《工程数学基础(I)》第一次作业答案100分
- 格式:pdf
- 大小:422.51 KB
- 文档页数:5
⼯程数学基础第⼀次作业第⼀次答案《⼯程数学基础(Ⅰ)》第⼀次作业答案你的得分:100.0完成⽇期:2013年09⽉03⽇20点40分说明:每道⼩题括号⾥的答案是您最⾼分那次所选的答案,标准答案将在本次作业结束(即2013年09⽉12⽇)后显⽰在题⽬旁边。
⼀、单项选择题。
本⼤题共20个⼩题,每⼩题4.0 分,共80.0分。
在每⼩题给出的选项中,只有⼀项是符合题⽬要求的。
1.( D )A.(-6, 2, -4)B.(6, 2, 4)TC.(2, 6, 4)D.(3, 6, 4)T2.( D )A.B.C.D.3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进⾏的运算是 ( )( B )A.AC T BB.AC T B TC.ACB TD.ACB4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C )A.BB.1+ BC.I + BD.(I-AB)-15. ( D )A.|A+B|=| A |+|B|B. | A B|=n| A||B|C. |kA|=k|A|D.|-kA|=(-k)n|A|6. ( D )A. 6B.-6C.8D.-87.设A B均为n阶⽅阵,则成⽴的等式是( )( B )A.|A+B|=| A |+|B|B.| A B|=| BA|C.(AB)T= A T B TD.AB= BA8.设A,B,C均为n阶⽅阵,下列各式中不⼀定成⽴的是 ( )( A )A.A(BC)=(AC)BB.(A+B)+C=A+(C+B)C.(A+B)C=AC+BCD.A(BC)=(AB)C9.设α1,α2,α3是3阶⽅阵A的列向量组,且齐次线性⽅程组Ax=b有唯⼀解,则 ( )( B )A.α1可由α2,α3线性表出B.α2可由α1,α3线性表出C.α3可由α1,α2线性表出D.A,B,C都不成⽴10.设向量组A是向量组B的线性⽆关的部分向量组,则 ( )( D )A.向量组A是B的极⼤线性⽆关组B.向量组A与B的秩相等C.当A中向量均可由B线性表出时,向量组A,B等价D.当B中向量均可由A线性表出时,向量组A,B等价11.设n阶⽅阵A的⾏列式|A|=0则A中( )( C )A.必有⼀列元素全为0B.必有两列元素对应成⽐例C.必有⼀列向量是其余向量线性表⽰D.任⼀向量是其余向量的线性组合12. ( A )A.B.C.D.13. ( A )A.B.C.D.14. ( C )A.0B.-1C. 2D.-215.( B )A.B.C.D.16. ( C )A.B.C.D.17.( B )A.有唯⼀解B.⽆解C.只有0解D.有⽆穷多解18.( A)A. 1B. 2C. 3D. 419.( D )A.B.C.D.20.( D )A.B.C.D.三、判断题。
工程数学基础试题及答案一、单项选择题(每题2分,共10分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的值,这个值称为该点的极限。
以下哪个选项正确描述了极限的定义?A. 函数值在某点的值B. 函数值在某点的导数C. 函数值在某点的差分D. 函数值在某点的趋近值答案:D2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某区间内可导C. 在某点有极限D. 在某区间内函数值无突变答案:D3. 微分中,dy/dx表示的是:A. 函数y的导数B. 函数y的积分C. 函数y的微分D. 函数y的不定积分答案:A4. 以下哪个选项是不定积分的定义?A. 函数的原函数B. 函数的导数C. 函数的微分D. 函数的极限答案:A5. 以下哪个选项是定积分的定义?A. 函数的原函数B. 函数在区间上的极限C. 函数在区间上的累积和D. 函数在区间上的导数答案:C二、填空题(每题3分,共15分)1. 函数f(x)=x^2在区间[0,1]上的定积分表示为∫_0^1 x^2 dx,其值为____。
答案:1/32. 函数f(x)=sinx的不定积分是____。
答案:-cosx + C3. 函数f(x)=e^x的导数是____。
答案:e^x4. 函数f(x)=lnx的导数是____。
答案:1/x5. 函数f(x)=x^3的二阶导数是____。
答案:6x三、计算题(每题10分,共20分)1. 计算定积分∫_0^π/2 sinx dx。
答案:12. 计算不定积分∫x^2 dx。
答案:1/3x^3 + C四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。
答案:略2. 证明函数f(x)=e^x在区间(-∞, +∞)上是连续函数。
答案:略五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+2x+100,其中x为生产数量。
《工程数学》练习册参考答案(一) 行列式的概念1、(1)14 (2)1- (3)32452λλλ-+-+ 2、(1)2,偶排列 (2)19,奇排列 (3))1(-n n ,偶排列 (4)2n ,n 为偶数时,偶排列;n 为奇数时,奇排列 3、(1)3,8==k i (2)6,3==k i 4、2,5==j i5、(1)24 (2)3- (3)1(1)!n n --(二)行列式的性质 1、A B C B2、(1)0 (2)297 (3)1(1)nn n x y ++- (4)120-(三)行列式按行展开、克拉默法则 1、A 2、 D3、117A =,1212A =-,133A =,216A =,224A =,231A =-,315A =-,325A =,335A =4(1)32452λλλ-+-+ (2)1++++ad cd ab abcd 5、32=-=λλ或 (四)矩阵的概念及运算1、ABE2、C3、D4、2,2,145、⎪⎪⎪⎭⎫ ⎝⎛+-----+-----=c a c b b a c c a X 232121221426.