可控震源滑动扫描工作原理及应用
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
基于可控震源的地震勘探采集方法作者:田静源来源:《中国科技博览》2013年第26期摘要:可控震源相比于常规井炮地震资料采集的优势在于节约成本,安全环保。
本文主要阐述了可控震源的工作原理,施工过程中需要的测试内容和当前可控震源技术的发展。
关键词:可控震源滑动扫描中图分类号:TU855 文献标识码:A 文章编号:1009-914X(2013)26-542-01随着近年来人们对安全和环保的越来越重视,采用可控震源进行地震勘探资料采集方法被广泛的应用起来,特别是在沙漠和戈壁等一些钻井困难的地区。
由于可控震源技术的迅速发展,新技术的不断涌现,使得高密度、高分辨率采集成为可能,这也大大的提高地震勘探的生产效率,缩短了施工时间,降低了勘探的成本。
一、可控震源的工作原理可控震源系统包括:配备了控制器的向地下发射扫描信号的可控震源;一个产生参考扫描信号的编码扫描发生器和一个将长扫描信号压缩成短反射脉冲相关器。
VE432可控震源系统:数字信号发生器DPG(编码器):DPG通过以太网与地震数据采集系统相连,作为VE432系统的主控制器。
产生用于相关的参考信号:在数据采集过程中,DPG生产参考信号,通过数据采集系统的数字化,用于实时相关处理。
数字伺服驱动器DSD(震源控制器):DSD安装在每一台震源上,对震源的输出力进行计算和实时的控制,同时发送完整的质量控制(QC)数据体。
接收和存储扫描参数,扫描信号的选择、T0指令。
由DPG发出的启动指令包括:选择什么样的扫描信号、DSD是否要在扫描结束后传回状态信息等。
相关器的主要是在地震数据采集单元中实现接受数据与参考信号互相关的功能。
实时的质量控制技术:DSD集成了一组用于传感器自动测试的检测功能,通过检测物理测量的相干性,保证震源的激发质量,使震源生成相应的扫描信号,而没有发生激发极性错误的风险。
DSD生成的QC数据体可以实时或事后分析下述参数:相位、畸变和基值输出力。
另外,数字控制还可以辩识近地表物性结构参数,如:弹性、阻尼,该参数表征了大地的吸收作用,可以用于对地震信号的特殊处理要求。
可控震源动态扫描技术及应用肖虎;唐东磊;杨国平;王井富;吴永国;樊平【摘要】交替扫描、滑动扫描和距离分离同步扫描是现今最常用三种可控震源高效扫描技术,且各有其优势和适用条件.由于三种扫描方式的技术特点、施工组织方式和资源需求量差别较大,以往采集施工时只能单独选用其中一种方式,制约了优势技术应用范围和施工效率的提高.为此,研发了可控震源动态扫描技术,它突破了以往可控震源激发仅考虑时间域变化的局限,首次引入空间域理念,通过建立时空关系联合时间域与空间域,从而将交替扫描、滑动扫描及距离分离同步扫描等方式综合考虑并运用,即可根据预设时空关系自由编组并切换扫描方式,使采集作业方式更灵活,施工效率显著提高,且进一步拓展了可控震源应用范围.【期刊名称】《石油地球物理勘探》【年(卷),期】2019(054)003【总页数】7页(P493-499)【关键词】可控震源;动态扫描;时空关系;变间隔滑动扫描;固定间隔滑动扫描;同步扫描【作者】肖虎;唐东磊;杨国平;王井富;吴永国;樊平【作者单位】东方地球物理公司采集技术中心,河北涿州072751;东方地球物理公司采集技术中心,河北涿州072751;东方地球物理公司采集技术中心,河北涿州072751;东方地球物理公司采集技术中心,河北涿州072751;东方地球物理公司青海物探处,甘肃敦煌736202;东方地球物理公司辽河物探处,辽宁盘锦124000【正文语种】中文【中图分类】P6310 引言经过多年的地震勘探实践及科技发展,可控震源高效采集技术日渐完善[1-2]、应用范围不断扩大,已形成交替扫描[3]、滑动扫描[4]、距离分离同步扫描[5-6]、独立同步扫描[7]、分频同时扫描[8]等系列扫描技术,满足了不同勘探项目的多样化需求。
