立体几何中线面平行地经典方法+经典的题目(附详细解答)
- 格式:doc
- 大小:1.64 MB
- 文档页数:12
立体几何证明平行的方法及专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。
(2) 利用三角形中位线的性质。
(3) 利用平行四边形的性质。
(4) 利用对应线段成比例。
(5) 利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形(第1题图)DE B 1A 1C 1C AB FM3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFGABCDEF G M6、如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
高中立体几何证明平行的专题(基本方法) 立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD 的中点.求证:AF∥平面PCE;(第1题图)A B C A B2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥ CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;(2) 利用三角形中位线的性质4、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。
求证:PA∥平面BDE(.3)利用平行四边形的性质9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O//平面A1BC1;10、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ∥平面PBC(4)利用对应线段成比例12、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND BN,求证:MN ∥平面SDC13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN 求证:MN∥平面BEC(5)利用面面平行14、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠= ,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =.(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;。
立体几何证明平行的方法及专题训练罗虎胜 ------ SZdSgZ@Si na.c n立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移” o (2) 利用三角形中位线的性质。
(3) 利用平行四边形的性质。
(4) 利用对应线段成比例。
(5) 利用面面平行的性质,等等 (1)通过“平移”再利用平行四边形的性质1.如图,四棱锥 P- ABCD 的底面是平行四边形,点 E 、F点.求证:AF //平面PCE;分析:取PC 的中点G,连EG., FG,则易证AEGF 是平行四 边形2、如图,已知直角梯形 ABCD 中,AB // CD , AB 丄 BC, AB = 1 , BC = 2, CD = 1 + 3 , 过A 作AE 丄CD ,垂足为E, G 、F 分别为AD 、CE 的中点,现将△ ADE 沿AE 折叠,使 得DE 丄EC.(I)求证:BC 丄面 CDE ; (∏)求证:FG //面 BCD ;分析:取DB 的中点H ,连GH,HC 贝惕证FGHC 是平行四边形EFC分另U 为棱AB 、 PD 的中 PFAE(第 1题图)3、已知直三棱柱 ABC — A i B i C i中,D, E, F分别为AA ι, CC i, AB的中点,M为BE的中点,AC丄BE.求证:(I) C i D 丄 BC ; (∏) C i D //平面BιFM.分析:连EA ,易证C i EAD是平行四边形,于是MF∕∕EACE* M DFA IB I4、如图所示,四棱锥P - ABCD底面是直角梯形,BA _ AD,CD _ AD,CD=2AB, E 为 PC 的中点,证明:EB//平面PAD ;分析::取PD的中点F,连EF,AF则易证 ABEF平行四边形(2)利用三角形中位线的性质5、如图,已知E、F、G、M分别是四面体的棱AD、CD、AM //平面EFG。
立体几何证明平行的方法及专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。
(2) 利用三角形中位线的性质。
(3) 利用平行四边形的性质。
(4) 利用对应线段成比例。
(5) 利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;(第1题图)DE B 1A 1C 1CABFM 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形FGGCDEDEF(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG6、如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
