广东初二数学下册知识点总结_超经典!
- 格式:doc
- 大小:256.00 KB
- 文档页数:10
初二下册数学重点初二数学下知识点
1.有理数及其运算
包括正数、负数和零,有理数的比较大小,有理数的加减乘除运算,
有理数的乘方、开方、混合运算等。
2.代数式与方程
包括代数式的定义、含义和性质,代数式的四则运算,等式和方程的
定义与性质,解一元一次方程,二元一次方程组的解法等。
3.分式与整式
包括分数的性质、分式的四则运算,分式方程的解法,整式的定义与
性质,整式的四则运算,多项式的因式分解等。
4.直线与角
包括角的定义、分类及性质,角的度量与转角,角的比较大小,直线
的分类与性质,直线的平行与垂直关系等。
5.三角形的性质
包括角及其度量,三角形各边的关系,等腰三角形、等边三角形、直
角三角形的性质,三角形的面积公式与面积计算等。
6.平行四边形与平行线的应用
包括平行四边形的性质,平行线与平行四边形的关系,平行线的交角,平行线的判定方法,平行线的性质及应用等。
7.平面图形与立体图形
包括平面图形的定义、性质及类别,平面图形的周长和面积计算,立体图形的定义、性质及类别,立体图形的表面积和体积计算等。
8.数据与统计
包括数据的收集、整理、展示及分析,统计图的制作与解读,数据的平均值、中位数和众数计算等。
9.几何变换
包括平移、旋转、翻转和错切等几何变换的特点、性质及判定方法,几何变换的应用等。
以上是初二下册数学的主要知识点,通过学习这些知识,可以掌握基本的数学概念和方法,为进一步学习打下坚实的基础。
广东初中数学知识点总结一、数与代数1. 有理数- 有理数的定义与分类:整数、分数、小数- 有理数的四则运算:加、减、乘、除- 有理数的比较大小- 绝对值的概念及性质- 有理数的科学记数法2. 整数- 整数的性质:奇数、偶数、质数、合数- 整数的整除性:因数、倍数、互质- 最大公约数和最小公倍数的求法3. 代数式- 单项式与多项式的定义- 同类项与合并同类项- 代数式的加减运算- 代数式的乘法:分配律、结合律、交换律- 代数式的因式分解:提公因式、公式法4. 一元一次方程与不等式- 一元一次方程的解法:移项、合并同类项、系数化为1 - 不等式的性质与解法- 一元一次方程与不等式的解集表示5. 函数- 函数的概念:定义域、值域、函数关系式- 线性函数、二次函数的图像和性质- 函数的简单运算:函数的和、差、积、商6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法- 方程组的解的判断:唯一解、无解、多组解二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线与对顶角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:平行四边形、矩形、菱形、正方形- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算- 圆的周长与面积计算- 规则图形的体积与表面积计算:长方体、立方体、圆柱、圆锥、球3. 几何变换- 平移:点的平移、图形的平移- 旋转:旋转的定义、旋转对称性- 轴对称:对称轴、对称点4. 解析几何- 坐标系的基本概念:直角坐标系、坐标点- 点的位置由坐标确定- 距离公式、中点公式- 直线方程:点斜式、斜截式、一般式三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图的绘制:条形图、折线图、饼图- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的定义与计算- 等可能事件的概率- 事件的组合与排列以上是对广东初中数学知识点的总结,涵盖了初中数学的主要领域,包括数与代数、几何、统计与概率等。
八年级下册数学知识点总结八年级下册数学知识点总结笔记第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。
第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
广东初二数学知识点归纳稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊广东初二数学那些重要的知识点哟。
先说函数这一块儿,函数的概念可得搞清楚啦,就像是数学世界里的小魔法师,能通过各种式子展现出神奇的变化。
什么一次函数、正比例函数,都有自己的特点和规律,得认真去琢磨。
还有全等三角形,这可是证明两个三角形一模一样的重要武器呢!边边边、边角边、角边角这些判定定理,就像是开锁的钥匙,能帮咱们解决好多难题。
