传热学课件-清华大学 (8)
- 格式:pdf
- 大小:4.27 MB
- 文档页数:43
传热学基本知识ppt课件目录•传热学概述•热传导基本知识•热对流基本知识•热辐射基本知识•传热过程与换热器设计•传热学实验方法与测量技术•传热学在工程领域应用案例01传热学概述传热学定义与研究对象传热学定义研究热量传递规律的科学,主要研究物体之间或物体内部热量传递的过程、机理和计算方法。
研究对象包括导热、对流换热和辐射换热三种基本传热方式,以及传热过程与热力学、流体力学、电磁学等学科的交叉问题。
01020304能源与动力工程建筑工程机械工程电子工程传热学应用领域涉及燃烧、锅炉、内燃机、汽轮机、航空发动机等领域的热量传递问题。
研究建筑物的保温、隔热、采暖、通风等热工性能,提高建筑能效。
解决电子设备散热问题,如计算机、手机、电子元器件等的冷却技术。
研究各种机械设备的热设计、热分析和热控制,如散热器、冷却系统、热交换器等。
理论分析实验研究数值模拟传热学研究方法通过建立数学模型和方程,对传热过程进行定量描述和预测。
通过实验手段测量传热过程中的各种物理量,验证理论分析和数值模拟的正确性。
利用计算机进行数值计算,模拟传热过程的详细情况,为优化设计和控制提供依据。
02热传导基本知识热传导定义及物理意义热传导定义物体内部或物体之间由于温度差异引起的热量传递现象。
物理意义热传导是热量传递的三种基本方式之一,对于研究物体的热行为和热设计具有重要意义。
热传导基本定律与公式热传导基本定律傅里叶定律,即单位时间内通过单位面积的热量与温度梯度成正比。
热传导公式Q = -kA(dT/dx),其中Q为热量,k为热传导系数,A为传热面积,dT/dx为温度梯度。
热传导系数及其影响因素热传导系数定义表征材料导热性能的物理量,即单位时间、单位温度梯度下,通过单位面积的热流量。
影响因素材料的种类、温度、压力、湿度等都会对热传导系数产生影响。
例如,金属材料的热传导系数通常较高,而非金属材料的热传导系数较低。
03热对流基本知识热对流定义及物理意义热对流定义热对流是指热量通过流体的宏观运动而传递的过程。
第八章热辐射的基本定律
§8-1 热辐射的基本概念一、热辐射的本质和特点
热辐射:由于热的原因而产生的电磁波辐射
发射辐射能是各类物质的固有特性
(Thermal radiation )
辐射采暖、辐射干燥、太阳能利用、炉内辐射等
电磁波谱:
的电磁波属可见光
m µλ76.0~38.0=的电磁波称红外线
m µλ1000~76.0=:无线电波
m µλ1000>:热射线
m µλ100~1.0=太阳辐射主要能量集中在0.2~2 微米波长范围
m
µλ38.0<:紫外线、x 射线、射线等γ
二、辐射能的吸收、反射和透射
投射辐射G (Irradiation
)
一部分被吸收;Absorption
一部分被反射;Reflection
还有一部分可能穿透物体
Transmission
—吸收率;Absorptivity αG G G G =++τρα1
=++τραG
G G G =++τραρ—反射率;Reflectivity
τ—透射率; Transmissivity
镜反射:反射角等于入射角
光滑的金属表面、玻璃、塑料等
两种极端情况:
镜反射、漫反射
漫反射:被反射的辐射能均匀分布在各方向
粗糙非金属表面接近于漫反射
Specular reflection
Diffuse reflection
若投射能量是某波长下的(单色)辐射:Spectral 1 =++=++λλλλλλλλλλτρατρα或G G G G 辐射能的吸收、反射和透射
1
=++τραG G G G =++τρα—光谱吸收率、光谱反射率、光谱透射率
(单色吸收率、单色反射率、单色透射率)
λλλτρα、、是物体表面的辐射特性,与物体的性质、温度及表面状况有关
λλλτρα、、及、、 τρα全波长的特性还与投射能量的波长分布有关
τρα、、气体:对辐射能几乎没有反射能力固体和液体:分子排列非常紧密,投射辐射能在进入物体很小距离内就被全部吸收
1 0=+=ταρ;
气体:对辐射能几乎没有反射能力固体和液体:分子排列非常紧密,投射辐射能在进入物体很小距离内就被全部吸收
1 0=+=ταρ;
如:金属导体:该距离约为1 µm ;非导体:1000 µm
1 0=+=ρατ;
故:对一般固体和液体:黑体:能全部吸收外来射线的物体白体:能全部反射外来射线的物体
1=α1=ρ透明体:能被外来射线全部透过的物体1
=τ自然界中并不存在黑体、白体和透明体;它们只是实际物体热辐射性能的理想模型
煤烟α=0.96;高度磨光的纯金α=0.98
黑体是一个理想的吸收体,它能吸收来自各个方向、各种波长的全部投射能量。
是比较的标准
黑体是一个理想的吸收体,它能吸收来自各个方向、各种波长的全部投射能量。
