离散数学(2.5谓词演算的等价式与蕴含式)
- 格式:ppt
- 大小:81.00 KB
- 文档页数:8
第一章命题逻辑1.1 命题及其表示方法1.2 联结词1.3 命题公式与翻译1.4 真值表与等价公式1.5 重言式与蕴含式1.6 其它联结词1.7 对偶与范式1.8 推理理论1.1 命题及其表示方法命题:具有确定真值的陈述句命题的类型(原子命题和复合命题)命题语句的形式(陈述句)命题的表示(一个命题标识符(比如P)表示确定的命题)1.2 联结词1. 否定⌝2.合取∧(TT T)3. 析取∨(FF F)4. 条件→(TF F)5. 双条件↔(同T异F)1.3 命题公式与翻译命题公式●所谓命题的符号化就是把一个用文字叙述的句子相应地写成由命题标识符、联结词和括号表示的合式公式。
●符号化应该注意下列事项:•①确定给定句子是否为命题。
•②句子中连词是否为命题联结词。
•③要正确地表示原子命题和适当选择命题联结词。
命题符号化的重要性●命题符号化是很重要的,一定要掌握好,在命题推理中最先遇到的就是符号化一个问题,解决不好,等于说推理的首要前提没有了。
1.4 真值表与等价公式真值表的构造方法1) 找出公式中所含的全体命题变元P1, P2, …, Pn, (若无下角标就按字典顺序排列), 列出2n个赋值. 赋值从00…0开始, 然后按二进制加法依次写出各赋值, 直到11…1为止.(2) 按从低到高的顺序写出公式的各个层次.(3) 对应各个赋值计算出各层次的真值, 直到最后计算出公式的真值.等价公式等价式的判别方法•真值表法•等价演算法基本等价式(1)对合律(双重否定):⌝⌝P⇔P(2)幂等律:P∧P⇔P,P∨P⇔P(3)结合律:(P∧Q)∧R⇔P∧(Q∧R),(P∨Q)∨R⇔P∨(Q∨R)(4)交换律:P∧Q⇔Q∧P,P∨Q⇔Q∨P(5)分配律:P∧(Q∨R)⇔(P∧Q)∨(P∧R),P∨(Q∧R)⇔(P∨Q)∧(P∨R)(6)德·摩根律:⌝ (P∧Q) ⌝⇔P∨⌝Q,⌝ (P∨Q) ⌝⇔P∧⌝Q(7)吸收律:P∧(P∨Q)⇔P,P∨(P∧Q)⇔P(8)同一律:P∧T⇔P,P∨F⇔P(9)零律:P∧F⇔F,P∨T⇔T(10)否定律:P∧⌝P⇔F,P∨⌝P⇔T(11) 条件式转化律:P→Q⌝⇔P∨Q,P→Q⌝⇔Q→⌝P(12) 双条件式转化律:P↔Q ⇔(P→Q)∧(Q→P) ⇔(P∧Q)∨(⌝P∧⌝Q)⌝ (P↔Q) ⇔P⌝↔Q ⌝⇔P↔Q(13) 输出律(CP规则):P→(Q→R) ⇔(P∧Q)→R1.5 重言式与蕴含式●定义1-5.1 给定一命题公式,若无论对分量作怎样的指派,其对应的真值永为真,则称该命题公式为重言式或永真公式。
第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
第一章命题逻辑1.1 命题及其表示方法1.2 联结词1.3 命题公式与翻译1.4 真值表与等价公式1.5 重言式与蕴含式1.6 其它联结词1.7 对偶与范式1.8 推理理论1.1 命题及其表示方法命题:具有确定真值的陈述句命题的类型(原子命题和复合命题)命题的表示(一个命题标识符(比如P)表示确定的命题)重点:如何判断语句是否为命题。
1.2 联结词否定⌝合取∧析取∨条件→双条件↔重点:五种联结词的含义、真值表1.3 命题公式与翻译命题公式符号化:所谓命题的符号化就是把一个用文字叙述的句子相应地写成由命题标识符、联结词和括号表示的合式公式。
命题符号化的重要性命题符号化是很重要的,一定要掌握好,在命题推理中最先遇到的就是符号化一个问题,解决不好,等于说推理的首要前提没有了。
重点:命题的符号化符号化应该注意下列事项:①确定给定句子是否为命题。
②句子中连词是否为命题联结词。
③要正确地表示原子命题和适当选择命题联结词。
1.4 真值表与等价公式真值表的构造方法(1) 找出公式中所含的全体命题变元P1, P2, …, Pn, (若无下角标就按字典顺序排列), 列出2n个赋值. 赋值从00…0开始, 然后按二进制加法依次写出各赋值, 直到11…1为止.(2) 按从低到高的顺序写出公式的各个层次.(3) 对应各个赋值计算出各层次的真值, 直到最后计算出公式的真值.等价关系的含义等价式的判别方法•真值表法•等价演算法基本等价式(必须掌握)(1)对合律(双重否定):⌝⌝P⇔P(2)幂等律:P∧P⇔P,P∨P⇔P(3)结合律:(P∧Q)∧R⇔P∧(Q∧R),(P∨Q)∨R⇔P∨(Q∨R)(4)交换律:P∧Q⇔Q∧P,P∨Q⇔Q∨P(5)分配律:P∧(Q∨R)⇔(P∧Q)∨(P∧R),P∨(Q∧R)⇔(P∨Q)∧(P∨R)(6)德·摩根律:⌝ (P∧Q) ⌝⇔P∨⌝Q,⌝ (P∨Q) ⌝⇔P∧⌝Q(7)吸收律:P∧(P∨Q)⇔P,P∨(P∧Q)⇔P(8)同一律:P∧T⇔P,P∨F⇔P(9)零律:P∧F⇔F,P∨T⇔T(10)否定律:P∧⌝P⇔F,P∨⌝P⇔T(11) 条件式转化律:P→Q⌝⇔P∨Q,P→Q⌝⇔Q→⌝P(12) 双条件式转化律:P↔Q ⇔(P→Q)∧(Q→P) ⇔(P∧Q)∨(⌝P∧⌝Q)⌝ (P↔Q) ⇔P⌝↔Q ⌝⇔P↔Q(13) 输出律(CP规则):P→(Q→R) ⇔(P∧Q)→R重点:等价式的证明、基本等价式1.5 重言式与蕴含式重言式或永真公式定义1-5.1 给定一命题公式,若无论对分量作怎样的指派,其对应的真值永为真,则称该命题公式为重言式或永真公式。