, ①b =﹣2a ,①2a +b =0,故选项①正确;①点B 坐标为(﹣1,0),①当x =﹣2时,4a ﹣2b +c <0,故选项①错误;①图象开口向下,①a <0,①b =﹣2a >0,①图象与y 轴交于正半轴上,①c >0,①abc <0,故选项①错误;①对称轴为x =1,点B 坐标为(﹣1,0),①A 点坐标为:(3,0),①当y <0时,x <﹣1或x >3.故选项①正确;故选:C .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x =﹣2b a;抛物线与y 轴的交点坐标为(0,c );当b 2﹣4ac >0,抛物线与x 轴有两个交点;当b 2﹣4ac =0,抛物线与x 轴有一个交点;当b 2﹣4ac <0,抛物线与x 轴没有交点.6.D【分析】设二次函数的解析式为:y =ax 2+bx +c ,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y =ax 2+bx+c ,①当x =55,y =1800,当x =75,y =1800,当x =80时,y =1550,①222555518007575180080801550a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩,解得a =−2,b =260,c =−6450,①y 与x 的函数关系式是y =﹣2x 2+260x ﹣6450=﹣2(x ﹣65)2+2000,故选:D .【点睛】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.7.D【分析】根据二次函数的开口方向、对称轴、顶点坐标以及增减性对各选项分析判断即可得解.【详解】解:抛物线22()1y x =-+中,a >0,抛物线开口向上,因此A 选项正确,不符合题意;由解析式得,对称轴为直线2x =,因此B 选项正确,不符合题意;由解析式得,当2x =时,y 取最小值,最小值为1,所以抛物线的顶点坐标为(2,1),因此C 选项正确,不符合题意;因为抛物线开口向上,对称轴为直线2x =,因此当2x <时,y 随x 的增大而减小,因此D 选项错误,符合题意;故选D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为x h =,顶点坐标为(,)h k . 8.B【分析】根据二次函数的图象与性质一一判断即可.【详解】解:由图象可知,开口向上,图象与y 轴负半轴有交点,则0a >,0c <, 对称轴为直线12b x a=-=,则20b a =-<, ①0abc >,故①正确;当3x =时,930y a b c =++=,①2b a =-,①30a c +=,即3a c =-①()()2323320c b a a -=⨯--⨯-=,故①错误;①对称轴为直线12b x a=-=, ①抛物线与x 轴负半轴的交点为(1-,0),①0a b c -+=,①930a b c ++=,两式相加,则10220a b c ++=,①50a b c ++=,故①错误; ①14133--=,12133-=,41133-=, ①421333>>, ①根据开口向上,离对称轴越近其对应的函数值越小,则有321y y y >>,故①正确; ①正确的结论有2个,故选:B【点睛】本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.9.2【分析】设p (x ,14x 2-1),则OH =|x |,PH =|14x 2-1|,因点P 在x 轴上方,所以14x 2-1>0,由勾股定理求得OP =14x 2+1,即可求得OP -PH =2,得出答案. 【详解】解:设p (x ,14x 2-1),则OH =|x |,PH =|14x 2-1|, 当点P 在x 轴上方时,①14x 2-1>0, ①PH =|14x 2-1|=14x 2-1, 在Rt △OHP 中,由勾股定理,得OP 2=OH 2+PH 2=x 2+(14x 2-1)2=(14x 2+1)2, ①OP =14x 2+1, ①OP -PH =(14x 2+1)-(14x 2-1)=2,故答案为:2.【点睛】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.10.①①①①【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】解:①由对称轴可知:x =−2b a=2, ①4a +b =0,故①正确;①由图可知:x =−3时,y <0,①9a −3b +c <0,即9a +c <3b ,故①正确;①令x =−1,y =0,①a −b +c =0,①b =−4a ,①c =−5a ,①8a +7b +2c=8a −28a −10a=−30a由开口可知:a <0,①8a +7b +2c =−30a >0,故①正确;①由抛物线的对称性可知:点C 关于直线x =2的对称点为(12,y 3),①−3<−12<12,①y 1<y 2<y 3故①错误;①由题意可知:(−1,0)关于直线x =2的对称点为(5,0),①二次函数y =ax 2+bx +c =a (x +1)(x −5),令y =−3,①直线y =−3与抛物线y =a (x +1)(x −5)的交点的横坐标分别为x 1,x 2,①x 1<−1<5<x 2故①正确;故答案为:①①①①.【点睛】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.11.1-1【分析】先把函数解析式化为顶点式可得当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,然后分两种情况讨论:若1a ≥-;若1a <-,即可求解.【详解】解:()222314y x x x =--+=-++,①当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,若1a ≥-,当12a x时,y 随x 的增大而减小, 此时当12x =时,函数值y 最小,最小值为74,不合题意, 若1a <-,当x a =时,函数值y 最小,最小值为1,①2231a a --+=,解得:1a =-1-;综上所述,a 的值为1-故答案为:1-【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.12.﹣3<x <1【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:①抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点为(﹣3,0),对称轴为x =﹣1,①抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1.故答案为:﹣3<x <1.【点睛】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.13.25【分析】设草莓的零售价为x 元/千克,销售收入为y 元,由题意得y =-30x 2+1500x -11880,再根据二次函数的性质解答即可.