平行四边形也很有趣哦!它的性质和判定方法要牢记,像是对边平行且相等,对角线互相平分,搞明白这些,做题就不会晕头转向啦。
整式的乘除也别小瞧,乘法公式像平方差公式、完全平方公式,用起来那叫一个顺手,能让计算变得轻松不少。
分式这部分呢,要注意分式有意义的条件,还有分式的运算规则,可别粗心大意犯错哟。
初二数学的知识点就像一颗颗闪闪发光的宝石,咱们得把它们都捡起来,放进自己的知识口袋里,这样在考试的时候就能大显身手啦!加油哟小伙伴们!稿子二嗨呀,小伙伴们!咱们一起来瞧瞧广东初二数学的知识点哟。
三角形的内角和是 180 度,这个一定要记住,不管什么样的三角形都逃不过这个规律。
而且三角形的外角等于不相邻的两个内角之和,是不是很神奇?不等式也是个重要的家伙。
解不等式的时候,要注意变号的规则,不然一不小心就会出错哟。
数据的代表可不能忘,平均数、中位数、众数,它们能帮我们了解一堆数据的特征。
因式分解就像是拆解一个大玩具,把一个多项式变成几个整式的乘积,要熟练掌握提公因式法和公式法。
图形的旋转也很有意思,旋转中心、旋转角,要弄明白它们对图形的影响。
还有概率,计算可能性的大小,就像是在预测未来一样,充满了惊喜和挑战。
初二数学的世界真是丰富多彩呀,咱们要充满热情地去探索,把每个知识点都变成自己的好朋友,这样就能在数学的海洋里快乐地遨游啦!。
八年级数学下册知识点总结
八年级数学下册的知识点主要包括以下几个方面:
一、平方根与立方根
1. 平方根的性质和计算
2. 平方根的应用:建模和解决实际问题
3. 立方根的性质和计算
4. 立方根的应用:建模和解决实际问题
二、比例与相似
1. 比例及其性质
2. 比例的计算方法:分离变量法、平衡法等
3. 比例的应用:解决实际问题、作图等
4. 相似三角形及其性质
5. 相似三角形的判定与应用
三、实数的运算
1. 实数的加减乘除运算
2. 实数的乘方运算和开方运算
3. 实数运算的性质和应用
四、一次函数
1. 一次函数的定义和性质
2. 一次函数的图像和性质
3. 一次函数的表达式、斜率和截距
4. 一次函数的应用:线性方程解释实际问题、作图等
五、平面图形的性质
1. 平行四边形的性质和判定
2. 矩形、正方形、菱形的性质和判定
3. 三角形的角度和边长关系
4. 角的平分线和垂直线的性质
5. 三角形的性质和判定
6. 平面图形的相似性和全等性
六、统计与概率
1. 统计图表的制作与解读:条形图、折线图、饼图等
2. 统计量的计算:平均数、中位数、众数、极差等
3. 概率的计算和应用:实验概率、几何概型等
这些知识点是八年级数学下册的重点内容,通过学习这些知识,学生可以进一步提高对数学的理解和运用能力。
八年级数学下册知识点归纳5篇分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用数据的分析1.算术平均数:2.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据5.撰写调查报告 6.交流7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
八年级下册数学知识点资料数学是一门需要不断积累知识点的学科。
对于八年级学生而言,数学知识点的掌握直接关系到他们之后高中数学学科的发展方向。
因此,在学习数学的过程中,必须要认真地掌握每一个知识点,并且不断加深对知识点的理解。
本文将为大家总结八年级下册常见的数学知识点,希望能够帮助广大学生提高数学学科成绩。
一、代数基础1.一元一次方程定义:无论怎么变化,方程中的未知数的指数不超过1。
解法:一元一次方程一般都采用“移项法”进行解决。
2.一元二次方程定义:若x为一元,则形如ax²+bx+c=0的方程称为一元二次方程。
解法:求方程的根可以采用“公式法”和“配方法”。
3.分式方程定义:含未知数的分数称为分式方程。
解法:分式方程的解法一般都是先将分式进行通分再进行移项法解决。
二、空间图形1. 立体图形定义:三维空间中具有一定形状和大小的物体。
分类:棱柱、棱锥、棱台、球体、圆柱等。
2. 三视图图形定义:由正、左、俯三视图组合而成的图形。
基本构成要素:三视图图形包括主视图、左视图、俯视图。
三、概率统计1.事件与概率定义:样本空间中的某一子集称为事件,发生此类事件所占比例称为概率。
解法:概率计算通常有频率法和几何法。
2.统计分析定义:通过搜集和分析数据,得出结论以及预测未来情况。
主要方法:得出总体样本后,计算平均数、中位数、方差、标准差等指标。
三、平面几何1.平面图形的相似性质定义:若两个平面图形之间的所有对应角均相等,对应边的比值均相等,则称这两个图形相似。
解法:可以用比例法确定两个相似图形之间边长的关系。
2.勾股定理定义:直角三角形中,直角两边的平方和等于斜边的平方。