(1)⎪⎪⎪⎭⎫ ⎝⎛963642321 (2)⎪⎪⎪⎭⎫ ⎝⎛37171291111 (3)233332322322223131132121122111)()()(x a x x a a x a x x a a x x a a x a ++++++++ (3)⎪⎪⎭⎫ ⎝⎛0000 7、⎪⎪⎪⎭⎫⎝⎛---=+-=25229103413152321523)(2E A A A f(五) 逆矩阵和分块矩阵 1(1)11--A B (2)11-A K(3)T A (4)()()11--T T B A 2、D 3、C 4、B A ,可交换(或BA AB =),A 可逆5(1)⎪⎪⎪⎭⎫ ⎝⎛----==*-1113231125231A A A (2)⎪⎪⎪⎭⎫ ⎝⎛---==*-3543513511515151358352351311A A A 6、E E A A E E A A E A A =⎥⎦⎤⎢⎣⎡+⇒=+⇒=-+)2(313)2(0322所以A 可逆,且)2(311E A A+=- E E A E A E E A E A E A A =⎥⎦⎤⎢⎣⎡--+⇒-=-+⇒=-+)2(51)4(5)2)(4(0322所以E A 4+可逆,且)2(51)4(1E A E A --=+-7、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=166400016000062500006254A (六)矩阵的初等变换、初等矩阵1、(1)1 -2 1 -20 -1 3 -10 0 13 1⎛⎫ ⎪ ⎪ ⎪⎝⎭ (2)1 -1 2 1 00 3 0 -4 10 0 0 4 0⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)1 -2 2 -1 10 0 2 1 00 0 0 0 10 0 0 0 0⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭注意:化阶梯形的答案不唯一3、11 -4 -31 -5 -3-1 6 4A -⎛⎫⎪= ⎪ ⎪⎝⎭4、(1)120X ⎛⎫ ⎪= ⎪ ⎪⎝⎭ (2) 1 8111 26-8 -2X -⎛⎫⎪= ⎪ ⎪⎝⎭(七)矩阵的秩1、(1)3R = (2)4R =2、()2R A =1 143 -1=-3、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→2000010021103021b a A ,当1a ≠且2b ≠时,秩为4,满秩;当1a ≠且2b =或1a =且2b ≠时,秩为3;当1a =且2b =时,秩为2;4、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→)2)(1(30033220321k k k k k A ,当1=k 时,1)(=A r ;当2-=k 时,2)(=A r ;当2,1-≠≠k k 且时,3)(=A r 。
首页- 我的作业列表- 《工程数学》第一次作业答案()你的得分:100.0完成日期:2020年06月16日17点35分说明:每道小题选项旁的标识是标准答案。
一、单项选择题。
本大题共12个小题,每小题5.0 分,共60.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.定长矢量与其导矢之间满足的关系是A.相互平行B.相互垂直C.大小相等D.垂直且大小相等2.A.B.C.D.3.A. 1B.C.0D.4.A.B.C.D.05.A.不是,6B.是, 6C.不是,0D.是, 0 6.A.-2B.-1C.0D.17.A.B.C.D.8.A.B.C.D. 9.A.0B. 1C. 2D.410.A. 1B.C.D. 11.A.B.C.D. 12.A.B.C.D.二、多项选择题。
本大题共5个小题,每小题6.0 分,共30.0分。
在每小题给出的选项中,有一项或多项是符合题目要求的。
1.A.B.C.D.2.下面的概念是不是矢量的是()。
A.梯度B.散度C.旋度D.方向导数3.下面描述正确的是()。
A.调和场的旋度为0。
B.调和场的散度为0C.调和场的梯度为0D.调和场的旋度和散度有可能不全为0。
4.在线单连域内矢量场A中,下面描述正确的是()A.B.C.D.5.A.B.C.D.三、判断题。
本大题共5个小题,每小题2.0 分,共10.0分。
1.2.3.单位阶跃函数不满足狄利克雷条件,但是正、余弦满足狄利克雷条件。
4.5.首页- 我的作业列表- 《工程数学》第二次作业答案()你的得分:100.0完成日期:2020年06月16日17点47分说明:每道小题选项旁的标识是标准答案。
一、单项选择题。
本大题共11个小题,每小题5.0 分,共55.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.A. AB. BC. CD.D2.A. AB. BC. CD.D3.A. AB. BC. CD.D 4.A. AB. BC. CD.D5.A. AB. BC. CD.D 6.A. AB. BC. CD.D7.A. AB. BC. CD.D 8.A. AB. BC. CD.D 9.A.0B. 1C. 2D.410.A. AB. BC. CD.D11.A. AB. BC. CD.D二、多项选择题。
2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。
工程数学习题(第一次)解答(部分)(希望同学们在学习和做题过程中有何问题时,能够和我及时沟通,我将尽力为大家解决课程中所遇到的问题,我的邮箱地址:guowx@ )第1章 行列式 第2章 矩阵单选题1 设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=_______.解:1231231231122331231231231231232323232320326a a a a a a a a a ab a b a b a a a b b bc c c c c c c c c ---=-=⋅-⋅=-单选题2 若00100002001001a a=,则a =_______. 解:413100010000001(1)020(1)21,0200202100100aa a a a a++=-=--===单选题5 设A B ,均为n 阶方阵,k 为常数,则下列等式正确的是( ). A. A B A B +=+ B. AB n A B = C. kA k A = D. n kA k A = 解: 因为 A B ,均为n 阶方阵,所以 -=-kA k A n ().单选题9 设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1( ). A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111 解: 1111111()()()ACB B C A B C A -------'''==填空题2 ---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 .解:1111110111001(1)2(1)201112x x x x --+-=+=-=+-,该多项式一次项的系数是2.填空题7 设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B . 解:22123113()(3)273A B A B A B A B ----'''-=-⋅=-⋅=-解答题5(3) 用初等行变换求矩阵1000110011101111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵 解:因为[]10001000100010001100010001001100:111000100110101011110001011110011000100010001000010011000100110000100110001001100011010100010011A I ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦所以110001000110011001110011011110011-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦证明题8 若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证:2,1,111AA I A A A A ''=⋅==∴=-;或证明题9 若也是正交矩阵是正交矩阵,试证'A A证: 因为','1A A A I A A A ==-可逆且因而是正交阵,故所以有I I AA A A A A ====--')'(')'(')''(11即,是正交阵'A 。
