1第5章刚体的定轴转动和转动定律
- 格式:ppt
- 大小:1.67 MB
- 文档页数:32
第五章刚体的定轴转动到现在为止,我们主要用力学的基本概念和原理,如牛顿定理,冲量和动量,功和能等概念以及动量、角动量和能量守恒定理来研究质点及质点系的运动。
本章将要介绍一种特殊的质点系—刚体,以及它所遵从的力学规律。
其本质是前几章所讲的基本概念和原理在刚体上的应用。
对于刚体,本章主要讨论定轴转动这种简单的情况以及它所涉及的一些重要物理概念和定理,如转动惯量、力矩、刚体的动能和角动量,转动定理,及包括刚体的系统守恒定理等。
§5-1 刚体运动的描述一、刚体所谓刚体就是其中各部分的相对位置保持不变的物体。
实际上,任何物体都不是绝对坚硬的。
但是,很多物体,诸如分子,钢梁,和行星等等是足够坚硬的,以致在很多问题中,可以忽略它们形状和体积变化,把它们当作刚体来处理。
这就是说,刚体是受力时形状和体积变化可以忽略的理想物体。
二、刚体的运动刚体是一种由大量质点组成,并且受力时不发生相对移动的特殊质点系。
既然是质点系,所以以前讨论的关于质点系的基本定理都可以应用。
刚体的运动可分为平动和转动两种。
而转动又可分为定轴转动和非定轴转动。
若刚体中所有质点的运动轨迹都保持完全相同,或则说刚体内任意两点间的连线总是平行于它们的初始位置间的连线,如下图中的参考线,则刚体的这种运动叫做平动。
因此,对刚体平动的研究,可归结为对质点的研究,通常都是用刚体质心的运动来代表平动刚体的运动。
B当刚体中所有的点都绕着同一直线作圆周运动时,这种运动叫转动,(如下图所示)这条直线叫转轴。
如果转轴的位置或方向是随时间改变的,这个转轴为瞬时转轴。
如果转轴的位置或方向是固定不动,这种转轴为固定转轴,此时刚体运动叫做刚体的定轴转动。
刚体的一般运动比较复杂,但可以证明,其运动可看作是平动和转动的叠加。
转动是刚体的基本运动形式之一,作为基础,本章只讨论刚体的定轴转动。
三、 刚体定轴转动的描述刚体在作定轴转动时,刚体内的各个质点均绕给定轴作圆周运动。
34 第五章 刚体的转动§5-1、刚体定轴转动定律【基本内容】一、刚体的运动1、平动刚体平动的特征:刚体中的任一条直线,在刚体运动过程中始终保持平行。
刚体平动的研究方法:刚体作平动时,刚体各质点的运动情况相同,视为质点处理。
2、定轴转动刚体转动的特征:刚体上各点都绕同一固定的直线作半径不同的圆周运动,该直线称为刚体的转轴。
描述刚体转动的物理量角位移θ∆角速度ω角加速度β刚体匀变速转动公式βθωωβωωβωθ221202020=-+=+=tt t 二、刚体所受的力矩力矩是描述力对物体作用时产生转动效应和改变转动状态的物理量。
F r M ⨯= 式中F为力在转动平面的投影,r为轴指向力的作用点。
结论1 力矩是矢量,对于定轴,力矩的方向在转轴上; 结论2 力经过转轴和力平行于转轴,则力对此轴的力矩为0。
三、刚体定轴转动定律定轴转动的刚体,所受的合外力矩等于刚体的转动惯量与角加速度的乘积,即βJ M =四、转动惯量35定义:对于质点系∑=iii rm J 2对于刚体⎰=dm r J 2线分布:λλ,dx dm =是质量线密度。
面分布:σσ,dS dm =是质量面密度。
体分布:ρρ,dV dm =是质量体密度。
决定转动惯量的三个因素:刚体的质量、质量分布及转轴的位置。
【典型题例】【例5-1】 一轻绳跨过一定滑轮,滑轮可视为匀质圆盘,质量为m ,半径为r 。
绳的两端分别悬挂质量为m 1和m 2的物体,m 1<m 2,如图例2-4所示。
设滑轮轴所受的摩擦力矩为Mr ,绳与滑轮之间无相对滑动,试求运动物体的加速度和绳中的张力。
【解】 依题意,滑轮应视为一个有转动惯性的转动刚体,因此,在加速转动过程中,在图上必有T 2′>T 1′,而且,由于绳的质量可以忽略不计,还应有T 1=T 1′,T2=T 2′。
T 1、T 1′和T 2、T 2′都是绳中的张力。
绳与滑轮无相对滑动的条件,在绳不能伸长的情况下表示m 1与m 2有大小相同的加速度a ,且都等于滑轮边缘的切向加速度。