【详解】解:设草莓的零售价为x 元/千克,销售收入为y 元,由题意得,y =x [300-30(x -22)]+18×30(x -22)=-30x 2+1500x -11880, 当150025260b x a =-=-=-时,y 最大, ①当草莓的零售价为25元/千克时,种植户一天的销售收入最大.故答案为:25.【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键. 14.10【分析】设抛物线的解析式为2(6)3y a x =-+,代入原点,确定解析式为2112y x x =-+,当y =53米时,求得x 的值即可. 【详解】设抛物线的解析式为2(6)3y a x =-+,代入原点,得:20(06)3a =-+,解得a =112-, ①抛物线的解析式为2112y x x =-+, 当y =53米时, 215123x x -+=, 解得x =10,x =2(舍去),足球飞行的水平距离为10米,故答案为:10.【点睛】本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.15.(1)y =-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【分析】(1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.【详解】解:(1)根据题意,y =300﹣10(x ﹣60)=-10x+900,①y 与x 的函数表达式为:y =-10x+900;(2)设利润为w ,由(1)知:w =(x ﹣50)(-10x+900)=﹣10x 2+1400x ﹣45000, ①w =﹣10(x ﹣70)2+4000,①每件销售价为70元时,获得最大利润;最大利润为4000元.【点睛】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.16.(1)260(5080)4203(80140)x x y x x -<⎧=⎨-<⎩;(2)2230010400(5080)354016800(80140)x x x W x x x ⎧-+-<=⎨-+-<⎩【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是()50x -元,就少卖()50x -件,用原来的210件去减()50x -得到销售量;当售价超过80元,超过80的部分是()80x -元,就少卖()380x -件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去()380x -得到最终的销售量.(2)根据利润=(售价-成本)⨯销量,现在的单件利润是()40x -元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子.【详解】(1)当5080x <时,210(50)y x =--,即260y x =-.当80140x <时,210(8050)3(80)y x =----,即4203y x =-,则260(5080),4203(80140).x x y x x -<⎧=⎨-<⎩ (2)由利润=(售价-成本)×销售量可以列出函数关系式为2230010400(5080),354016800(80140).x x x W x x x ⎧-+-<=⎨-+-<⎩【点睛】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上x 的取值范围.17.此时大孔的水面宽度为10m .【分析】根据题意,建立如图所示的平面直角坐标系,可以得到A 、B 、M 的坐标,设出函数关系式,待定系数求解函数式.根据NC 的长度,得出函数值y ,代入解析式,即可得出E 、F 的坐标,进而得出答案.【详解】解:如图,建立如图所示的平面直角坐标系,由题意得,M 点坐标为(0,6),A 点坐标为(-10,0),B 点坐标为(10,0),设中间大抛物线的函数式为y =ax 2+6,①点B 在此抛物线上,①0=a ×102+6,解得a =-350, ①函数式为y =-350x 2+6. ①NC =4.5m ,①令y =4.5,代入解析式得-350x 2+6=4.5, x 1=5,x 2=-5, ①可得EF =5-(-5)=10.此时大孔的水面宽度为10m .【点睛】本题是二次函数的实际应用,考查了待定系数法求二次函数的解析式,由函数值求自变量的值,解答时求出函数的解析式是关键.18.(1)对称轴为直线6x =,y 的最大值为4,7a =(2)5【分析】(1)由2()y a x h k =-+的性质得开口方向,对称轴和最值,把(),3P a 代入()246y x =--中即可得出a 的值;(2)由2269(3)y x x x =-+-=--,得出抛物线269y x x =-+-是由抛物线C :()246y x =-+-向左平移3个单位,再向下平移4个单位得到,即可求出点P '移动的最短路程.(1)()2244)6(6y x x -=--=-+,①对称轴为直线6x =,①10-<,①抛物线开口向下,有最大值,即y 的最大值为4,把(),3P a 代入()246y x =--中得: 24(6)3a --=,解得:5a =或7a =,①点(),3P a 在C 的对称轴右侧,①7a =;(2)①2269(3)y x x x =-+-=--,①2(3)y x =--是由()246y x =-+-向左平移3个单位,再向下平移4个单位得到,5,①P '移动的最短路程为5.【点睛】本题考查二次函数2()y a x h k =-+的图像与性质,掌握二次函数2()y a x h k =-+的性质以及平移的方法是解题的关键.19.(1)2100y x =-+;(2)40元或20元;(3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;【分析】(1)直接由待定系数法,即可求出一次函数的解析式;(2)根据题意,设当天玩具的销售单价是x 元,然后列出一元二次方程,解方程即可求出答案;(3)根据题意,列出w 与x 的关系式,然后利用二次函数的性质,即可求出答案.(1)解:由图可知,设一次函数的解析式为y kx b =+,把点(25,50)和点(35,30)代入,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩, ①一次函数的解析式为2100y x =-+;(2)解:根据题意,设当天玩具的销售单价是x 元,则(10)(2100)600x x -⨯-+=,解得:140x =,220x =,①当天玩具的销售单价是40元或20元;(3)解:根据题意,则(10)(2100)w x x =-⨯-+,整理得:22(30)800w x =--+;①20-<,①当30x =时,w 有最大值,最大值为800;①当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.20.