电大工程数学形成性考核册答案工程数学作业(一)答案第2章矩阵一)单项选择题(每小题2分,共20分)1.设 $b_1=2$,则 $2a_1-3b_1a_2+2a_3-3b_3=-6$,选 D。
2.若 $a_2=1$,则 $a=\frac{1}{2}$,选 A。
3.乘积矩阵 $\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}$ 中元素 $c_{23}=10$,选 C。
4.设 $A,B$ 均为 $n$ 阶可逆矩阵,则 $(AB)^{-1}=B^{-1}A^{-1}$,选 B。
5.设 $A,B$ 均为 $n$ 阶方阵,$k>0$ 且 $k\neq1$,则 $-kA=(-k)^nA$,选 D。
6.若 $A$ 是正交矩阵,则 $A^{-1}$ 也是正交矩阵,选 A。
7.矩阵 $\begin{pmatrix}1&-2\\5&-3\end{pmatrix}$ 的伴随矩阵为 $\begin{pmatrix}5&-3\\2&-1\end{pmatrix}$,选 C。
8.方阵 $A$ 可逆的充分必要条件是 $A\neq0$,选 B。
9.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则 $(ACB')^{-1}=B^{-1}C^{-1}A^{-1}$,选 D。
10.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则$(A+B)^2=A^2+2AB+B^2$,选 A。
二)填空题(每小题2分,共20分)1.$\begin{pmatrix}1&-4\\-1&1\end{pmatrix}^{-1}=\begin{pmatrix}1&4\\1&5\end{pmatrix}$。
2.若 $-1$ 是关于 $x$ 的一个一次多项式,则该多项式一次项的系数为 $2$。
3.$\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}^T=\begin{pmatrix}1&2&-1\\-1&4&3\end{pmatrix}$。
工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a =,则a =(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB+=+---111B. ()AB BA--=11C. ()A B A B +=+---111D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B = C. kA k A = D. -=-kA k A n () ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈210140001---=7. ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是2. ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为5×4矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051.⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72.⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3.⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a =0. ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为2.⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +. 解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥;⑵1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥;⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110010001919292031320323110021020112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴12==='='I A A A A A ∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴A A '=-1∴)()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性相关.⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是3. ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有无穷多解,且系数列向量ααα123,,是线性相关的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩相同.⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有2个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴方程组无解∴β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=0000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-0001000143100145010001002114310211450100030002114310211450123133432212131141r r r r r r r r ∴方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a 44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++= ∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+= 工程数学作业(第三次)(满分100分)第4章随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的.A. 