这些技术在所用设备、实际作业、质控、谐波压制[9-13]、邻炮噪声压制[14]等方面的要求不尽相同,且各有其特定适用范围。
综合国内外应用实情,目前是以交替扫描、滑动扫描和距离分离同步扫描为主。
可控震源滑动扫描工作原理及应用【摘要】可控震源的滑动扫描方式基本原理是采用多组可控震源实现无等待扫描激发工作,即一组震源在扫描过程尚未完全结束时,另外一组震源已经开始扫描了,单位时间内平均每次数据采集的时间极大地缩短了,施工效率得到显著地提高。
本文简单介绍了滑动扫描信号分离的基本原理,主要参数的设计及应用。
【关键词】可控震源;滑动扫;相关处理;数据分离1、滑动扫描的技术原理⑴基本原理滑动扫描方式是一种高效、高质的适用于大道数生产可控震源采集方式。
与常规交替扫描相比,滑动扫描的一组震源在开始扫描时,不必等待另外一组震源扫描过程是否完全结束,这样相邻两组震源会出现一段时间上的重叠,缩短了两组震源的工作时间,有效提高了生产效率。
相邻的两组震源之间的震动时间间隔称之为滑动时间,一般来说滑动时间不能小于听时间,虽然相邻两组震源在扫描时间上有一定量的重叠,但是它们在这个时间段各自震动的频率是不同的,这样根据各组震源的TB值进行相关处理就可以有效分离出各组震源的震动数据,得出各自的单炮记录。
激发流程图如图1。
由于滑动扫描各组的震动是存在相互重叠的,所以数据记录是连续的,从滑动扫描第一次震动开始到最后一次结束,数据记录包含各次扫描的TB值和相对应时间内各次扫描的信号频率信息和辅助道信息。
一次滑动结束后,仪器会根据各自扫描时段内的TB值和其他信息进行数据的裁剪、相关,最后分离出单炮记录。
如图2所示。
图2为2组震源工作信号的相关过程:最上面的记录为2组震源的原始合成记录;TB(n)为各组震源的TB值;中间的四张记录是根据tb值剪切的各组震源的记录;Pilot(n)为各组震源对应扫描时间内的扫描频率信号;R(n)是从原始连续数据中通过裁剪、相关处理后的到的各组震源记录,即单炮记录。
2、震源参数设计①滑动扫描的滑动时间(扫描连续启动最小间隔时间)不能小于听时间,尽管没有最大时间,但是,滑动时间越短,生产效率就越高。
②在滑动扫描方式下,扫描信号本身并没有重叠在一起,但是谐波干扰已经影响到其它的记录了。
可控震源在塔里木盆地地震勘探中可行性应用及效果可控震源技术是一种地震勘探中常用的高新技术,它能够通过调控地震波的发射方向、频率、能量和相位等参数,来达到更好的勘探效果。
可控震源技术在塔里木盆地地震勘探中的可行性应用和效果备受关注。
本文将从可控震源技术的基本原理、在塔里木盆地地震勘探中的优势及效果等方面展开阐述。
一、可控震源技术的基本原理可控震源技术是通过地震勘探仪器对地震波进行实时调控,以实现对地下结构的有效勘探。
在地震波发射方面,可控震源技术可以通过合理布设震源点,利用多点激发的方式来产生复杂的地震波场,使得地质构造的细节特征能够被更清晰地反映出来。
在地震波的频率和能量调控方面,可控震源技术可以根据具体的勘探需求,通过改变震源激发时的振幅、频率和波形等参数,进而实现对地下目标的多角度、多频段、多分辨率的扫描,从而提高地震数据的分辨率和勘探精度。