公式表达:a²+b²=c²。
以上就是本文总结的关于八年级下册重点数学知识点的资料,相信通过认真阅读本文,大家可以更清晰地掌握这些知识点。
在接下来的学习中,要认真复习和加强对这些知识点的理解和应用,以此在数学学科中稳步前行。
2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
初二数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数. 2、一次函数的图像 所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线.(如下图)4. 正比例函数的性质 一般地,正比例函数kx y =有下列性质: (1)当k 〉0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k 〈0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质 一般地,一次函数b kx y +=有下列性质:(1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式bkx y +=(k 0)中的常数k和b。
初二下册数学常考知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初二下册数学常考知识点总结数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。
八年级下册数学知识点整理数学八年级下册重点数学八年级下册的重点知识点如下:
1. 平面图形的性质:
- 三角形的性质和分类(等腰三角形、等边三角形)
- 四边形的性质和分类(平行四边形、矩形、正方形、菱形、梯形)
- 各种图形的面积计算公式及应用
2. 数与式:
- 复数的引入与基本运算
- 代数式的定义和基本运算(整式和分式)
- 一元一次方程和一次方程的应用
3. 函数与方程:
- 函数的概念和函数的应用
- 二元一次方程组的解法及应用
4. 数据的收集和整理:
- 数据的收集方法和数据的整理与分析(频数表、频率表、直方图等)
- 数据的描述性统计指标(平均数、中位数、众数、四分位数等)
5. 概率与统计:
- 概率的基本概念和计算方法
- 抽样调查的方法和误差分析
6. 比例与相似:
- 比例的概念和性质(比例的延伸应用)
- 图形的相似性及相似三角形的性质
7. 坐标与变量:
- 直角坐标系的概念和应用
- 点和图形在坐标平面内的位置关系
这些是数学八年级下册的重点知识点,掌握了这些知识,能够应对八年级下册的数学学习和应用。
八年级数学下册知识点总结一、实数1.1 实数的定义及分类实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,包括整数、分数、小数(有限小数和无限循环小数)。
无理数是不能表示为两个整数比的数,例如√2和π。
1.2 实数的性质(1)实数具有加法、减法、乘法、除法四种运算。
(2)实数具有相反数、倒数等概念。
(3)实数可以进行大小比较。
1.3 实数与数轴数轴是一条直线,规定了原点、正方向和单位长度,实数与数轴上的点一一对应。
二、整式与函数2.1 整式的定义及分类整式是只有加、减、乘运算,且运算对象为整数的代数式。
整式包括单项式和多项式。
2.2 整式的运算(1)单项式的运算:加、减、乘、除。
(2)多项式的运算:加、减、乘、除。
2.3 函数的定义及性质函数是一种对应关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。
函数具有唯一性、连续性、单调性等性质。
2.4 一次函数一次函数是形如y=kx+b(k、b为常数,k≠0)的函数。
一次函数的图像是直线。
2.5 二次函数二次函数是形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数。
二次函数的图像是一条抛物线。
三、三角形3.1 三角形的定义及性质三角形是由三条边和三个角组成的图形。
三角形的内角和为180∘,任意两边之和大于第三边。
3.2 三角形的分类(1)锐角三角形:三个内角都小于90∘。
(2)直角三角形:一个内角为90∘。
(3)钝角三角形:一个内角大于90∘。
3.3 三角形的判定(1)SSS 判定:三角形的三边分别相等,则这三个三角形全等。
(2)SAS 判定:三角形的两边和它们夹角分别相等,则这两个三角形全等。
(3)ASA 判定:三角形的两角和它们夹边分别相等,则这两个三角形全等。
(4)AAS 判定:三角形的两角和其中一边分别相等,则这两个三角形全等。