DB A 1A F高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA(第1题图)4、如图所示, 四棱锥P -ABCD 底面是直角梯形,,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点,证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
线面平行判定练习(总结较全)第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b // B.a b ⊥ C.a ,b 相交但不垂直 D.a ,b 异面答案:A.第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11A C 上的线段,求证:11E F //平面AC .答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第5题. 如图,在正方形ABCD 中,BD 的圆心是A ,半径为AB ,BD 是正方形ABCD 的对角线,正方形以AB 所在直线为轴旋转一周.则图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得几何体的体积之比为 .答案:111∶∶第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形, EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DBDB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ; (2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点 C.都相交但不一定交于同一点 D.都平行或都交于同一点答案:D.第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b答案:A.第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 . 答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .答案:m n ∶.第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC 平面EFGH EF =,BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形EGFH 为平行四边形. (2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)2ax a x =⨯-⨯22()2a x x =-+2211()24x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,28S a =最大值, 即当E 为AB的中点时,截面的面积最大,最大面积为28a .第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FDm n ==∶∶∶. 求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论. (1) 当AB ,CD 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,CD 异面时,如图(b ),过点A 作AH CD // 交β于点H .在H 上取点G ,使AG GH m n =∶∶,连接EF ,由(1)证明可得GF HD //,又AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ).A.4a B.2aC.32aD.周长与截面的位置有关答案:B.第24题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( ). A.a b // B.a b ⊥C.a 、b 相交但不垂直 D.a 、b 异面答案:A.第25题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E 、F 分别是PA 、BD 上的点且:PE EA BF =答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EAFD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM , 又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题. 如图,长方体1111ABCD A B C D -中,平面ABCD .答案:证明:如图,分别在AB 和CD 上截得11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,1EE ∴平行且等于1AA ,1FF 平行且等于1DD . 1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD ,∴11E F //平面ABCD .第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -为正方体, 所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //.因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α内的一条直线平行 B.直线a 与平面α内两条直线不相交C.直线a 与平面α内的任一条直线都不相交 D.直线a 与平面α内的无数条直线平行答案:C.。