二、可控震源技术在塔里木盆地地震勘探中的优势1. 适应多样化地质条件塔里木盆地地质条件复杂,地下构造多变,传统的地震勘探技术对于地下结构的分辨率和精度存在一定的局限性。
可控震源技术可以通过灵活控制地震波,提高地震数据的分辨率和定位精度,能够适应复杂多变的地质条件,有效提高勘探效果。
2. 提高油气勘探效率塔里木盆地是中国最大的陆相盆地之一,地下含有丰富的油气资源。
采用可控震源技术进行地震勘探,可以精准定位油气藏的位置、形态和规模,有助于降低勘探风险,提高勘探效率,为盆地的油气资源开发提供可靠数据支撑。
3. 降低勘探成本与传统地震勘探相比,可控震源技术在实施勘探过程中可以通过优化数据采集方式、提高勘探效率等手段,降低勘探成本。
在塔里木盆地这样大规模的地质勘探中,可控震源技术有望为勘探工作带来可观的经济效益。
1. 提高地震数据的质量和分辨率在塔里木盆地的实际勘探中,使用可控震源技术获得的地震数据质量明显提高,地下结构的各种特征得到更为清晰的表现,勘探成果更加可靠。
可控震源工作原理张宏乐一.概论1.引言利用可控震源人工激发地震波,是进行地震勘探的一种重要方法。
这种勘探方法最早出现的时间可以上溯到上个世纪50年代,当时在美国的一些石油公司最初开始出现以连续振动为特征的非爆炸地面震源的可控震源雏形,由此开创了可控震源技术应用于地震勘探之先河。
随着国外可控震源技术的日趋成熟,到了上个世纪70年代中期,我国开始引进国外可控震源设备和技术以应用于国内地震勘探。
与此同时,在吸收消化国外先进技术的基础上,开始着手依靠国内技术力量和设备,自行开发研制KZ系列国产可控震源。
由于可控震源所产生的信号频谱和基本特性可以人为控制,可以在设计震源扫描信号时避开某些干扰频率,还能对地层对地震信号的吸收作用进行补偿,这是其它人工地面震源和炸药震源难于做到的,所以利用可控震源进行地震勘探可以得到反射能量足够,信噪比和信号分辨率能够满足地质勘探需要的资料,因此在过去的几十年中可控震源技术在国内外都得到了较快发展,无论从震源的机械液压系统和电控系统技术发展水平,还是震源野外施工方法和震源资料处理技术都已逐渐提高和日臻完善。
近些年来,为了提高地震资料的信噪比和分辨能力,国内和国外生产厂家竞相利用现代科学技术的一些最新研究成果应用于可控震源的研究,设计和开发,已生产出最大静态推力近30吨的﹑可以适应更加广泛地震勘探目的﹑可在多种地面道路行驶的宽频大吨位可控震源,出现了可以灵活控制震源传入大地地面力幅度和地面力控制方式﹑以数字自适应控制技术为基础的﹑可自动进行可控震源系统识别、安装,并能对震源实施实时的质量控制技术的电控系统,从而扩大了可控震源应用领域,促使可控震源技术得以广泛应用于国内外地震勘探施工,成为了一种重要的地震勘探设备。
2.可控震源与炸药震源信号特征的区别图1 可控震源信号与炸药震源信号特点比较炸药震源和一些用于地震勘探的地面震源,如落重震源、电火花震源和陆地气枪震源等非爆炸地面震源所产生的地震信号一样,都是作用时间很短,信号振幅能量高度集中的脉冲信号,它们都属于脉冲震源。
可控震源工作原理可控震源是指一种使用专门的设备和技术来产生地震的工具,其产生的能源通常用于地震探测、工程测量、地质勘探和研究地震动力学等领域的应用。
可控震源的工作原理基于一定的物理原理和理论模型,同时需要科学的数据采集和处理,整个过程经过多次反复测试和验证。