如果A B ,互不相容,则A B ,互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机实验的成功率为)10(<<p p ,则在3次重复实验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. xf x x a b()d ⎰C.f x x ab()d ⎰D. f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它 B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它 C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x ab()d ⎰C. f a f b ()()-D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμ C. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+=0.8,P AB ()=0.3. 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+=0.65,P A B ()=0.3. 7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()=6.9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的协方差. (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴A B C ,,中至少有一个发生; ⑵A B C ,,中只有一个发生; ⑶A B C ,,中至多有一个发生; ⑷A B C ,,中至少有两个发生; ⑸A B C ,,中不多于两个发生; ⑹A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3)C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为12345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E21422)()(10410222==⋅==⎰⎰+∞∞-xxdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1)]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σD. μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x +C. 212x x -D. x x x 123--(二)填空题1.统计量就是不含未知参数的样本函数.2.参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法. 3.比较估计量好坏的两个重要标准是无偏性,有效性.4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i ix x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ875.1)(151ˆ5122=--==∑=i i x x s σ(1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-ns x ns x λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.).解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵| T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a=,则a =(A ).A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈21014001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂ C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰B.xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ). A. F a F b ()()- B. F x x a b()d ⎰ C. f a f b ()()- D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321 6.设随机变量X 的概率分布为012345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),(). 解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E 181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n n i i X E X E X E n X X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1 )]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑= 22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第214页例3 矩估计:,121)1()(110∑⎰===++=+=n i i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i n i n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==n i i n i i x n d L d x n L θθθθ,1ln ˆ1--=∑=n i ixn θ 3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x nx σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ 4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ, 由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