(1)y =﹣2x +160(2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元【分析】(1)设每天的销售数量y (件)与销售单价x (元/件)之间的关系式为y =kx +b ,用待定系数法可得y =﹣2x +160;(2)根据题意得(x ﹣30)•(﹣2x +160)=1200,解方程并由销售单价不低于成本且不高于54元,可得销售单价应定为50元;(3)设每天获利w 元,w =(x ﹣30)•(﹣2x +160)=﹣2x 2+220x ﹣4800=﹣2(x ﹣55)2+1250,由二次函数性质可得当销售单价为54元时,每天获利最大,最大利润,1248元.【详解】(1)解:设每天的销售数量y (件)与销售单价x (元/件)之间的关系式为y =kx +b ,把(35,90),(40,80)代入得:35904080k b k b +=⎧⎨+=⎩, 解得2160k b =-⎧⎨=⎩, ①y =﹣2x +160;(2)根据题意得:(x ﹣30)•(﹣2x +160)=1200,解得x 1=50,x 2=60,①规定销售单价不低于成本且不高于54元,①x =50,答:销售单价应定为50元;(3)设每天获利w 元,w =(x ﹣30)•(﹣2x +160)=﹣2x 2+220x ﹣4800=﹣2(x ﹣55)2+1250,①﹣2<0,对称轴是直线x =55,而x ≤54,①x =54时,w 取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),答:当销售单价为54元时,每天获利最大,最大利润,1248元.【点睛】本题考查一次函数,一元二次方程和二次函数的应用,解题的关键是读懂题意,列出函数关系式和一元二次方程.21.(1)顶点P 的坐标为()2,2a -;(2)① 6个;①112a <≤,112a -≤<-. 【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A (0,2),C ( ,-2),画出函数图象,观察图象可得; ①分两种情况求:当a >0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=12 ,则12<a≤1;当a <0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-12,则-1≤a<-12.【详解】解:(1)①y=ax 2-4ax+2a=a (x-2)2-2a ,①顶点为(2,-2a );(2)如图,①①a=2,①y=2x 2-8x+2,y=-2,①A(0,2),C (,-2),①有6个整数点;①当a >0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,12a =; ① 112a <≤. 当a<0时,抛物线顶点经过点(2,2)时,1a =-;抛物线顶点经过点(2,1)时,12a =-; ① 112a -≤<-. ①综上所述:112a <≤,112a -≤<-. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.22.(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式;(2)设每平方米小番茄产量为W 千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【详解】(1)解:①每平方米种植的株数每增加1株,单株产量减少0.5千克, ①40.5(2)0.55y x x =--=-+(28x ≤≤,且x 为整数);(2)解:设每平方米小番茄产量为W 千克,22(0.55)0.550.5(5)12.5=-+=-+=--+w x x x x x .①当5x =时,w 有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.23.(1)y =x 2−x +2(2)(−1,0)(3)见解析【分析】(1)把a =1代入二次函数的关系式,再把x =−1,y =4代入求出b 的值,进而确定二次函数的关系式;(2)令y =0,则ax 2+bx +2=0,当Δ=0时,求得b 2=8a ,据此写出一组a ,b 的值,化成顶点式即可求得顶点坐标;(3)根据题意得到4a +2b +2=2a +4b ,整理得b =a +1,则a 2+b 2=2a 2+2a +1=2(a +12)2+12,根据二次函数的性质即可得到a 2+b 2≥12.(1)解:把a =1代入得,y =x 2+bx +2,①当x =−1时,y =4,①4=1−b +2,①b =−1,①二次函数的关系式为y =x 2−x +2;(2)解:令y =0,则ax 2+bx +2=0,当Δ=0时,则b 2−8a =0,①b 2=8a ,①若a =2,b =4时,函数y =ax 2+bx +2的图象与x 轴只有一个公共点,①此时函数为y=2x2+4x+2=2(x+1)2,①此函数的顶点坐标为(−1,0);(3)证明:①二次函数y=ax2+bx+2的图象和直线y=ax+4b都经过点(2,m),①4a+2b+2=2a+4b,①2a+2=2b,①b=a+1,①a2+b2=a2+(a+1)2=2a2+2a+1=2(a+12)2+12,①a2+b2≥12.【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,待定系数法求二次函数的解析式,解题的关键:(1)熟知待定系数法;(2)求得b=a+1;(3)熟知二次函数的性质.24.(1)66(2)①基准点K的高度h为21m;①b>9 10;(3)他的落地点能超过K点,理由见解析.【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;①运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.【详解】(1)解:①起跳台的高度OA为66m,①A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①①a=﹣150,b=910,①y=﹣150x2+910x+66,①基准点K到起跳台的水平距离为75m,①y=﹣150×752+910×75+66=21,①基准点K的高度h为21m;①①a=﹣150,①y=﹣150x2+bx+66,①运动员落地点要超过K点,①当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b>9 10;(3)解:他的落地点能超过K点,理由如下:①运动员飞行的水平距离为25m时,恰好达到最大高度76m,①抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣2 125,①抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=﹣2125×(75﹣25)2+76=36,①36>21,①他的落地点能超过K点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.。