可控震源的工作原理是利用一定的能量源来刺激地下岩石,并观测其反应,从而推断地质结构和构造等特征。
可控震源的能量源可以是机械、电磁、火药、液压等各种形式,在刺激岩石时需要控制其强度、频率、方向等参数,以满足不同应用场合的需求。
在野外实际应用中,可控震源通常采用电磁激振器或气炮等设备,通过把能量传输到地下,观测地下反馈信号,从而推断地下构造特征、地层厚度、地下水储层等重要信息。
可控震源工作的前提是需要准确的地质资料和模型,这些模型往往是由专业地质学家、地震学家和地球物理学家利用岩石学、古地磁学、地形分析和探测数据等多种手段构建而成。
这些模型可以描绘地质背景、地层接触、构造界面等各种地质特征,为地震勘探提供数据支持和理论基础。
可控震源的工作流程一般包括以下几个步骤:1. 设计实验方案。
根据地质条件和应用需求,设计可控震源的参数和地震探测的范围和深度等基本要素。
此步骤需要结合实地勘探资料进行分析和优化,将可控震源产生的波能量最大化并使其在地下穿透深度最大化。
2. 安装设备。
将电磁激振器或气炮等设备安装在控制区域内,需要将设备牢固地固定在地面上,同时需要对设备进行电气和机械上的检测和测试。
3. 启动可控震源。
根据设计的参数和方案,对设备进行控制和调试,产生特定的能量波形,观测地下反馈信号,从而推断地下结构及其与地震活动的关系。
4. 数据处理和分析。
将收集到的数据进行处理、滤波、降噪、叠加等处理,生成图形化数据表现形式,辨识或解释所探地层或地下构造的特征。
5. 计算和评估。
根据测量结果,进行剖面重建、层析成像、三维模型重建等数据处理方法,进一步评估地下构造的特性,并根据实际应用需求判断其潜在价值和可行性。
可控震源工作原理1.1 可控震源使用的信号地震勘探中的激发源能量既可以用振幅高度集中的信号(如:脉冲信号,在此通常指炸药),也可以用低振幅、长信号(如:可控震源)产生。
其实,可控震源重要是依赖长时间的振动激发,得到相对弱的地震信号。
可控震源另外一个重要特征就是激发源是有限带宽的信号。
另外,可控震源激发技术只产生需要频带内的信号,而脉冲震源,如:炸药生产的一部分频率在数据采集过程中是不予记录的。
图1 时间域与频率域内的脉冲信号与有限带宽信号脉冲来表示,即:一个振幅高度集中的信号在非常短的瞬间生成(图1-a),它的频谱中包含了所有的频率成分(图1-b)。
对于有限带宽信号而言,它只表示在有限带宽内(图1-c)。
在所展示的一个平坦的振幅谱(在图1-d)中只有10~60Hz的频率成分。
炸药爆炸的过程可以用在可控震源中使用的信号大多形如图1-d。
1.2 如何生成一个有限带宽的震源信号如前所示,大多数信号具有有限带宽的特征,通过傅立叶变换可以得到如图1-c所示的时域上的信号。
但是一般如图1-c所示的振幅,在时域上的信号不能应用于可控震源,可控震源在激发时要求采用均衡振幅、长时间的信号。
为了能够使如图1-c所示的信号用于震源的激发,必须将该信号转化为均衡振幅、长时间的有限带宽信号。
采用频率延迟算子,就可以将短脉冲信号转化为长扫描信号。
实际上,在应用过程中,采用将短延迟用于低频、将中等水平的延迟用于中间频率、将长延迟用于高频的处理方法,就会得到一个均匀振幅、视频率从低频逐渐扫到高频结束。
这个信号看起来有些类似于正弦波,在可控震源中就称之为扫描信号。
图2 由短脉冲生成长扫描信号在图3中显示了扫描信号的合成过程。
各种不同频率成分、具有相同相位的正弦信号迭加后成为图3-a中的信号,经过不同的延迟算子迭加后,成为图3-b中的扫描信号。