江苏开放大学作业内容: 《工科数学基础(专)》形成性测试题(一)一、填空题:(每小题4分,共计20分)1.函数 可以分解为__2u 2+=x ___31u y =__________________.2.函数 的连续区间为________[]22,-_______________________________. 3.若 32sin lim0=→xmx x ,则 _______6______. 4.=+∞→x x x)21(lim _______2e __________________. 5.函数2312+--=x x x y 的间断点是_1=x ,2=x _____________________________.二、单项选择题:(每小题4分,共计20分)1.下列各组函数中表示同一个函数的为( C )A .x y =1与B .x y 21cos =与22cos x y =C . x y =1与332x y =D .x y =1与22x y =2.下列极限存在的是( A )A .321lim 3-+∞→x x xB .x x e ∞→limC .x x cos lim ∞→D . 1lim 2+∞→x x x 3.当0→x 时,下列变量中的无穷小量是( D )A .x eB .x lnC .x cosD .x tan4.下列各式中不正确的是( A )A .1sin lim =∞→x x xB .1sin lim 0=→x x xC .1)11(lim -∞→=-e x x xD .e xx x =+∞→)11(lim 5.下列命题中正确的是( B ) A .若极限)(lim 0x f x x →存在,则)(x f 在0x 处连续B .若)(x f 在点0x 处连续,则)(lim 0x f x x →存在 C .若)(x f 在点0x 处有定义,则)(x f 在点0x 处连续D .若)(x f 在点0x 处有定义且)(lim 0x f x x →存在,则)(x f 在(b a ,)内连续 三、计算下列各极限:(每小题10分,共计60分)1.xx x x x +++-→221332lim ; 111331213l i m 32l i m 332l i m 222121221=-+-+-+-=+++=+++-→-→-→)()()()()()(x x x x x x x x x x x2.11lim 1--→x x x ; 211111lim 1lim 11lim 11lim 11lim 11111=+=+--=+-+-=--→→→→→x x x x x x x x x x x x x x x ))(()())(())(( =m 322+=x y xx y 22=24x y -=3.xx x x x 223lim 222-+-→; 211)2(lim 2)1lim 223lim 22222=-=---=-+-→→→x x x x x x x x x x x x x )((4.232lim 22+-+∞→x x x x x ; 3200302)213(lim )12lim 232lim 222=+-+=+-+=+-+∞→∞→∞→x x x x x x x x x x (5.xx x x 35sin lim20-→; 3535lim 55sin lim 3555sin lim 35sin lim 00020-=-∙=-∙=-→→→→x x x x x x x x x x x x x6.xx x 2)21(lim +∞→. 442422)21(lim )21(lim )21(lim e x x x x x x x x x =⎥⎦⎤⎢⎣⎡+=+=+∞→∙∞→∞→完成日期: 2015.11.12评 语:得 分:评阅时间:课程名称 工科数学基础(专) 第1次形测作业 评阅教师:。
国家开放大学《工程数学本》形成性考核作业-参考答案(一)最近,国家开放大学的学生们正在进行《工程数学本》的形成性考核作业,本文将为大家提供参考答案。
首先,本次形成性考核作业分为两个部分,分别是选择题和计算/证明题。
下面将分开讲解。
一、选择题1. 垂直于平面x+y+z=1的平面方程是()A. x+y-z=1B. x-y+z=1C. -x+y+z=1D. -x-y+z=1答案:D。
解析:由题意可知,要求垂直于平面x+y+z=1,因此可以设计一个法向量n=[1,1,1],那么直线上任意一点与法向量的内积都为0。
从而有x+y+z-1=0。
将其化简得到该平面的方程为-x-y+z=1。
2. 已知曲线的参数方程 r(t) = (1+2t)i + (t-3)j + (t^2-1)k,它在t=1的单位切向量是()A. 2i-j+2kB. 2i+j+2kC. 4i-j+6kD. -2i-j+2k答案:B。
解析:曲线在t=1时的单位切向量就是它的导数,即r’(1)。
求导可得r’(t) = 2i+j+2tk。
代入t=1得到r’(1) = 2i+j+2k。
3. 行列式D=|2 2 1;3 2 4;1 3 2|的值是()A. -2B. 2C. 4D. 6答案:A。
解析:该行列式可以通过按第二行展开化简为:D=2|2 1| - 2|3 4| + |1 3| = 2*(-2) - 2*(-12) + 3 = -2。
二、计算/证明题1.设A、B、C为3×3的矩阵,且满足:AB=BC,且B可逆,证明:AC=C。
证明:由已知AB=BC可得 A=BCB^-1。
于是有 AC=BCB^-1C = B(IB^-1)C = BC = C。
2.已知函数y=e^(kx)sin(ax+b)在[x0,x0+pi/a]上的最大值为2,最小值为-2,求k和b的值情况。
解析:根据已知条件,可推出y的表达式为y=e^(kx)sin(ax+b),并知道在[x0,x0+pi/a]上最大值为2,最小值为-2,因此可列出以下两个等式:e^(kx0)sin(ax0+b)=2e^(k(x0+pi/a))sin(a(x0+pi/a)+b)=-2将两式相除,可得到e^(kpi/a)=-1。
西南交《工程数学I》在线作业一
如果矩阵A满足A^2=A,则( )
A:A=0
B:A=E
C:A=0或A=E
D:A不可逆或A-E不可逆
参考选项:D
A、B均为n阶方阵,则必有
A:det(A)det(B)=det(B)det(A)
B:det(A+B)=det(A)+det(B)
C:(A+B)的转置=A+B
D:(AB)的转置=A的转置乘以B的转置
参考选项:A
设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是
()
A:Ax=0只有零解
B:Ax=0的基础解系含r(A)个解向量
C:Ax=0的基础解系含n-r(A)个解向量
D:Ax=0没有解
参考选项:C
n阶行列式的展开式中共有()项
A:n
B:n^2
C:n!