四、平行四边形4.1 平行四边形的定义及性质平行四边形是具有两对平行边的四边形。
初二数学知识点(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)??(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
初二数学下册知识点总结归纳初二是个很关键的时期,尤其是数学的学习!!勾股定理、四边形、函数,可谓重点重重,这些知识点一定要掌握牢固!下面是分享给大家的初二数学下册知识点,希望大家喜欢!初二数学下册知识点一一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的顺序,把所描各点用平滑的曲线连接正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx 的图像是经过原点(0,0)的直线。
(如下图)4. 正比例函数的性质一般地,正比例函数y=kx有下列性质:(1)当k0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数y=kx+b有下列性质:(1)当k0时,y随x的增大而增大(2)当k0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k0)中的常数k。
八年级下数学知识点总结初二下册数学重点初二下册数学的重点知识点有以下几个方面:
1. 二次根式和无理数:
- 二次根式及其化简
- 二次根式的四则运算
- 无理数的性质和运算
2. 代数式与方程:
- 代数式的概念和运算法则
- 代数式的因式分解与提公因式
- 一元一次方程与算式方程
3. 类比与比例:
- 类比的基本概念和解题方法
- 比例的基本概念和解题方法
- 常见图形的类比和比例关系
4. 折线图与函数:
- 折线图的读取和分析
- 函数概念和函数图像的性质
- 一元一次函数和一元二次函数
5. 平面图形的认识:
- 平面图形的性质和分类
- 平行四边形、梯形、圆的性质和计算
- 相似三角形和勾股定理
6. 空间图形的认识:
- 空间几何图形的性质和分类
- 平行四边形、三棱柱、球体的性质和计算
- 空间几何图形的展开和体积计算
以上是初二下册数学的重点知识点,希望对你有所帮助。
如有其他问题,可以继续提问。
广东八年级(初二)下学期数学内容(北师大版)第一章一元一次不等式和一元一次不等式组
1 不等关系
2 不等式的基本性质
3 不等式的解集
4一元一次不等式
5 一元一次不等式与一次函数
6 一元一次不等式组
第二章分解因式
1 分解因式
2 提公因式法
3 运用公式法
第三章分式
1 分式
2 分式的乘除法
3 分式的加减法
4 分式方程
第四章相似图形
1 线段的比
2 黄金分割
3 形状相同的图形
4 相似多边形
5 相似三角形
6探索三角形相似的条件
7测量旗杆的高度
8 相似多边形的性质
9 图形的放大与缩小
第五章数据的收集与处理
1 每周干家务活的时间
2 数据的收集
3 频数与频率
4 数据的波动
第六章证明(一)
1 你能肯定吗
2 定义与命题
3 为什么它们平行
4 如果两条直线平行
5 三角形内角和定理的证明
6关注三角形的外角。
初二数学下册必备知识点归纳精选初二数学下册知识点1、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B 叫做分式。
(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。
(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。
注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。
(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
注意:通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:●“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;● 如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;● 如果分母是多项式,一般应先分解因式。
(6)分式的约分:根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
注意:约分的关键是找出分式中分子和分母的公因式◆(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;◆(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