本主题包含图片附件本主题包含图片附件本主题包含图片附件。
可控震源滑动扫描单炮时间计算可控震源滑动扫描技术是一种高效、环保的地震勘探方法,广泛应用于油气、矿产资源勘探等领域。
在这种技术中,单炮时间的准确计算至关重要。
本文将详细介绍可控震源滑动扫描单炮时间的计算方法,并通过实际应用实例进行分析,以期为相关领域的研究和应用提供参考。
一、引言可控震源滑动扫描技术自20世纪80年代以来得到了迅速发展,已成为地震勘探领域的重要技术手段。
在这种技术中,通过对震源进行实时控制,实现对地下结构的高分辨率成像。
单炮时间的准确计算对于该技术的应用具有重要意义,直接影响到地震数据的质量和勘探效果。
二、可控震源滑动扫描单炮时间计算原理可控震源滑动扫描单炮时间的计算是基于地震波在地下传播的原理。
首先,根据震源特性、地下介质参数和观测系统参数,建立地震波传播的数学模型。
然后,利用正演方法计算地震波在地下各层的传播时间,最后根据观测到的地震波到达时间,反演出单炮时间。
三、计算方法与步骤1.建立地下结构模型:根据地质资料和地震勘探成果,构建地下结构模型,包括震源、地下介质参数和断层分布等。
2.设定初始参数:根据模型设定初始参数,包括震源特性、观测系统参数和滑动扫描参数等。
3.地震波正演计算:利用地震波在地下传播的数学模型,计算地震波在地下各层的传播时间。
4.地震波到达时间观测:根据实际地震观测数据,记录地震波在各观测点的到达时间。
5.单炮时间计算:根据正演计算得到的地震波传播时间和观测到的地震波到达时间,计算单炮时间。
6.迭代优化:根据计算结果,调整初始参数,进行多次迭代优化,直至满足精度要求。
四、应用实例及分析以下将以某油气田为例,介绍可控震源滑动扫描单炮时间的计算过程。
通过对比实测数据和计算结果,分析单炮时间计算的精度和可靠性。
1.建立地下结构模型根据该油气田的地质资料,构建地下结构模型,包括震源、地下介质参数和断层分布。
2.设定初始参数根据模型设定初始参数,进行可控震源滑动扫描单炮时间计算。
可控震源工作原理可控震源是一种人工地震机构,可以产生地震波来模拟地震的效果。
其工作原理主要包括能量释放和波传播两个方面。
一、能量释放二、波传播波传播是可控震源产生地震波的另一个重要环节。
一旦能量释放,地震波将以波的形式从震源处开始传播。
地震波通过固体、液体和气体的介质传播,包括大陆地壳、海洋和大气等。
传播介质对地震波的传播速度、传播路径和波形都有着重要的影响。
可控震源通过控制能量的释放和波的传播,可以实现地震波的可控性。
具体来说,可控震源的工作原理可以分为以下几个方面:1.能量调控:可控震源通过调节能源的释放量和释放方式来控制地震波的强度和频率。
例如,可以通过控制炸药的数量和引爆时间来控制能量释放的强度和时序;或者通过调节气体的压强和喷射速度来调节能量释放的大小。
2.波形调控:可控震源可以通过调节能量释放的方式和波传播的路径来产生不同的波形。
例如,通过改变爆炸装置的摆放位置和方向,可以改变地震波的传播方向和振动模式,从而产生不同类型和频率的地震波。
3.频率调控:可控震源可以通过调节能源释放的频率来产生连续波或脉冲波。
例如,可以连续引爆炸药或持续释放压缩气体来产生连续地震波;或者间隔性地引爆炸药或释放气体来产生脉冲地震波。
4.位置调控:可控震源具有较高的位置调控性能。
通过改变震源的位置、深度和方向等参数,可以控制地震波在地球内部的传播路径和能量分布情况,从而实现地震波的精确调控。
综上所述,可控震源是一种通过控制能量释放和波传播来产生地震波的人造地震机构。