《二次函数》全章复习与巩固【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:当时开口向上当时开口向下(轴)(轴) (0,)(,0)(,)()2. 抛物线的三要素: 开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;2y ax bx c =++(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.的图象的解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知抛物线的顶点是(3,-2),且在x轴上截得的线段长为6,求抛物线的解析式.【变式】已知抛物线2442y mx mx m =-+-(m 是常数). (1)求抛物线的顶点坐标; (2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.类型二、根据二次函数图象及性质判断代数式的符号2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )A .1个B .2个C .3个D .4个类型三、数形结合3. 已知平面直角坐标系xOy(如图所示),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA ,二次函数2y x bx c =++的图象经过点A 、M . (1)求线段AM 的长;(2) 求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+ 的图象上,且四边形ABCD 是菱形,求点C 的坐标.类型四、函数与方程4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x≧60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.【变式2】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出不等式的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程有两个不相等的实数根,求k的取值范围.类型五、分类讨论5.若函数22(2)2(2)x xyx x⎧+≤=⎨>⎩,则当函数值y=8时,自变量x的值是( ).A. B.4 C.或4 D.4或类型六、与二次函数有关的动点问题6.在平面直角坐标系xOy中,二次函数y=mx2-(m+n)x+n(m<0)的图象与y轴正半轴交于A 点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当-3<p<0时,点M关于x 轴的对称点都在直线l的下方,求m的取值范围.。
2023年安徽中考数学总复习专题:二次函数的性质综合题1.已知函数y=(k+2)x k2+3k―2是关于x的二次函数.(1)求k的值;(2)当k为何值时,抛物线有最低点?(3)当k为何值时,函数有最大值?2.在平面直角坐标系中,如果点P的横坐标和纵坐标互为相反数,则称点P为“慧泉”点.例如:点(1,﹣1),(―13,13),(5,―5),…都是“慧泉”点.(1)判断函数y=2x﹣3的图象上是否存在“慧泉”点,若存在,求出其“慧泉”点的坐标;(2)若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).①求a,c的值;②若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,求实数n的取值范围.3.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.4.已知二次函数y=ax2﹣2ax﹣3a(a≠0).(1)求该二次函数的对称轴.(2)求证:无论a取何值,该函数的图象必过某个定点.(3)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,且最高点M的纵坐标为24,求点M和点N的坐标.5.已知二次函数y=ax2+4ax+3a(a为常数).(1)若a>0,当x<m+13时,此二次函数y随着x的增大而减小,求m的取值范围.(2)若二次函数在﹣3≤x≤1时有最大值3,求a的值.参考答案1.解:(1)∵函数y=(k+2)x k2+3k―2是关于x的二次函数,∴k满足k2+3k﹣2=2,且k+2≠0,解得:k1=1,k2=﹣4,∴k的值为1或﹣4;(2)∵抛物线有最低点,∴图象开口向上,即k+2>0,∴k=1;(3)∵函数有最大值,∴图象开口向下,即k+2<0,∴k=﹣4.2.解:(1)函数y=2x﹣3的图象上存在“慧泉”点,根据题意﹣x=2x﹣3,解得x=1,故其“慧泉”点的坐标为(1,﹣1);(2)①∵二次函数y=ax2+3x+c(a≠0)的图象上有“慧泉”点,∴﹣x=ax2+3x+c,即ax2+4x+c=0,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“慧泉”点(2,﹣2).∴Δ=42―4ac=0 4a+6+c=―2,解得a=﹣1,c=﹣4;②∵a=﹣1,c=﹣4,∴二次函数为y=﹣x2+3x﹣4,∴x=﹣1时,y=﹣1﹣3﹣4=﹣8,∵y=﹣x2+3x﹣4=﹣(x―32)2―74,∴对称轴为直线x=3 2,∴当x=32时,函数有最大值为―74,∵若﹣1≤x≤n时,函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―7 4,∴实数n的取值范围是32≤n≤4.3.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=―3―10或m=―3+10(舍去).综上所述,m=﹣2或―3―10.4.(1)解:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴函数的对称轴为直线x=1.(2)证明:∴y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴该函数的图象必过定点(3,0),(﹣1,0);(3)解:∵y=a(x﹣1)2﹣4a,∴抛物线顶点坐标为(1,﹣4a),∵抛物线开口向上,∴a>0,顶点(1,﹣4a)为图象最低点N,∵5﹣1>1﹣(﹣1),∴直线x=5与抛物线交点为最高点M,把x=5代入代入y=ax2﹣2ax﹣3a得y=12a,∴M(5,12a),∵12a=24,∴a=2,∴M(5,24),N(1,﹣8).5.解:(1)∵抛物线得对称轴为直线x=―4a2a=―2,a>0,∴抛物线开口向上,当x≤﹣2时,二次函数y随x的增大而减小,∵x<m+13时,此二次函数y随着x的增大而减小,∴m+13≤―2,即m≤﹣7;(2)由题意得:y=a(x+2)2﹣a,∵二次函数在﹣3≤x≤1时有最大值3①当a>0 时,开口向上,∴当x=1时,y有最大值8a,∴8a=3,∴a=3 8;②当a<0 时,开口向下,∴当x=﹣2时,y有最大值﹣a,∴﹣a=3,∴a=﹣3,综上,a=38或a=﹣3.。