2、分式方程(1)分式方程的概念◆ a、分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.◆ b、分式方程和整式方程的区别:在于分母中是否有未知数。
初二数学下册知识点总结初四数学下册知识点总结初二期下册知识点归纳第一章分式1分式及其基本性质可分的分子分母和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式减去减,先通分,变为同分母的分式,再加减3整数指数可数的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个两个直角边的平方和等于对角的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和非得第三条边的次方平方,那么这个锥体三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相同的四边形对角是平行四边形;对角线互相平分的四边形是;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且相等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的六个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线矩形相等的平行四边形是圆形;推论:三角形斜边的中线等于斜边一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线彼此垂直,并且对角线每一条对角线平分两套对角;五边形具有平行四边形顺磁性的一切性质判定:有三套邻边相等的平行四边形是菱形;对角线互相垂直的圆形平行四边形是菱形;四边等同的四边形是菱形。
(3)正方形:既是一种类似的矩形,又是一种特殊的菱形,所以它具有矩形带有和菱形的所有性质。
初二数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像 所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图)4. 正比例函数的性质 一般地,正比例函数kx y =有下列性质: (1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质 一般地,一次函数b kx y +=有下列性质:(1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
确定一个一次函数,需要确定一次函数定义式b kx y +=(k 0)中的常数k和b。
解这类问题的一般方法是待定系数法。
四边形一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”.3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.平行四边形矩形菱形正方形※5.梯形中常见的辅助线:1、一元二次方程:① 概念:只含有一个未知数,且可以化为02=++c bx ax (a ,b ,c 为常数,且0≠a )的整式方程叫做一元二次方程。
02=++c bx ax 是一元二次方程的一般形式。
其中,2ax 、bx 、c 分别叫做一元二次方程的二次项、一次项、常数项;a 、b 分别叫做一元二次方程的二次项、一次项的系数。
(强调:项和系数要包括前面的符号) 构成一元二次方程的条件:(1)整式方程;(2)只含有一个未知数;(3)二次项系数不能为0;(4)未知数的最高次数为2. ② 注意事项:(1)二次项系数0≠a 是一般形式的重要组成部分。
(2)二次项、一次项和常数项都是在一般形式下定义的,判断各项系数时,必须先将方程方程化为一般形式。
(3)任何一个一元二次方程均可经过整理(去括号、移项、合并同类项)均可化为一般形式。
2、一元二次方程的解法⑴直接开平方法解一元二次方程:①如)0(2≥=m m x 的方程都可以用开平方的方法求出它的解,这种解法叫做直接开平方法 ②利用直接开平方法所解的一元二次方程的结构特点:经过整理、变形后得到等号左边是一个完全平方式,右边是一个非负数;③理解直接开平方法的理论依据是平方根的定义。
⑵用配方解一元二次方程:①把一个二次三项式组成完全平方式的变形过程,叫做配方,用配方法求一元二次方程的解的方法叫做配方法。
②配方法解一元二次方程是以配方为手段,以直接开平方为基础的一种解一元二次方程的基本方法。