D:n(n+1)/2
参考选项:C
设3阶实对称矩阵A的特征值分别为2,0,-3,则()
A:|A|≠0
B:A负定
C:A正定
D:|A|=0
参考选项:D
设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A:A=E
B:B=O
C:A=B
D:AB=BA
1。
首页- 我的作业列表- 《工程数学基础(Ⅰ)》第一次作业答案
欢迎你,你的得分:100.0
完成日期:2014年05月
说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2014年09月11日)后显示在题目旁边。
一、单项选择题。
本大题共20个小题,每小题4.0 分,共80.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.( D )
A.(-6, 2, -4)
B.(6, 2, 4)T
C.(2, 6, 4)
D.(3, 6, 4)T
2.( D )
A.
B.
C.
D.
3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进行的运算是( )( B )
A.AC T B
B.AC T B T
C.ACB T
D.ACB
4.设A是可逆矩阵,且A+AB=I,则A-1 等于( )( C )
A.B
B.1+ B
C.I + B
D.(I-AB)-1
5.( D )
A.|A+B|=| A |+|B|
B.| A B|=n| A||B|
C.|kA|=k|A|
D.|-kA|=(-k)n|A|
6.( D )
A. 6
B.-6
C.8
D.-8
7.设A B均为n阶方阵,则成立的等式是( )( B )
A.|A+B|=| A |+|B|
B.| A B|=| BA|
C.(AB)T= A T B T
D.AB= BA
8.设A,B,C均为n阶方阵,下列各式中不一定成立的是( )( A )
A.A(BC)=(AC)B
B.(A+B)+C=A+(C+B)
C.(A+B)C=AC+BC
D.A(BC)=(AB)C
9.设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解,则( )( B )
A.α1可由α2,α3线性表出
B.α2可由α1,α3线性表出
C.α3可由α1,α2线性表出
D.A,B,C都不成立
10.设向量组A是向量组B的线性无关的部分向量组,则( )( D )
A.向量组A是B的极大线性无关组
B.向量组A与B的秩相等
C.当A中向量均可由B线性表出时,向量组A,B等价
D.当B中向量均可由A线性表出时,向量组A,B等价
11.设n阶方阵A的行列式|A|=0则A中( )( C )
A.必有一列元素全为0
B.必有两列元素对应成比例
C.必有一列向量是其余向量线性表示
D.任一向量是其余向量的线性组合
12.( A )
A.
B.
C.
D.
13.( A )
A.
B.
C.
D.
14.
( C )
A.0
B.-1
C. 2
D.-2
15.
( B )
A.
B.
C.
D.
16.
( C )
A.
B.
C.
D.
17.
( B )
A.有唯一解
B.无解
C.只有0解
D.有无穷多解
18.
( A )
A. 1
B. 2
C. 3
D. 4
19.
( D )
A.
B.
C.
D.
20.
( D )
A.
B.
C.
D.
三、判断题。
本大题共5个小题,每小题4.0 分,共20.0分。
1.设4阶行列式D的第i行第j列的元素为a ij,则D的展开式中, a12a23a31a44符号为负(错误)
2.设A,B,C,D都是n阶方阵,且ABCD=E,则一定有CDAB=E
(正确)
3.
(错误)
4.若α1,α2,α3,α4都是3维向量,则α1,α2,α3,α4必线性相关
(正确)
5.若A是6×4矩阵,则齐次线性方程组Ax=0必有非零解
(错误)。