A C
B
P
E
D
A
C
B
3 必修2 — 2.2线面平行、面面平行的证明经典练
1.直三棱柱ABC-AB i C i 中,D 是AB 的中点,证明:BCJ /平面ACD
2.如图,在四棱锥 P - ABCD 中,平面 PAD 丄平面 ABCD , AB=AD ,/ BAD=60 , E 、F 分 如貼在直三魏血CEC% Z3』C=90) 肋ZB 袖蚀申竄
⑴刚制//平即©
(G)茫勰仁飒W
!倍!,点Mi
别是 AP 、AD 的中点。
求证:直线 EF //平面PCD ;
(理)在四憧雉P ABCD中* -AH VCD, AB /W- .AB 氛
AD=2</2,CD = 2.PA 1 /Fiii ABCD.PA - I.
(”设平面PABQ平面PCD«m^itiCD; /m*
5.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD丄底面ABCD ,
PD=DC , E 是PC的中点,作EF丄PB交PB于点F。
证明PA//平面EDB ;
7.两个边长均为3的正方形ABCD和ABEF所在平面垂直相交于AB,AC,
6.正三棱柱ABC - AB i C i的底面边长是
求证:B1C//平面A1BD ;
2,侧棱长是■. 3,D是AC的中
点。
C
D
B i
N FB,且AM = FN .(1)证明:MN //平面BCE ;
D
4.。
专题5线面平行与面面平行解答题秒杀秘籍:第一讲线面平行构造之平行四边形法要证明一直线平行于另一平面,可以构造一个平行四边形,利用另一组对边平行且相等来证明这组对边平行.这个另一组对边,往往在重垂线、水平线、侧平线中寻找,因为它们必然平行,只需要证明相等即可.构造方式:1.重垂线构造法2.水平线构造法3.侧平线构造法【例1】如下图,两个全等的正方形ABCD 和ABFE 所在平面相交于AB ,AC M ∈,EB N ∈且EN AM =,求证://MN 平面BCF .【证明】如图,作MG ∥AB 交BC 于G ,作NH ∥AB 交BF 于H ;∵MG ∥AB ,AB ∥NH ,∴MG ∥NH又∵ABCD 和ABFE 是两个全等的正方形∴AC =BE ∠ACB =∠ACB=45°∠MGC =∠NHB =90°∵AM =EN ,∴MC =BNMCG NBH ∴≅△△MG NH ∴=MGHN ∴是平行四边形,∴MN ∥GH∵GH CBF ⊂∴MN ∥平面BCF .点评:重垂线构造法,因为M 、N 两点都能作重垂线的平行线.【例2】如图,在四棱锥ABCD S -中,已知底面ABCD 为直角梯形,其中BC AD //,︒=∠90BAD ,⊥SA 底面ABCD ,2===BC AB SA .32tan =∠SDA .(1)求四棱锥ABCD S -的体积;(2)在棱SD 上找一点E ,使//CE 平面SAB ,并证明.【解析】(1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,V S -ABCD =13×SA ×12×(BC +AD )×AB =13×2×12×(2+3)×2=103.(2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .取SD 上靠近D 的三等分点为E ,取SA 上靠近点A 的三等分点为F ,连接CE ,EF ,BF ,则EF =23AD ,BC =23AD ,∴BC=EF .∴CE ∥BF .又∵BF ⊂平面SAB ,CE ⊄平面SAB ,∴CE ∥平面SAB .【例3】如图所示,在直四棱柱1111D C B A ABCD -中,已知AB AD DD DC 221===,AD ⊥DC ,AB ∥DC ,设E 是DC 的中点.求证:E D1∥平面BD A 1.【证明】如图,连接BE ,则四边形DABE 为正方形,∴11D A AD BE ==,且11////D A AD BE ,∴四边形EB D A 11为平行四边形,∴BA E D 11//又⊄E D 1平面BD A 1,⊄B A 1平面BDA 1∴E D 1∥平面BD A 1.点评:侧平线构造法,A 1、D 1位于侧平线两端.秒杀秘籍:第二讲线面平行构造之三角形中位线法证明一直线平行于另一平面,可以找到由一个公共顶点引出的两条线段,并分别找到线段中点,构造三角形中位线来证明线面平行.往往需要找出五点,即两个线段端点,一个中点,公共顶点,再找出另一个中点,最后连线即得.中位线法不需要依托重垂线、水平线、侧平线的载体,但一定要找到公共顶点.【例4】如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.