发电机励磁系统试验技术
- 格式:pdf
- 大小:941.10 KB
- 文档页数:7
**电厂#4发电机励磁系统建模和参数测试试验方案批准:审核:编写:**电厂2004年9月8日目录一总则 (1)1 概述 (1)2 试验目的 (1)3 试验原理方法 (1)4 试验仪器 (2)5 安全注意事项 (2)6 组织措施 (2)二试验项目 (3)1 空载频域法试验 (3)2 空载时域法(阶跃响应)试验 (4)3 解除试验接线 (4)附表:需要提供的发电机励磁系统有关参数表 (5)一总则1 概述**电厂4号机为容量100MW的汽轮发电机组,励磁系统为交流励磁机励磁方式,采用**厂生产的微机WKLT-05型自动励磁调节器。
根据省公司纪总[2002]25号《**省发电机励磁系统建模和参数测试工作会议纪要》的要求,需进行发电机励磁系统模型建立和参数测试工作,特编制此测试方案。
2 试验目的开展励磁系统建模和参数测试工作对电网安全稳定运行和各发电企业安全经济发供电都具有重要意义,也是**电网与华东联网后,联合电网运行管理的一项重要工作。
发电机励磁系统对电力系统的电压控制和稳定控制具有重要的作用,对电力系统的动态过程影响大。
在电力系统分析工作中广泛应用发电机励磁系统数学模型,励磁系统(包括PSS)的数学模型是对发电机励磁系统物理过程的数学描述,作为电力系统机电暂态过程数学模型的重要组成部分,必须比较精确地模拟,才能为合理安排系统和电厂的运行方式、布置安全措施提供较为精确的仿真依据,从而充分利用各发电厂的发电能力,满足大功率向华东送电的需要。
根据省公司的检修计划,在**电厂选4号机检修完成前后,进行该发电机励磁系统模型和参数测试的现场试验。
试验时间约为8小时3 试验原理方法3.1 原理方法一(频域分析法)将发电机励磁系统及其各环节视为单输入-单输出系统,在A VR 的输入端注入由0.1~12Hz的伪随机小幅信号(HP35670A动态信号分析仪或其他装置输出的)产生的小幅伪随机干扰,用HP35670A仪器同时测量单输入-单输出环节的两端的随机摆动信号,由HP35670A仪器分析出频谱特性图,再的拟合出该环节的传递函数,即可以得出发电机励磁系统及其各环节的模型参数。
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行的稳定性,是保证电力系统安全、经济运行,及延长发电机寿命而进行的同步发电机励磁方式,励磁原理,励磁的自动控制进行了深入的解剖。
发电机在正常运行时,负载总是不断变化的,而不同容量的负载,以及功率因数的不同,对发电机励磁磁场的作用是不同的,对同步发电机的内部阻抗压降也是不一样的。
为了保持同步发电机的端电压稳定,需要根据负载的大小及负载的性质调节同步发电机的励磁电流,因此,研究同步发电机的励磁控制具有十分重要的应用价值。
本课题主要研究同步发电机励磁控制在不同状态下的情况,同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等。
主要目的是是同学们加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;了解自并励励磁方式和它励励磁方式的特点;了解微机励磁调节器的基本控制方式。
关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
1.2同步发电机励磁系统的分类与性能1.2.1 直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
发电机励磁系统进相运行试验与应用0 前言随着电力系统的发展,高压输电线路不断增加,线间和线对地电容相应增大,引起系统电容电流及容性无功功率的增长。
当系统处于低谷时段,线路产生的无功功率过剩,使得系统电压升高。