1. 一般式:2y ax bx c =++.(已知三点)2. 顶点式:2()y a x m k =-+(已知顶点或对称轴) 3. 两根式:12()()y a x x x x =--(已知图像与x 轴两交点坐标) 热身练习1、 抛物线23y x =+向右平移2个单位后,所得抛物线的顶点坐标为 2、 若24(3)mm y m x +-=+是二次函数,则m =3、 抛物线22y x mx =++与x 轴的两个交点间的距离为2,则m = 4、 抛物线22y x x c =--+经过原点,则其顶点坐标为 5、 抛物线2y x bx c =++的顶点坐标为(-3,1),则b = ,c = 6、 抛物线28y x bx =++的顶点在x 轴的正半轴上,则b =7、 二次函数2(5)2(1)y m x m x m =++++的图像全部在x 轴上方,则m 的取值范围为8、 已知二次函数2(0)y ax c a =+≠,当x 取1212()x x x x ≠、时,函数值相等,则当12x x x =+时,函数值y = 。
9、 抛物线2(3)4y x m x =-++的顶点在坐标轴上,求m 的值。
一、典型例题1)有关二次函数图像与系数关系1.如果0k <(k 为常数),那么二次函数22y kx x k =-+的图像大致为 ( ).2. 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示, 以下关于实数c b a ,,的符号判断中,正确的是( )ABCDy O x y Ox yOxyOxA.0,0,0>>>c b aB.0,0,0><>c b aC.0,0,0<>>c b aD.0,0,0<<>c b a2)二次函数性质的判断:对称轴,开口方向,顶点,增减性1. 已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是 ( ) A. 若12y y =,则12x x = B. 若12x x =-,则12y y =- C. 若120x x <<,则12y y > D. 若120x x <<,则12y y > 2.关于抛物线4)1(32-+-=x y ,下列说法正确的是 ( )A .抛物线的对称轴是直线1=x ;B .抛物线在y 轴上的截距是4-;C .抛物线的顶点坐标是(41--,); D .抛物线的开口方向向上. 3.已知函数222y x x =--的图像如图所示,根据图像提供的信息,可得y ≤1时,x 的取值范围是 ( )A .3x -≥B .31x -≤≤C . 13x -≤≤D .1x -≤或3x ≥4.对于抛物线23y x =-,下列说法中正确的是( )A .抛物线的开口向下 ;B .顶点(0,-3)是抛物线的最低点 ;C .顶点(0,-3)是抛物线的最高点;D .抛物线在直线0x =右侧的部分下降的.3)二次函数的平移问题1.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ). A. 沿y 轴向上平移2个单位; B. 沿y 轴向下平移2个单位; C. 沿x 轴向右平移2个单位; D. 沿x 轴向左平移2个单位.2. 把抛物线()216+=x y 平移后得到抛物线26x y = ,平移的方法可以是 ( ).A. 沿y 轴向上平移1个单位;B. 沿y 轴向下平移1个单位;C. 沿x 轴向左平移1个单位;D. 沿x 轴向右平移1个单位. 4)二次函数的解析式求解1. 已知抛物线的对称轴是直线x =3,且经过点(1,0)、(0,52-),求该抛物线的表达式。
拓展提高2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a>0,b=0,c>0B、a<0,b>0,c<0C、a>0,b=0,c<0D、a<0,b=0,c<01、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列判断不正确的是()A、abc>0,B、b2-4ac<0,C、a-b+c<0,D、4a+2b+c>0.3、我校初三篮球比赛中,如图1所示,队员甲在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.(1)求抛物线的表达式.(2)此时,若对方队员乙在甲前方0.5m处跳起盖帽拦截,已知乙的最大摸高为3m,那么乙能否拦截成功?学生独立思考后交流小组合作完成感悟与收获通过今天的学习你有哪些收获?大家交流一下。
学生思考交流通过回顾,引导学生进行反思自我检测1.二次函数22(4)5y x=-+的图象的开口方向、对称轴、顶点坐标分别是().A.向上、直线4x=、(45),B.向上、直线4x=-、(45)-,C.向上、直线4x=、(45)-, D.向下、直线4x=-、(45)-,2.抛物线2(1)3y x=-+的顶点坐标为_________.3.将抛物线2y x=向左平移4个单位后,再向下平移2个单位,则此时抛物线的函数表达式是______ __.4.在同一直角坐标系中,一次函数y ax b=+和二次函数2y ax bx=+的图象可能为().1、要接受自己行动所带来的责任而非自己成就所带来的荣耀。
2、每个人都必须发展两种重要的能力适应改变与动荡的能力以及为长期目标延缓享乐的能力。
3、将一付好牌打好没有什么了不起能将一付坏牌打好的人才值得钦佩。
【最新整理,下载后即可编辑】《二次函数》复习提纲一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数,)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像:二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y = 当0>a 时 开口向上当0<a 时 开口向下0=x (y 轴) (0,0) k ax y +=2 0=x (y 轴) (0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2ab x 2-=(ab ac a b 4422--,)例:(2012泰安)二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、二次函数的解析式(1)二次函数有四种表达形式①二次一项式型:形如y=ax 2(a 是常数,且a ≠0),x 取任意实数。
②二次二项式型:形如y=ax 2+bx (a 是常数,且a ≠0,b 是常数,b ≠0),x 取任意实数。
③二次二项式型:形如y=ax 2+c (a 是常数,且a ≠0,c 是常数,c ≠0),x 取任意实数。
④二次三项式型:形如y=ax 2+bx +c (a 是常数,且a ≠0,b 是常数,b ≠0,c 是常数,c ≠0),x 取任意实数。
(2)不论是哪一种表示形式,都必须规定a ≠0,否则,就没有了二次项,二次函数就没有意义了。
(3)二次函数解析式的三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)交点式:12()()y a x x x x =--(a ≠0)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=(a ≠0)。
个性化辅导教案
A
B
C
D
(第2题图)
菜园
墙
例2:某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x (元),日销售量为y (件).