求证://1C A 平面BDE .【证明】设O BD AC = ,∵E 、O 分别是1AA 、AC 的中点,∴EOC A //1又⊄C A 1平面BDE ,⊂EO 平面BDE ,∴//1C A 平面BDE【例5】如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.问点E 在何处时,//PA EBD 平面,并加以证明.【解析】当E 为PC 中点时,//PA EBD 平面.连接AC ,且AC BD O = ,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴EO PA //,又PA ⊄平面EBD ,∴//PA 平面EBD .【例6】如图,在正三棱柱ABC -A 1B 1C 1中,点D 为棱AB 的中点,BC =1,AA 1=3.(1)求证:BC 1∥平面A 1CD ;(2)求三棱锥D -A 1B 1C 的体积.【解析】(1)证明:连接AC 1交A 1C 于点O ,连接OD .∵▱ACC 1A 1中,O 为AC 1的中点,D 为AB 的中点,∴OD ∥BC 1,又BC 1⊄平面A 1CD ,OD ⊂平面A 1CD ,∴BC 1∥平面A 1CD .(2)在正三角形ABC 中,D 为AB 的中点,则CD ⊥AB ,又∵平面ABC ⊥平面ABB 1A 1,∴CD ⊥平面ABB 1A 1.∴CD 为三棱锥D -A 1B 1C 的高,∵CD =32,111D B A S △=32,∴41311111111=⋅==--D B A D B A C C B A D S CD V V △.达标训练1.(2018•江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证://AB 平面11A B C ;2.(2018•新课标Ⅲ)如图,矩形ABCD 所在平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.3.(2018•北京)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.求证://EF 平面PCD .4.(2017•山东)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD ,证明:1//A O 平面11B CD .5.(2016•江苏)如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111A C A B ⊥.求证:直线//DE 平面11A C F .6.(2016•四川)如图,在四棱锥P ABCD -中,PA CD ⊥,//AD BC ,90ADC PAB ∠=∠=︒,12BC CD AD ==.在平面PAD 内找一点M ,使得直线//CM 平面PAB ,并说明理由.7.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,127BB =,点E 和F 分别为BC 和1A C 的中点.求证://EF 平面11A B BA .8.(2015•山东)如图,三棱台DEF ABC -中,2AB DE =,G ,H 分别为AC ,BC 的中点.求证://BD 平面FGH .9.(2014•江苏)如图,在三棱锥P ABC -中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA AC ⊥,6PA =,8BC =,5DF =.求证:直线//PA 平面DEF .10.(2014•山东)如图,四棱锥P ABCD -中,AP ⊥平面PCD ,//AD BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.求证://AP 平面BEF .11.(2014•安徽)如图,四棱锥P ABCD -的底面是边长为8的正方形,四条侧棱长均为217,点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,//BC 平面GEFH .(1)证明://GH EF ;(2)若2EB =,求四边形GEFH 的面积.12.(2015•江苏)如图,在直三棱柱111ABC A B C -中,已知AC BC ⊥,1BC CC =,设1AB 的中点为D ,11B C BC E ⋂=.求证://DE 平面11AA C C .13.(2013•新课标Ⅱ)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面1A CD ;(2)12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.。