它具有能量、波形、频率和位置等多重调控性能,可以模拟地震的效果,在地震研究、地震监测和地震防灾等领域具有重要的应用价值。
可控震源滑动扫描工作原理及应用
【摘要】可控震源的滑动扫描方式基本原理是采用多组可控震源实现无等待扫描激发工作,即一组震源在扫描过程尚未完全结束时,另外一组震源已经开始扫描了,单位时间内平均每次数据采集的时间极大地缩短了,施工效率得到显著地提高。
本文简单介绍了滑动扫描信号分离的基本原理,主要参数的设计及应用。
【关键词】可控震源;滑动扫;相关处理;数据分离
1、滑动扫描的技术原理
⑴基本原理
滑动扫描方式是一种高效、高质的适用于大道数生产可控震源采集方式。
与常规交替扫描相比,滑动扫描的一组震源在开始扫描时,不必等待另外一组震源扫描过程是否完全结束,这样相邻两组震源会出现一段时间上的重叠,缩短了两组震源的工作时间,有效提高了生产效率。
相邻的两组震源之间的震动时间间隔称之为滑动时间,一般来说滑动时间不能小于听时间,虽然相邻两组震源在扫描时间上有一定量的重叠,但是它们在这个时间段各自震动的频率是不同的,这样根据各组震源的TB值进行相关处理就可以有效分离出各组震源的震动数据,得出各自的单炮记录。
激发流程图如图1。
由于滑动扫描各组的震动是存在相互重叠的,所以数据记录是连续的,从滑动扫描第一次震动开始到最后一次结束,数据记录包含各次扫描的TB值和相对应时间内各次扫描的信号频率信息和辅助道信息。
一次滑动结束后,仪器会根据各自扫描时段内的TB值和其他信息进行数据的裁剪、相关,最后分离出单炮记录。
如图2所示。
图2为2组震源工作信号的相关过程:最上面的记录为2组震源的原始合成记录;TB(n)为各组震源的TB值;中间的四张记录是根据tb值剪切的各组震源的记录;Pilot(n)为各组震源对应扫描时间内的扫描频率信号;R(n)是从原始连续数据中通过裁剪、相关处理后的到的各组震源记录,即单炮记录。
2、震源参数设计
①滑动扫描的滑动时间(扫描连续启动最小间隔时间)不能小于听时间,尽管没有最大时间,但是,滑动时间越短,生产效率就越高。
②在滑动扫描方式下,扫描信号本身并没有重叠在一起,但是谐波干扰已经影响到其它的记录了。
一般通过采用0°-180°变相为扫描的方式降低二次谐波干扰的影响。
③施工过程中可以根据施工参数的设计和地表情况等因素来选择适用几组
震源施工。
3 质量控制
⑴利用震源自带GPS数据及图文数据可以直观的确认震源所在位置,确保施工的准确性。
⑵通过质控软件和日常检测确保震源工作状态良好。
⑶应用SPS文件对比,监控震源点的高层、坐标等信息,保证施工的可靠性和准确性。
4滑动扫描相比交替扫描的优势
交替扫描:如果采用两组震源,由于震源移动时间要大于采集时间,所以交替扫描单炮记录理论最小用时为20秒,如果选用4组震源则单炮理论最小用时为18秒,相差不大。
滑动扫描:假定滑动间隔为8秒,如果采用2组震源滑动扫描单炮记录时间为13.5秒,如采用4组震源施工单炮记录平均用时为10.3秒。
调整间隔时间后,理论上最小单炮用时为6秒。
由此可见滑动扫描优势之巨大。
5、结论
相比交替扫描方式,滑动扫描可以大大提高施工效率。
增加了企业的效益,减少了人员的工作强度;通过合理设置滑动时间,可以减少谐波畸变对资料的影响,有效保证了施工质量。
滑动扫描是一种先进,高效,方便的适合大多数三维地震施工的方法。
参考文献
[1]Sercel 428 Manuals
[2] VE432 User Manual3。