利用发电机在系统处于低谷期间进相运行吸收系统剩余无功功率,成为一种切实有效的调压方法,在电力系统中已得到广泛应用。
1 发电机进相运行的概念发电机进相运行是一种同步低励磁正常稳定运行方式,相对于发电机静子电流Ig滞后于静子电压Ug的迟相运行而言,进相运行时功率因数是超前的,即发电机静子电流Ig超前于静子电压Ug。
该方式运行时,发电机发出有功功率的同时,可不发或从系统吸收无功功率。
图1假定发电机直接接于无限大容量电力系统。
端电压Ug保持不变,设发电机电势为Eq,定子电流为Ig。
功率因数角为Φ,功角为δ,发电机同步电抗为Xd。
如果调节励磁电流If, Eq 随之发生变化,功率因数角Φ同时发生变化。
如果增加发电机励磁电流If,Eq变大,此时发电机负荷电流Ig产生去磁电枢反应,功率因数角Φ是滞后的,即发电机定子电流Ig滞后于定子电压Ug,发电机同时向系统输送有功、无功功率。
发电机这种运行状态称之为迟相运行状态,如图I (a)所示。
反之,如果减小发电机励磁电流If,使发电机电势Eq减小,发电机负荷电流将产生助磁电枢反应,功率因数角Φ变为超前,即发电机定子电流Ig超前于定子电压Ug,发电机向系统输送有功功率,但从系统吸收无功功率。
发电机这种运行状态称之为进相运行状态,如图1(b)所示。
2 发电机进相运行优、缺点发电机进相运行优点与并联电抗器调压和同步调相机调压相比较,发电机进相运行调压简便可靠,不需要额外增加设备,只需改变发电机励磁系统的运行状态,即可达到平衡系统无功功率和调整系统电压的双重目的,既节省了设备投资,又获得了较高的社会效益和经济效益。
发电机进相运行缺点静态稳定性降低问题当发电机输入功率受到一些微小的扰动,发生瞬时增大或减小时,如果不考虑励磁调节器的调节作用,发电机能在瞬时扰动消失后很快恢复到原来的稳定运行状态,称之为发电机静态稳定。
发电机励磁系统建模及参数测试现场试验方案一、引言发电机励磁系统是发电机的重要组成部分,负责提供稳定的励磁电流,以产生磁场来激发旋转母线产生电能。
励磁系统的建模及参数测试是确保发电机正常运行和电能输出的重要环节。
本试验方案旨在介绍发电机励磁系统建模及参数测试的具体步骤和方法,以保证测试过程准确、可靠。
二、试验目的1.建立发电机励磁系统的电路模型,以研究和优化发电机励磁控制策略;2.获取发电机励磁系统的相关参数,包括励磁电感、励磁电阻、励磁时间常数等,以指导实际运行和维护。
三、试验步骤1.参数检查与准备工作(1)检查发电机励磁系统的相关设备,包括励磁电源、励磁控制器等,确保其正常工作;(2)准备励磁电源的额定电压及额定电流;(3)进一步了解发电机的额定容量、充电时间等相关参数。
2.励磁系统建模试验(1)根据发电机励磁系统的具体结构和控制方式,建立励磁系统的电路模型;(2)根据建模结果,优化励磁系统的控制策略,如PID控制、模糊控制等。
3.励磁系统参数测试(1)将励磁电源的电压调整至额定电压,并将电流调整至0;(2)开始记录励磁电流、时间,并持续一段时间,以计算励磁系统的励磁时间常数;(3)在给定一定励磁电流的情况下,记录励磁电源的输出电压,以计算励磁系统的励磁电阻;(4)通过改变励磁电源的输出电流,记录励磁电流和励磁电压的关系,从而计算励磁系统的电感值。
四、试验数据处理与结果分析根据试验记录的数据,进行如下数据处理与结果分析:1.使用最小二乘法拟合得到励磁时间常数;2.根据励磁时间常数计算发电机启动所需的总时间;3.根据励磁电流和励磁电压的关系确定励磁系统的电感值;4.根据励磁电流和励磁电阻的关系确定励磁系统的励磁电阻。
五、试验安全措施1.在试验过程中,严格遵守相关电气安全操作规程,确保人员安全;2.在试验现场设置明显的安全警示标志,并保证试验区域的安全通道畅通;3.使用严密可靠的电气隔离装置,以防止电击事故的发生。