专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.2.如图,在四棱锥P﹣ABCD 中,PA⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB,点E、F 分别是线段PD、PC 的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)在线段AD 上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O 的位置,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M 为PD 的中点.Ⅰ)求证:CM ∥平面PAB;Ⅱ)求证:CD ⊥平面PAC.AD ∥BC ,∠ BAD =90°,PA4.如图,△ ABC 为正三角形,AE 和CD 都垂直于平而ABC,F 是BE 中点,AE=AB=2,CD=1.1)求证:DF ∥平面ABC;2)求证:AF ⊥DE;3)求异面直线AF 与BC 所成角的余弦值.5.如图,在四棱锥A﹣BCDE 中,平面ABC⊥平面BCDE ,∠ CDE =∠ BED =90°,AB=CD=2,DE=BE=1,AC=.(1)证明:D E⊥平面ACD ;2)求棱锥C﹣ABD 的体积.6.如图,在四棱锥P﹣ABCD 中,底面ABCD 是矩形,PA⊥平面ABCD,PA=AD=2,AB =1,M 为线段PD 的中点.I)求证:BM ⊥PDII )求直线CM 与PB 所成角的余弦值.7.如图,在正三棱柱ABC﹣A1B1C1 中,所有棱长都等于2.(1)当点M 是BC 的中点时,求异面直线AB1和MC1所成角的余弦值;专题 :立体几何最容易错的最难的平行与垂直问题汇编1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M 分别是棱 AA 1, BC 的中点.证明:2)若∠ ABC =120°,AE ⊥EC ,AB =2,求点 G 到平面 AED 的距离.3.如图,在四棱锥 P ﹣ ABCD 中,平面 PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD , AB =1,AD =2,AC =CD = .( 1)求证: PD ⊥平面 PAB ;1)证明:平面 PAB ⊥平面 PAD;AB ∥CD ,且∠ BAP =∠ CDP =90BE ⊥平面 ABCD .1)证明:平面 AEC ⊥平面 BED .2)若 PA =PD =AB =DC ,∠APD =90°,且四棱锥 P ﹣ABCD 的体积为 ,求该四棱 1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD ,若 E 为棱 BD 上与 D6.如图,在四棱锥 A ﹣EFCB 中,△ AEF 为等边三角形,平面 AEF ⊥平面 EFCB ,EF = 2,四边形 EFCB 是高为 的等腰梯形, EF ∥BC ,O 为 EF 的中点.AD =CD . 求 O 到平面 ABC 的距离.专题:立体几何最典型的平行与垂直题型归纳1.四面体ABCD 中,△ ABC 是正三角形,△ ACD 是直角三角形,∠ ABD =∠ CBD,AB=BD ,则四面体的四个表面中互相垂直的平面有()对.A .0 B.1 C. 2 D. 3【解答】解:取AC 的中点E,连接BE,DE,∵∠ ABD=∠ CBD ,∴ BD 在平面ABC 上的射影在直线BE 上,∵△ ACD 是直角三角形,∴∠ ADC=90°,设 AB = 2,则 BE = ,DE = AC =1,BD =2,2 2 2∴DE 2+BE 2= BD 2,即 DE ⊥BE ,又 BE ⊥ AC ,DE ∩AC =E ,∴ BE ⊥平面 ACD ,∴平面 ABC ⊥平面 ACD .∵ D 在平面 ABC 上的射影为 E , B 在平面 ACD 上的射影为 E ,∴平面 ABD 与平面 ABC 不垂直,平面 BCD 与平面 ABC 不垂直,平面 ABD 与平面 ACD 不垂直,平面 BCD 与平面 ACD 不垂直, 过A 作 AF ⊥BD ,垂足为 F ,连接 CF ,由△ ABD ≌△ CBD 可得 CF ⊥BD ,故而∠ AFC 为二面角 A ﹣BD ﹣C 的平面角, ∵ AD == , ∴ cos ∠ ABD ∴ CF = AF =∴ cos ∠ AFC =∴∠ AFC ≠ 90°,∴平面 ABD 与平面 BCD 不垂直.F 分别是线段 PD 、PC 的中点.证明: EF ∥平面 PAB ;BO ⊥平面 PAC ,若存在,请指出点 O 的位置, 并证明 BO ⊥平面 PAC ;若不存在,请说明理由.2.如图, 在四棱锥 P ﹣ABCD 中, PA ⊥底面 ABCD ,四边形 ABCD 为长方形, AD = 2AB ,在线段 AD 上是否存在一点 O ,使得,∴ sin ∠ ABD=∵EF ∥CD ,∴ EF ∥AB ,∴ EF ∥平面 PAB . ⋯(6 分)此时点 O 为线段 AD 的四等分点,满足 ,⋯( 8 分) ∵长方形ABCD 中,∴△ ABO ∽△ ADC , ∴∠ ABO+∠CAB =∠ DAC + ∠CAB =90°,∴AC ⊥BO ,(10 分) 又∵ PA ⊥底面 ABCD ,BO? 底面ABCD , ∴PA ⊥BO , ∵PA ∩AC =A ,PA 、AC? 平面 PACABCD 为长方形,∴CD ∥AB ,∠ BAO =∠ ADC = 90°,四边形 ABCD 为直角梯形, AD∥BC ,∠ BAD=,PA 又∵ EF? 平面 PAB , AB? 平面 PAB ,Ⅱ) 在线段 AD 上存在一点 O ,使得 BO ⊥平面 PAC ,⊥底面ABCD ,且PA=AD=2,AB=BC=1,M为PD 的中点.(Ⅰ)求证:CM ∥平面PAB;(Ⅱ)求证:CD ⊥平面PAC.