③用配方法解一元二次方程的步骤:㈠二次项系数化为1:方程两边都除以二次项系数; ㈡移项:方程左边为二次项和一次项,右边为常数项;㈢配方:方成左右两边同时加上一次项系数一半的平方,使方程左边变成一个完全平方式,右边是一个常数;㈣求解:如果右边常数是非负数,就用直接开平方法解一元二次方程。
⑶用公式法解一元二次方程:①方程02=++c bx ax )0(≠a 的求根公式:)04(2422≥--±-=ac b aac b b x ,利用求根公式解一元二次方程的方法叫公式法。
②利用求根公式解一元二次方程的步骤:㈠把方程整理为一般形式02=++c bx ax )0(≠a ,确定c b a ,,的值; ㈡计算ac b 42-的值;㈢当042≥-ac b 时,把b a ,和ac b 42-的值代入求根公式计算,从而求出方程的解。
③求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用 ④公式法是解一元二次方程02=++c bx ax )0(≠a 的一般解法⑷用因式分解法解一元二次方程①利用因式分解的方法求出一元二次方程的解,这种解方程的方法叫因式分解法②因式分解法的理论依据:两个因式的积等于0,那么这两个因式中至少有一个等于零,即⇔=∙0B A 0=A 或0=B 。
③用因式分解法所解的一元二次方程的结构特点:等号一边的代数式可以做因式分解,另一边为0.④利用因式分解法解一元二次方程的步骤: ㈠将方程的右边化为一;㈡将方程的左边分解为两个一次因式乘积的形式;㈢令两个因式分别为0,得到两个一元一次方程;㈣分别解两个一元一次方程,它们的解就是原方程的解。
3、一元二次方程解法的顺序:先特殊,后一般,先考虑是否用直接开平方法和因式分解法解,不能用这两种方法时,再用公式法和配方法。
当二次项系数为一,一次项系数为偶数时,用配方法方便。
4、根的判别式把ac b 42-叫做一元二次根的判别式,记作△=ac b 42-,02==++c bx ax )0(≠a ,若方程有两个不相等的实数根⇔△>0;有两个相等的实数根△=0没有实数根△<0有两个实数根△0≥(此时两根可能等,也可能不等)。
5、一元二次方程的应用列方程解应用题,应透彻理解题意,寻找等量关系。
列方程时,要注意列出的方程必须满足以下三个条件: ⑴方程左右两边表示同类量;⑵方程左右两边的同类量的单位一样; ⑶方程两边的数值相等。
※增长率问题公式增长后的数=基数(1+增长率)n(n 指增长的次数)降低后的数=基数(1-增长率)n (n 指降低的次数) ※长方体、正方体体积公式高宽长长方体⨯⨯=V3(边长)正方体=V※ 根据题的实际意义对方程的根进行取舍。
方差与频数分布知识框架图极差方差用计算器计算 比较事物的有关性质 用样本估计总体的有关特征 频数 频率 频数分布表 频数分布图数据的波动 一、极差1、一组数据中的最大值减去最小值所得的差,叫做这组数据的极差;2、极差=数据中的最大值—数据中的最小值。
二、方差1、在一组数据n x x x x ,,,,3,21 中,各数据与他们的平均数x 的差的平方的平均数,叫做这组数据的方差,常用2s 来表示,即:];)()()[(1222212x x x x x x ns n -++-+-= 2、方差的三种公式:基本公式:];)()()[(1222212x x x x x x n s n -++-+-=化简公式:])[(12222212x n x x x ns n -++=化简公式的变形公式:2222212)(1x x x x ns n -++=3、设化简后的新数据组''2'1,,n x x x 的方差为,2's 设n x x x x ,,,,3,21 的方差为2s (其中为常数a n i a x x i i ,,2,1,' =-=),则22's s =;4、方差的作用:用于表述一组数据波动的大小,方差越小,该数据波动越小,越稳定。
三、标准差1、方差的算数平方根σ叫做这组数据的标准差,即:()()()[]222211x x x x x x nn -+-+-=σ; 2、标准差用于描述一组数据波动的大小; 3、标准差的单位与原数据的单位相同。
四、方差与标准差的关系 1、2s =σ;2、σ与2s 的作用相同、单位不同。
五、频数分布与频数分布图 1、数据的分组整理 组限、组距和组数:把一套数据分成若干个小组,累计各小组的数据个数。
期中每个分数段是一个“组区间”,分数段两端的数值是“组限”,分数段的最大值与最小值的差是“组距”,分数段的个数是组数”.2、频数、频率与频数分布表、频数分布图 ①每个小组的数据的个称为这组数据的频数;②频率:每个小组的频数与数据总个数的比值称为这组的频率;③频率的计算公式:每组的频率=这组的频数/数据的总个数④各小组的频数之和等于数据总数;各小组的频数之和等于1.。