九年级数学三角函数的计算(201911整理)
- 格式:pptx
- 大小:222.05 KB
- 文档页数:13
2019中考数学三角函数公式汇总锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B 降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]co s[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2] sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积。
(完整)初中常用三角函数公式初中常用三角函数公式
三角函数是数学中常见的概念,它们在初中阶段的数学研究中起着重要的作用。
以下是一些常用的三角函数公式:
1. 正弦函数公式:
- 正弦函数的定义:在直角三角形中,对于一个锐角角度A,正弦函数的值等于对边与斜边的比值,可以表示为sin(A) = 对边/斜边。
2. 余弦函数公式:
- 余弦函数的定义:在直角三角形中,对于一个锐角角度A,余弦函数的值等于邻边与斜边的比值,可以表示为cos(A) = 邻边/斜边。
3. 正切函数公式:
- 正切函数的定义:在直角三角形中,对于一个锐角角度A,正切函数的值等于对边与邻边的比值,可以表示为tan(A) = 对边/邻边。
4. 余切函数公式:
- 余切函数的定义:在直角三角形中,对于一个锐角角度A,余切函数的值等于邻边与对边的比值,可以表示为cot(A) = 邻边/对边。
5. 正割函数公式:
- 正割函数的定义:在直角三角形中,对于一个锐角角度A,正割函数的值等于斜边与邻边的比值,可以表示为sec(A) = 斜边/邻边。
6. 余割函数公式:
- 余割函数的定义:在直角三角形中,对于一个锐角角度A,余割函数的值等于斜边与对边的比值,可以表示为csc(A) = 斜边/对边。
这些公式是初中数学中常用的三角函数公式,它们可以用来解决与三角函数相关的各种问题。
熟练掌握这些公式并灵活运用,有助于提高数学解题能力和理解几何概念的能力。
初中三角函数公式大全初中阶段主要学习的三角函数公式有正弦定理、余弦定理、正切定理以及诱导公式等。
下面将分别介绍这些公式。
一、正弦定理正弦定理是用来求解三角形的边长和角度的重要公式。
设三角形ABC的边长分别为a、b 和c,对应的角度分别为A、B和C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC根据正弦定理,如果我们已知两个角和它们对应的两条边的长度,可以通过公式求解第三条边的长度;如果我们已知一个角和它对应的两条边的长度,可以通过公式求解另外两个角的大小。
二、余弦定理余弦定理是在已知三角形的两边和夹角情况下,求解第三边的长度的重要公式。
设三角形ABC的边长分别为a、b和c,对应的角度分别为A、B和C,则余弦定理可以表示为:c² = a² + b² - 2abcosC根据余弦定理,如果我们已知三角形的两边和它们之间的夹角,可以通过公式求解第三边的长度;如果我们已知三角形的三个边长,可以通过公式求解任意一个角的大小。
三、正切定理正切定理是在已知三角形的两边和夹角情况下,求解切线斜率的重要公式。
设三角形ABC 的边长分别为a、b和c,对应的角度分别为A、B和C,则正切定理可以表示为:tanA = a/b根据正切定理,如果我们已知三角形的两边和它们之间的夹角,可以通过公式求解切线斜率;如果我们已知切线斜率和其中一条边的长度,可以通过公式求解夹角的大小。
四、诱导公式诱导公式是将不常用的角度转换为常用角度的公式,常用的诱导公式如下:sin(π-x) = sinxcos(π-x) = -cosxtan(π-x) = -tanxsin(π+x) = -sinxcos(π+x) = -cosxtan(π+x) = tanxsin(2π-x) = -sinxcos(2π-x) = cosxtan(2π-x) = -tanx其中,x为任意角度。
这些公式可以帮助我们在解决三角函数问题时进行角度的转化,简化计算过程。
初三数学三角函数值计算方法三角函数是初中数学中的一个重要概念,它在解决三角形和圆的相关问题中起着重要作用。
在计算三角函数值时,我们需要掌握一些常用的方法和公式。
本文将介绍初三数学中常用的三角函数值计算方法,帮助学生更好地理解和应用三角函数。
1. 正弦函数(sin)正弦函数是三角函数中最基本的函数之一。
计算正弦函数值的方法如下:- 对于已知角度的情况,可以查找三角函数表或使用计算器来求解。
例如,sin30°=0.5,sin45°=√2/2。
- 对于不常见角度的情况,可以利用三角函数的周期性进行换算。
例如,sin150°=sin(150°-180°)=-sin30°=-0.5,sin210°=sin(210°+180°)=sin30°=0.5。
- 对于任意角度的情况,可以利用正弦函数与余弦函数之间的关系进行计算。
例如,sin(180°-x)=sinx,sin(360°-x)=-sinx。
2. 余弦函数(cos)余弦函数也是三角函数中常用的函数之一。
计算余弦函数值的方法如下:- 对于已知角度的情况,可以查找三角函数表或使用计算器来求解。
例如,cos60°=0.5,cos90°=0。
- 对于不常见角度的情况,可以利用三角函数的周期性进行换算。
例如,cos210°=cos(210°-180°)=-cos30°=-√3/2,cos300°=cos(300°+180°)=cos120°=-0.5。
- 对于任意角度的情况,可以利用余弦函数与正弦函数之间的关系进行计算。
例如,cos(180°-x)=-cosx,cos(360°-x)=cosx。
3. 正切函数(tan)正切函数是三角函数中比较特殊的一个函数,计算正切函数值的方法如下:- 对于已知角度的情况,可以查找三角函数表或使用计算器来求解。