解答】证明:(I )取PA 的中点E,连接ME 、BE,∵ ME ∥AD,ME AD,∴ ME ∥BC,ME=BC,∴四边形BCME 为平行四边形,∴ BE∥CM ,∵BE? 平面PAB,CM?平面PAB,∴ CM∥平面PAB;(II )在梯形ABCD 中,AB=BC=1,AD=2,∠ BAD=90° 过C作CH⊥AD于H,∴AC =CD=2 2 2∵AC2+CD2=AD2,∴ CD⊥AC又∵ PA⊥平面ABCD ,CD ?平面ABCD,∴ CD⊥PA∵PA∩AC=A,∴CD ⊥平面PAC4.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1 的中点,证明:A1D⊥平面A1BC.解答】 证明:设 E 为 BC 的中点,连接 A 1E , DE ,AE ,由题意得 A 1E ⊥平面 ABC ,∴ A 1E ⊥AE .∵ AB = AC , AE ⊥BC ,∴ AE ⊥平面 A 1BC . 由 D ,E 分别为 B 1C 1,BC 的中点,得 DE ∥B 1B 且 DE =B 1B , 从而 DE ∥A 1A 且 DE =A 1A ,∴四边形 A 1AED 为平行四边形,∴ A 1D ∥AE .5.如图,△ ABC 为正三角形, AE 和 CD 都垂直于平而 ABC ,F 是 BE 中点, AE =AB = 2,CD = 1.(1)求证: DF ∥平面 ABC ;(2)求证: AF ⊥DE ;(3)求异面直线 AF 与 BC 所成角的余弦值.【解答】(1)证明:取 AC 中点 O ,过 O 作平面 ABC 的垂线交 DE连结 OB ,则 OG ⊥OB , OG ⊥ OC ,∵△ ABC 是正三角形, O 是 AC 中点,∴ OB ⊥ OC ,以 O 为原点, OB 、OC 、OG 所在直线分别为 x 、y 、z轴,建立空间直角坐标系,又∵ AE ⊥平面 A 1BC , ∴ A 1D ⊥平面 A 1BC∵F 是 BE 中点, AE =AB = 2,CD =1,=(﹣ , 1, 0), =( 0,0, 1),∵CD ⊥平面 ABC ,∴ =(0,0,1)是平面 ABC 的一个法向量,又 DF? 平面 ABC ,∴ DF ∥平面 ABC .2)证明:∵ =( ), =( 0,﹣2,1),∴ = 0﹣ 1+1=0,∴AF ⊥DE .(3)解:∵ =( ), =(﹣ ,1, 0),设 AF 、 BC 所成角为 θ,cos θ= ∴异面直线 AF 与 BC 所成角的余弦值6.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB = 1,M 为线段 PD 的中点.( I )求证: BM ⊥PD( II )求直线 CM 与 PB 所成角的余弦值.∴ =( ,0), =( ), =(0,﹣ 2,1),∵ = , ∴,D (0,1,1),E (0,﹣1,∴A (0,﹣ 1,0),B(| | =【解答】( I )证明:连接 BD ,∵四棱锥 P ﹣ABCD 中,底面 ABCD 是矩形, PA ⊥平面 ABCD ,PA =AD =2,AB =1, ∴PB =BD =∵ M 为线段 PD 的中点,∴BM ⊥PD(II )解:连接 AC ,与 BD 交于 O ,连接 OM ,则∵ M 为线段 PD 的中点,∴MO ∥PB∴直线 CM 与 PB 所成角的余弦值为7.如图,在正三棱柱 ABC ﹣A 1B 1C 1 中,所有棱长都等于 2.( 1)当点 M 是 BC 的中点时,① 求异面直线 AB 1和 MC 1 所成角的余弦值;② 求二面角 M ﹣AB 1﹣C 的正弦值;(2)当点 M 在线段 BC 上(包括两个端点)运动时, 求直线 MC 1与平面 AB 1C 所成角的∴∠ CMO (或其补角)为直线 CM 与 PB 所成角,在△ MOC中, ∴ cos ∠ CMO=CM = = ,. .解答】 解:(1)取 AC 的中点为 O ,建立空间直角坐标系 O ﹣ xyz ,则 ,C ( 0,1,0),当 M 是 BC 的中点时,则 . ①, 设异面直线 AB 1 和 MC 1 所成角为 θ,则 = = .= = .② , , ,,令 x = 2,∴ ,∴ .设二面角 M ﹣ AB 1﹣ C 的平面角为 θ,则=.所以 .( 2)当 M 在 BC 上运动时,设 .设平面 MAB 1的一个法向量为 ,则 .∴ 设平面 AB 1C 的一个法向量为 ,令 ,则 y =﹣ 1,z =﹣ 1,∴,,则正弦值的取值范围.设M(x,y,z),∴,∴ ,则,∴ .设直线MC1 与平面AB1C 所成的角为θ ,则设,设t=λ+1 ∈[1,2],所以,t∈[1,2].设,∴∵ ,∴ ,∴∴直线MC 1与平面AB1C 所成的角的正弦值的取值范围为6.如图,在四棱锥 A ﹣BCDE 中,平面 ABC ⊥平面 BCDE ,∠ CDE =∠ BED =90°, AB =CD = 2,DE =BE =1,AC = .( 1)证明: DE ⊥平面 ACD ;( 2)求棱锥 C ﹣ ABD 的体积.【解答】 解:( 1)在直角梯形 BCDE 中,∵DE = BE = 1, CD = 2,∴ BC == , 又 AB =2, AC = ,∴ AB 2=AC 2+BC 2,即 AC ⊥ BC ,又平面 ABC ⊥平面 BCDE ,平面 ABC ∩平面 BCDE =BC ,AC? 平面 ABC ,∴AC ⊥平面 BCDE ,又 DE? 