(1)写出日销售量y (件)与销售单价x (元)之间的函数关系式; (2)设日销售的毛利润(毛利润=销售总额-总进价)为P (元),求出毛利润P (元)与销售单价x (元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x 的函数图象的草图,并标出顶点的坐标; (4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?
课堂练习:
1.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),则此抛物线的解析式为_______.
2.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2
)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围). 3.苹果熟了,从树上落下所经过的路程s 与下落的时间t 满足s=gt 2(g 是不为0的常数),则s 与t 的函数图象大致是( )
4.飞机着陆后滑行的距离s 与滑行的时间t 的函数关系式是s=60t-1.5t 2。
飞机着陆后滑行 能停下来? 5、某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?
1 2 3 4 5 6 7 8 9 10 111260 50
40 30 20 10 P /元 O x /元。
二次函数考点分类复习知识点一:二次函数的定义考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。
备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ;④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
课后练习:(1)下列函数中,二次函数的是( )A .y=ax 2+bx+cB 。
2)1()2)(2(---+=x x x y C 。
xx y 12+= D 。
y=x(x —1) (2)如果函数1)3(232++-=+-mx xm y m m 是二次函数,那么m 的值为知识点二:二次函数的对称轴、顶点、最值1、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点2、对于y=ax 2+bx+c 而言,其顶点坐标为( ,).对于y=a (x -h )2+k 而言其顶点坐标为( , )。
二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k= 练习:1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ .5.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。
二次函数综合复习模块一、二次函数的定义一般地,形如2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是全体实数.【例1】 若函数232(1)(1)y m x m x =-++的图象是抛物线,则_____m =【例2】 在一幅长80厘米、宽50厘米的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为y ,金色纸边的宽为x ,则y 与x 的关系式是_____________模块二、二次函数的图象及性质二次函数2y ax bx c =++0a ≠()或2()y a x h k =-+(0a ≠)的性质⑴开口方向:00a a >⇔⎧⎨<⇔⎩向上向下⑵对称轴:2bx a=-(或x h =) ⑶顶点坐标:24(,)24b ac b a a--(或(,)h k )⑷最值:0a >时有最小值244ac b a -(或k )(如图1); 0a <时有最大值244ac b a-(或k )(如图2);⑸单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性) ①如图1所示,当0a >时,对称轴左侧2bx a<-,y 随着x 的增大而减小,在对称轴的右侧2bx a<-,y 随x 的增大而增大; ②如图2所示,当0a >时,对称轴左侧2bx a<-, y 随着x 的增大而增大,在对称轴的右侧2bx a<-,y 随x 的增大而减小; ⑹与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值.【例3】 函数22y x =,232y x =-,221y x =+的______相同A.形状B.顶点C.最小值D.增减性【例4】 函数2y ax =与y ax b =-+在同一坐标系的图象可能是( )B【例5】 二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【例6】 关于二次函数2y ax bx c =++的图象有下列命题:①当0c =时,函数图象过原点②当0c >且函数的图象开口向下时,方程20ax bx c ++=必有两个不等实根;③函数图象最高点的纵坐标是244ac b a-;④当0b =时,函数的图象关于y 轴对称 其中正确的命题的个数是( ) A.1个B.2个C.3个D.4个模块三 二次函数的解析式以及平移☞二次函数解析式的确定1、如果已知二次函数的图象上的三点坐标,可用一般式2y ax bx c =++()0a ≠求解二次函数解析式;2、已知二次函数的顶点和图象上的任意一点,都可以用顶点式()2y a x h k =-+()0a ≠来确定解析式;3、已知二次函数与x 轴的交点坐标,和图象上任意一点时,可用交点式()()12y a x x x x =-- ()0a ≠,(其中12,x x 为二次函数图象与x 轴的交点的两个横坐标)求解二次函数解析式; 4、对称式:12()()(0)y a x x x x k a =--+≠。
