第十章 微生物对难降解物质的降解与转化污染控制微生物
- 格式:ppt
- 大小:1.38 MB
- 文档页数:33
各章思考题第一章绪论1. 用具体事例说明人类与微生物的关系,为什么说微生物既是人类的敌人,更是我们的朋友?2. 为什么微生物能成为生命科学研究的“明星”?3. 为什么说巴斯德和柯赫是微生物学的奠基人?4.微生物有哪些特点?第二章病毒1、解释下列名词:病毒粒子、前噬菌体、溶源性。
病毒粒子:成熟的病毒感染单位,病毒复制的最后阶段,在宿主脂肪体细胞、血细胞和上皮细胞的核内复制,形成多边形和多角形的包含体,裸露或被囊膜包裹前噬菌体:整合在宿主基因组上的温和噬菌体的核酸溶源性:温和噬菌体DNA具有整合入宿主菌染色质DNA中的特性,成为与宿主菌共生的原噬菌体,能随宿主菌的染色质同步复制而传给子代,这种特性称为溶源性。
2、什么是病毒?病毒有哪些不同于其他微生物之处?(作业1)3、简述病毒的主要化学组成及其结构。
4、试用图示说明下列名词之间的关系:病毒粒子、核芯、衣壳、被膜。
(作业2)5、病毒有哪几种对称类型?每种对称类型病毒的形态是什么?试各举一例。
6、试以T系噬菌体为例说明病毒的增殖过程。
7、病毒是一种致病因子,也是一种具有遗传成分特点的因子,病毒的这种特性有什么生物学意义?(作业3)第三章原核微生物1、试根据细菌细胞结构的特点,分析并举例说明为什么它们能在自然界中分布广泛。
2、细菌、粘细菌、放线菌、霉菌、酵母在繁殖方式上各有什么特点?3、根据革兰氏阳性菌和阴性菌的细胞壁结构和化学组成,解释为什么革兰氏染色后G+呈紫色,G-呈红色?4、比较细菌和放线细群体培养特征的异同。
5、以产甲烷菌为例,总古细菌的特点及其与细菌的不同之处。
第四章真核微生物1、微生物由于个体微小一般都是以其群体形式进行研究或利用,这必然就要涉及到对微生物的培养。
能否找到一种培养基,使所有的微生物都能良好地生长?为什么?2、试结合微生物学实验课的内容,谈谈在选择、配制和使用培养基时应注意哪些方面的内容。
你们在实验中是如何做的?有何体会?3、试比较营养物质进入微生物细胞的几种方式的基本特点。
微生物对环境污染物降解和转化的研究进展人类的工业活动、农业生产和生活污水排放等都会导致环境污染,这些污染物会对环境、生态系统和人类健康造成不可逆的影响。
然而,微生物作为一种天然的生物降解剂,有着广泛的降解和转化污染物的能力。
在生物科学领域中,越来越多的研究者开始借助微生物来探究环境污染问题,为环境污染治理提供新的思路和方法。
本文将对微生物对环境污染物降解和转化的研究进展进行探讨。
一、微生物对常见环境污染物的降解微生物在自然界中广泛存在,包括细菌、真菌、放线菌、藻类等。
这些微生物可以利用环境中的污染物作为能量来源并将其转化成无害物质,从而减缓或消除环境污染。
下面我们将重点讨论微生物对常见环境污染物的降解。
1. 石油类化合物的降解由于石油的开采、运输、储存和使用等过程中往往伴随着泄露和溢漏事件,石油类化合物就成为一类常见的环境污染物。
研究表明,细菌能够利用石油类化合物作为碳源、能源和维生素,将其转化成二氧化碳和水等无害物质。
例如,石油脱氮菌、石油脱硫菌和石油酸性物质降解细菌等都能够有效地降解石油类化合物。
此外,真菌也被发现具有降解石油类化合物的能力,特别是白腐真菌和土壤放线菌等。
2. 氯化有机物的降解氯化有机物是一类广泛应用的化学物质,例如农药、染料、溶剂等。
然而,氯化有机物具有较强的毒性和耐久性,对环境和人类健康造成潜在的风险。
不过,许多微生物促进了氯化有机物的降解。
许多细菌和真菌都能降解氯代烷烃、氯化芳香烃和氯代丙烯酸酯等。
其中,脱氯菌是一类具有特殊能力的细菌,能够催化氯代烷烃的脱氯反应。
3. 难降解有机物的降解环境中还存在许多难降解的有机物,如多环芳香烃、半挥发性有机物和化学需氧量高等。
这些有机物可导致污染土壤、空气和水体,对生态系统和人健康造成重大危害。
幸运的是,细菌和真菌具有对这些难降解有机物进行降解的能力。
许多研究者利用这些微生物开发了一系列生物技术来降解这些有机物,例如生物滴滤池、生物氧化沟以及土壤生物修复等。
第⼗章VOC污染控制第⼗章挥发性有机物污染控制[教学⽬的] 通过本章的学习,使同学们了解VOCs 性质和来源,理解和掌握VOCs 污染的控制措施,包括燃烧法控制VOCs 、洗涤法控制VOCs 、冷凝法控制VOCs 、吸附法控制VO Cs 、⽣物法控制VOCs 污染。
[教学重点] 本章重点介绍各种VOCs 污染控制[教学难点] 冷凝法控制VOCs 污染,⽣物法控制VOCs 污染[教学⽅法及⼿段] 课堂讲授[课外作业][学时分配] 4学时[教学内容] (1)蒸汽压与蒸发;(2)VOCs 污染预防;(3)燃烧法控制VOCs 污染;(4)洗涤法控制VOCs 污染;(5)冷凝法控制VOCs 污染;(6)吸附法控制VOCs 污染;(7)⽣物法控制VOCs 污染第⼀节蒸⽓压与蒸发⼀、蒸⽓压蒸⽓压是判断有机物是否属于挥发性有机物的主要依据。
液体或固态物质的蒸汽压⼤⼩与温度有关。
温度越⾼,蒸⽓压越⼤。
空⽓中VOCs 的含量低,可视为理想⽓体,可⽤拉乌尔定律估算混合⽓体中VOCs 的含量。
拉乌尔定律:式中:y i ——⽓相中i 组分的摩尔分数(对理想⽓体=体积%/100); x i ——液体中i 组分的摩尔分数:p i ——纯组分i 的蒸⽓压; P ——总压。
为了计算⽓液平衡体系的有关多数,在热⼒学中,通常选⽤克劳修斯—克拉佩龙((Clausius -Clapyron)⽅程:(10-2) 式中:p ——与液相平衡的⽓体蒸⽓压,mmHg ;T ——系统温度,K ;A 和B ——由实验确定的经验常数。
通常情形下,实验数据可以⽤安托万(Antoine)⽅程更好地表⽰: )(lg C t B A p +-= (10-3) 式中:t ——温度,℃;A 、B 和C ——经验常数。
⼆、挥发与溶解在实际应⽤中.⼤部分有机物均置于与⼤⽓相通的容器内,因此,容易发⽣汽化,进⼈⼤⽓环境,引起污染。
部分有机物(如⼄烷、丙烷、丁烷)在室温时的蒸⽓压⼤于⼤⽓压,会剧烈沸腾,因此,此类物质必须加压密闭保存,作为燃料⽤的有机物如汽油、液化⽓等,在装卸、运输过程中都会因挥发排出⼤量的VOCs ,加剧⼤⽓环境的污染。