是比较的标准黑体表面的辐射属于漫辐射;各方向分布均匀
对于黑体:黑体不反射、也不透射,全部被吸收
00 1
===ρτα,;人工黑体:空腔上的小孔接近于黑体
白天从远处看房屋的窗户有黑洞洞的感觉
注意:黑体、白体与黑色物体、白色物体不同颜色是对可见光而言的
黑体、白体及透明体都是对全波长而言的
而可见光只占全波长中的一小部分
故:物体对外来全波长射线的吸收能力的高低,不能凭物体的颜色来判断,白颜色物体(反射的射线在可见光部分呈白色)不一定是白体;黑颜色物体不一定是黑体
例如:雪对可见光是良好的反射体,对肉眼是白色的,但对红外线几乎能全部吸收0.8 985.0==εα;白布和黑布对可见光吸收率不同,但对红外线的吸收率基本相同
玻璃只透过可见光,对的红外线不透明
m µλ3>
2
d d r A Ωn
=
I(
随着温度T 增高,
向短波方向移动
max λ利用光学仪器测得某黑体表面
最大光谱辐射力的波长后,可
以算出该黑体表面的温度
维恩(Wien)位移定律:1891
K
m 6.2897max ⋅=⋅µλT 如:太阳K
2.5795 m 5.0max =∴=T µλT=5800K 时,峰值在可见光范围;太阳所发射的辐射能约44.6%(43%)在可见光范围m 76.0~38.0µλ=T >800K 时,辐射能中明显具有可见光射线随着温度T 的升高,可见光射线增加
T=5800K 时,峰值在可见光
范围;太阳所发射的辐射能
约44.6%(43%)在可见光范围
m
76.0~38.0µλ=T >800K 时,辐射能中明显
具有可见光射线
工业中常见高温一般低于
2000K 属于红外线范围
m
45.1max µλ=红外线:m
µλ1000~76.0=加热炉中铁块升温过程颜色变化:
T<800K 时,主要是红外线,眼睛感觉不到、暗黑;随着温度的升高,铁快颜色变为暗红色、鲜红色、橘黄色、亮白色原因:T 升高可见光增加
这一波段的辐射能占黑体辐射力的百分数
与的函数关系参见下表)0(T b F λ−T λ4
)0()0()()()(122121T
F F E F E b T b T b b b b σλλλλλλ⋅−==−−−
−
§8-3 实际物体的辐射特性、灰体
一、实际物体的辐射特性
实际物体的光谱辐射力Eλ随波长和温度的变化是不规则的,与黑体的E
有区别
bλ
相同条件下:Eλ< E bλ
实际物体不是漫辐射表面:各方向上辐射强度不相等
磨光的金属表面:
定值
,≈=θεθD 40~0,
随增大,先迅速增大、
又很快下降并在附近趋于零
D 40>θθεθD 90对于非导电体:,
随增大迅速减小并逐渐在附近趋于零D
60>θθεθD 90内
D 60~0=θ可看作漫辐射体
物体的半球平均发射率与法向发射率的关系:εn ε表面粗糙:n
ε
ε98.0=故:对于大多数工程材料,往往不考虑的变化细节,而近似地认为服从兰贝特定律。
(漫辐射表面)θε对于高度磨光的金属表面:
n εε2.1=对于非导电体:表面光滑:
n εε95.0=
二、实际物体的吸收特性
实际物体的吸收率α不仅取决于物体本身材料的种类、温度及表面性质,还与投入辐射的波长分布有关物体的吸收具有选择性:实际物体的光谱吸收率αλ随波长λ变化;实际物体的αλ是波长λ
的函数即:物体表面的吸收率α与吸收表面和投射表面的性质、温度都有关;它比发射率更复杂
λλ的投入辐射波长为—G λ
λααα==,则若const 在这种条件下,吸收率α只与吸收表面本身的性质有关,而与投射表面无关
三、灰体(Gray surface )
灰体—实际物体的理想化
灰体:假设其光谱发射率ελ(或光谱黑度)和光谱
吸收率αλ与波长无关
自然界中不存在灰体,它是一种假想的物体
实际物体在红外波长范围内可近似看作灰体(在工业高温条件下,多数材料热辐射处于红外线)
对于灰体:
const
const
====λλααε
ε
四、基尔霍夫定律
1859年基尔霍夫(G.R.Kirchhoff )揭示了物体发射辐射的能力与吸收辐射的能力之间的关系
假设:某物体表面d A 1放置在黑体空腔中;二者处于
热平衡状态(T )
单位时间内、从某给定方向θ、在d λ波长范围内,由黑腔上微表面d A 2 投射到d A 1表面上的能量为:
λ
λd d d d 2,⋅⋅⋅=ΩA I q T b i
α
αd
q
=q
d=
⋅
I
五、温室效应例如:白色的纸对于太阳辐射的吸收率仅为0.27;而其黑度则高达0.95.
在工业高温下作为灰体处理的工程材料,其热辐射主要在变化不大的红外线范围内,可见光份额很小;在计算时,对于工业高温下的一般工程材料,可以取
ε
α=λα但是,太阳辐射的射线有43%左右在可见光范围内,由于各种颜色的表面对可见光的吸收具有强烈的选择性。
即在可见光范围内,随波长的变化很大;所以,对于太阳辐射ε
α≠λα。