二次函数的综合复习一、基础知识点:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.(2)二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a −),对称轴x=-2b a;(3)当a >0时,当x=-2b a 时,函数有最小值244ac b a −;当a <0时,当x x=-2ba时,函数有最大值244ac b a −3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ) 形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线 y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.4.小知识点总结: (1)、a 的符号:a 的符号由抛物线的开口方向决定.抛物线开口向上,则a >0;物线开口向下,则a <0. (2)b 的符号由对称轴决定,若对称轴是y 轴,则b=0;若抛物线的顶点在y 轴左侧,顶点的横坐标-2ba<0即2b a >0,则a 、b 为同号;若抛物线的顶点在y 轴右侧,顶点的横坐标-2b a >0,即2ba<0.则a 、b 异号.简称“左同有异”.(3)c 的符号:c 的符号由抛物线与y 轴的交点位置确定.若抛物线交y 轴于正半,则c >0,抛物线交y轴于负半轴.则c <0;若抛物线过原点,则c=0.(4)△的符号:△的符号由抛物线与x 轴的交点个数决定.若抛物线与x 轴只有一个交点,则△=0;有两个交点,则△>0.没有交点,则△<0 .(5)a+b+c 与a -b+c 的符号:a+b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(1,a+b+c )的纵坐标,a -b+c是抛物线c bx ax y ++=2(a ≠0)上的点(-1,a -b +c )的纵坐标.根据点的位置,可确定它们的符号. 典型例题:例1、( 贵阳)已知抛物线21(4)33y x =−− 的部分图象(如图1-2-1),图象再次与x 轴相交时的坐标是( ) (A )(5,0) (B )(6,0) (C )(7,0) (D )(8,0) 例2、( 宁安)函数y= x 2-4的图象与y 轴的交点坐标是( ) A.(2,0) B.(-2,0) C.(0,4)D.(0,-4)例3、( 潍坊)已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0 C .a <0,b >0,c >0 D .a >0,b <0,c >0A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤0 例5、(重庆)二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,c a)在( )A .第一象限B .第二象限C .第三象限D .第四象限 针对性练习1.已知直线y=x 与二次函数y=ax 2 -2x -1的图象的一个交点 M 的横标为1,则a 的值为( ) A 、2 B 、1 C 、3 D 、 4 2.已知反比例函数y= kx 的图象在每个象限内y 随x 的增大而增大,则二次函数y=2kx 2 -x+k 2的图象大致为图1-2-3中的( )3.已知二次函数c bx ax y ++=2的图象如图1-1-4 所示,下列结论中①abc >0;②b=2a ;③a +b +c<0;④a+b+c >0正确的个数是( )A .4B .3C .2D .l4.抛物线y=x 2-ax +5的顶点坐标是( ) A .(-2,1) B .(-2,-1) C .(2,l ) D .(2,-1) 5.抛物线y=(x —5)+4的对称轴是( )A .直线x=4B .直线x =-4C .直线x=5D .直线x =-56.二次函数c bx ax y ++=2图象如图l -1-5所示,则下列结论正确的( )A .a >0,b <0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b >0,c >0 7.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x =-3,顶点坐标为(3,5) B .开口向下,对称轴x =3,顶点坐标为(3,5) C .开口向上,对称轴x =-3,顶点坐标为(-3,5) D .开口向上,对称轴x =-3,顶点坐标为(-3,-5)8.二次函数c bx ax y ++=2图象如图l -2-6所示,则点(b c ,a )在( )A .第一象限B 第二象限C .第三象限D 第四象限9.已知二次函数c bx ax y ++=2(a ≠0)与一次函数y=kx+m(k ≠0)的图象相交于点 A (-2,4),B(8,2),如图1-2-7所示,能使y 1>y 2成立的x 取值范围是_______10若二次函数c bx ax y ++=2的图象如图1-2-8,则ac_____0(“<”“>”或“=”)12抛物线经过第一、三、四象限,则抛物线的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限 13已知M 、N 两点关于 y 轴对称,且点 M 在双曲线 y=12x上,点 N 在直线上,设点M 的坐标为(a ,b),则抛物线y=-abx 2+(a +b )x 的顶点坐标为_ __.14当b <0时,一次函数y=ax+b 和二次函数y=ax 2+bx +c 在同一坐标系中的图象大致是图1-2-9中的( )15.已知函数c bx ax y ++=2的图象如图1-2-11所示,给出下列关于系数a 、b 、c 的不等式:①a <0,②b <0,③c >0,④2a +b <0,⑤a +b +c >0.其中正确的不等式的序号为___________-16.已知抛物线c bx ax y ++=2与x 轴交点的横坐标 为-1,则a +c=_________.17.抛物线c bx ax y ++=2中,已知a :b :c=l :2:3,最小值为6,则此抛胸的解析式为____________18.已知二次函数的图象开口向下,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数解析式: _______________.19.抛物线c bx ax y ++=2如图1-2-12 所示,则它关于y 轴对称的抛物线的解析式是___________.20.抛物线c bx ax y ++=2(a >0)的顶点在x 轴上方的条件是( )2-4ac <0 B .b 2-4ac > 0 C .b 2-4ac ≥0 D . c <0 5.二次函数表达式的求法:c bx ax y ++=2;⑵若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:2()y a x h k =−+其中顶点为(h ,k)对称轴为直线x=h ;⑶若已知抛物线与x 轴的交点坐标或交点的横坐标,则可采用交点式:12()()y a x x x x =−−,其中与x 轴的交点坐标为(x 1,0),(x 2,0)(1)、已知抛物线上任意三点时,通常设解析式为一般式y=ax 2+bx+c ,然后解三元方程组求解; 例.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。