励磁系统试验方案一、试验目的通过励磁系统试验,验证发电机励磁系统的性能和可靠性,确保其在实际运行中能够持续稳定地为发电机提供足够的励磁电流,以保证发电机的正常运行。
二、试验内容1.励磁系统参数测量:测量并记录励磁系统的电流、电压、频率等参数,包括运行和停机状态下的参数。
2.励磁系统响应试验:对发电机的励磁系统进行负载变化试验,观察励磁系统对负载变化的响应时间和稳定性,评估其调节性能。
3.励磁系统稳定性试验:对发电机的励磁系统进行稳定性试验,观察励磁系统在额定负载下的稳定性能,判断其是否能够满足发电机的运行要求。
4.励磁系统失效试验:通过人为切断励磁系统的电源,观察励磁系统失效后的发电机运行情况,评估励磁系统失效对发电机的影响并采取相应措施。
5.励磁系统过载试验:对励磁系统进行过载试验,测试其承受能力和保护措施的有效性,以确保在超过额定负荷时能够及时采取保护措施。
三、试验前准备1.准备好试验所需的仪器设备,包括电流表、电压表、频率计等。
2.对发电机的励磁系统进行全面检查,确保励磁系统的各个部件完好无损,没有松动或损坏的情况。
3.根据试验内容编制试验方案和试验操作指导书,并进行试验人员培训,确保试验人员了解试验目的、方法和注意事项。
四、试验步骤1.第一步:运行状态参数测量(1)打开励磁系统的电源,使发电机运行起来。
(2)使用电流表、电压表等仪器对励磁系统的电流、电压进行测量,并记录下来。
2.第二步:停机状态参数测量(1)将发电机停机,断开励磁系统的电源。
(2)使用电流表、电压表等仪器对励磁系统的电流、电压进行测量,并记录下来。
3.第三步:励磁系统响应试验(1)将发电机的负载从小到大变化,观察励磁系统的响应时间和稳定性能,并记录下来。
4.第四步:励磁系统稳定性试验(1)将发电机的负载调节到额定负载,观察励磁系统在额定负载下的稳定性能,并记录下来。
5.第五步:励磁系统失效试验(1)人为切断励磁系统的电源,观察发电机的运行情况,并记录下来。
励磁系统建模试验方案1.背景介绍励磁系统是电力系统中必不可少的组成部分,用于产生磁场以激励发电机产生电压。
建立励磁系统的数学模型是进行稳定性分析和控制设计的前提,因此对励磁系统进行建模试验具有重要意义。
2.建模目标本试验的目标是建立励磁系统的动态数学模型,以描述励磁系统的响应特性和稳定性。
通过试验获得的模型参数可以用于系统的控制设计和分析。
3.试验装置本试验使用一台实际的发电机作为被试对象,利用适当的测试设备(如数据采集仪、励磁装置等)对发电机的励磁系统进行测试和记录。
4.试验步骤(1)准备工作:检查试验装置的各个部件是否正常工作,确保安全可靠。
(2)建立基准条件:将发电机运行到额定工况下,并记录电压、电流、反馈信号等参数。
(3)激励信号测试:通过改变励磁系统的激励信号并记录响应,以确定激励信号对系统动态性能的影响。
(4)负荷变化测试:改变发电机的负荷,记录系统的动态响应,研究负荷变化对系统稳定性的影响。
(5)故障情况测试:模拟故障情况,如短路、开路等,记录系统的响应,研究故障情况对系统的影响。
(6)数据处理:将试验获得的数据进行整理和分析,根据试验结果确定励磁系统的数学模型。
5.可能存在的问题及解决办法(1)试验装置的不稳定性:可以采用合适的稳定补偿措施,例如引入稳压器或改进电源的稳定性。
(2)环境条件的影响:试验环境应选择尽量稳定的条件,并进行必要的校正和修正。
(3)数据采集和处理的准确性:使用合适的设备和方法进行数据采集,并进行数据校验和分析。
6.预期结果通过本试验,预期可以建立一个准确的励磁系统动态数学模型,描述励磁系统的响应特性和稳定性。
得到的模型参数可以为控制设计提供依据,使励磁系统具有较好的稳定性和动态性能。
7.风险评估本试验涉及到电力系统设备和高电压,存在一定的风险。
在试验过程中,必须严格遵守安全操作规程,确保试验的安全可靠。
在试验方案制定前,必须进行风险评估,并制定相应的安全措施。