练习.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。
(2)、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x -h)2+k 求解。
例.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
1,-3),且经过点P (2,0)点,求二次函数的解析式。
(3)、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x -x 1)(x -x 2)。
A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式。
.抛物线y=2x 2+bx+c 与x 轴交于(-1,0)、(3,0),则b = ,c = . 2.若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),则该二次函数的解析式 。
3.根据下列条件求关于x 的二次函数的解析式 (1)当x=3时,y 最小值=-1,且图象过(0,7)(2)图象过点(0,-2)(1,2)且对称轴为直线x=32(3)图象经过(0,1)(1,0)(3,0)(4)当x=1时,y=0; x=0时,y= -2,x=2 时,y=3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)课后练习:(一)选择题(每题2分,共20分) 1、下列函数中,不是二次函数的是()A .y=2x 2+2xB .y=-x 2 +x 3 +1C .y=-x 2 +x3 +1 D .y=3-x(2-x)2、函数y=-12(x -2)2+5的顶点坐标为()A .(2,5)B .(-2,5).C .(2,-5)D .(-2,5) 3、把抛物线y=-12(x -2)2-1经平移得到( )A .向有平移2个单位,向上平移1个单位B .向右平移2个单位,向下平移1个单位C .向左平移2个单位,向上平移1个单位D .向左平移2个单位,向下平移1个单位 4、函数2283y x x =+−的对称轴为( )A 、y =-2B 、y =-2C 、x =2D 、x =-25、某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y=x 2+aB .y= a (x -1)2C .y=a (1-x )2D .y =a (l+x )2 6、设直线 y=2x —3,抛物线 y=x 2-2x ,点P (1,-1),那么点P (1,-1)( ) A .在直线上,但不在抛物线上B .在抛物线上,但不在直线上C .既在直线上,又在抛物线上D .既不在直线上,又不在抛物线上7、函数 y=x 2 +px+q 的图象是(3,2)为顶点的抛物线,则这个函数的解析式是( )A .y=x 2+6x+11B .y=x 2-6X -11C .y=x 2-6x+11D .y=x 2-6x+78、如图1-2-51,把一段长1.6米的铁丝围长方形ABCD ,设宽为x ,面积为y .则当y 最大时,x 所取的值是( )A .0.5B .0.4C .0.3D .0.69、二次函数y=1-6x -3x 2 的顶点坐标和对称轴分别是( ) A .顶点(1,4), 对称轴 x=1 B .顶点(-1,4),对称轴x=-1 C .顶点(1,4), 对称轴x=4 D .顶点(-1,4),对称轴x=410、若直线 y=ax -6与抛物线y=x 2-4x+3只有一个交点,则a 的值为( ) A .a=2 B .a=10 C .a=2或a=-10 D 、a=2或a=10 (二)填空题(每题2分,共18分)11、已知 y =(a -3)x 2+2x -l 是二次函数;当a______时,它的图象是开口向上的抛物线,抛物线与y 轴的交点坐标是________. 12、通过配方把函数y =1x 2-2x -1表示为y____________,它的图象的顶点坐标是__________.13、抛物线y=-34x 2 的开口,在对称轴左边,y 随x 的____________而增大.14、若二次函数y=2x 2的图象向下平移 3个单位,向右平移4个单位,得到的抛物线的关系式为_______________.15、某涵洞是抛物线型,它的截面如图l-2-52,得水面宽AB=1.6m ,涵洞顶点O 到水面的距离为 2.4m ,在图中直角坐标系中,涵洞所在抛物线的函数关系式是_____________-.16、若将二次函数 y=x 2-2x+3配方为y=(x —h )2+k 的形式_______________17、行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离S(m )与车速工(km /h )间有下述的函数关系式:S=0.01x+0.002x ,现该车在限速140km/h 的高速公路上出了交通事故,事后测得其刹车距离为46.5m .请推测刹车时汽车(是、否)_________超速.18、已知抛物线c bx ax y ++=2的对称轴为x=2,且经过点(0,4)和点(5,0),则该抛物线解析式为__________. 19、已知两个正数的和是60,它们的积最大是 _____________.20.如图,抛物线y=x 2+bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y=x6的一个交点是(1,m),且OA=OC.求抛物线的解析式.。