平面 BCDE ,∴AC ⊥ DE ,又 DE ⊥DC ,AC ∩CD =C ,∴ DE ⊥平面 ACD .1.如图,在三棱柱 ABC ﹣A 1B 1C 1中,侧棱垂直于底面,∠ ACB =90°, 2AC =AA 1,D ,M分别是棱 AA 1, BC 的中点.证明:S △BCD ?AC =V C ﹣ABD =V A ﹣BCD =1)AM∥平面BDC12)DC1⊥平面BDC .∴AD ∥ MN ,且 AD = MN ;∴四边形 ADNM 为平行四边形,∴DN ∥AM ;又 DN? 平面 BDC 1,AM? 平面 BDC 1,∴ AM ∥平面 BDC 1⋯( 6 分)( 2)由已知 BC ⊥CC 1,BC ⊥AC ,又 CC 1∩ AC = C ,∴ BC ⊥平面 ACC 1A 1,又 DC 1? 平面 ACC 1A 1,∴ DC 1⊥BC ;由已知得∠ A 1DC 1=∠ ADC =45°,∴∠ CDC 1= 90°,∴DC 1⊥DC ;又 DC ∩BC =C ,∴ DC 1⊥平面 BDC .⋯( 12分)【解答】 证明:( 1)如图所示,取 BC 1 的中点 N ,连接 DN ,MN .则 MN ∥ CC 1,且 M N = CC 1;又 AD ∥CC 1,且 ADV = ,2.如图,四边形 ABCD 为菱形, G 为 AC 与 BD 的交点, BE ⊥平面 ABCD .( 1)证明:平面 AEC ⊥平面 BED .因为 BE ⊥平面 ABCD , AC? 平面 ABCD ,所以 AC ⊥BE ,⋯( 2 分)又因为 DB ∩BE =B ,所以 AC ⊥平面 BED .⋯( 3分) 又 AC? 平面 AEC ,所以平面 AEC ⊥平面 BED .⋯( 5 分)2)取 AD 中点为 M ,连接 EM .因为∠ ABC = 120°.,AB =2,所以 AB =DB = 2,AG = ,DG = 1,因为 AE ⊥EC ,所以 EG == ,所以 BE = ,⋯( 6 分)所以 AE =DE = ,又所以 AD 中点为 M ,所以 EM ⊥AD 且 EM = .设点 G 到平面 AED 的距离为为 h , 则三棱锥 E ﹣ADG 的体积为求点 G 到平面 AED 的距离.为菱形,所以 AC ⊥BD ,⋯( 1 分)即,解得 h = .PAD ⊥平面 ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,ABCD ,且平面 PAD ∩平面 ABCD =AD ,AB ⊥AD ,AB? 平面 ABCD ,∴ AB ⊥平面 PAD ,∵PD? 平面 PAD ,∴AB ⊥PD ,又 PD ⊥PA ,且 PA ∩AB =A ,∴ PD ⊥平面 PAB ;( 2)解:取 AD 中点 O ,连接 PO ,则 PO ⊥ AD , 又平面 PAD ⊥平面 ABCD , ∴PO ⊥平面 ABCD ,∵PA ⊥PD ,PA =PD ,AD =2,∴ PO =1.10 分) 所以点 G 到平面 AED 的距离为AB =1,AD =2,AC =CD = .1)求证: PD ⊥平面PAB ;在△ ACD 中,由 AD =2,AC =CD = ,可得 .4.如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠ BAP =∠ CDP =901)证明:平面 PAB ⊥平面 PAD ;P ﹣ABCD 中,∠ BAP =∠ CDP = 90°,∴AB ⊥PA ,CD ⊥PD ,又 AB ∥ CD ,∴ AB ⊥PD ,∵PA ∩PD =P ,∴ AB ⊥平面 PAD ,∵AB? 平面 PAB ,∴平面 PAB ⊥平面 PAD .解:(2)设 PA =PD =AB =DC =a ,取 AD 中点O ,连结 PO ,∵PA =PD =AB =DC ,∠ APD =90°,平面 PAB ⊥平面 PAD ,∵四棱锥 P ﹣ABCD 的体积为由 AB ⊥平面 PAD ,得 AB ⊥ AD ,∴V P ﹣ABCD =2)若 PA =PD = AB = DC ,∠ APD =90°,且四棱锥 P ﹣ ABCD 的体积为求该四棱 ∴ PO ⊥底面ABCD , O P= = = = , 解得 a =2,∴ PA =PD =AB =DC =2,AD =BC =2 ,PO = , ∴ PB = PC = =2 ,∴该四棱锥的侧面积:S 侧= S △PAD +S △PAB +S △PDC +S △PBC=+1)证明: AC ⊥ BD ;2)已知△ ACD 是直角三角形, AB = BD ,若 E 为棱 BD 上与 D 不重合的点, ∵△ ABC 是正三角形, AD =CD ,∴DO ⊥AC ,BO ⊥AC ,∵DO ∩BO =O ,∴ AC ⊥平面 BDO ,∵BD? 平面 BDO ,∴AC ⊥BD . 解:(2)法一:连结 OE ,由( 1)知 AC ⊥平面 OBD , ∵OE? 平面 OBD ,∴ OE ⊥ AC , 设 AD = CD = ,则 OC = OA = 1, EC = EA ,2 2 2 ∵AE ⊥CE ,AC =2,∴ EC 2+EA 2=AC 2,∴ EC = EA = = CD ,∴E 是线段 AC 垂直平分线上的点,∴ EC =EA =CD = ,由余弦定理得:AE ⊥= 6+2 .AD =CD .∵BE<<BD=2,∴BE=1,∴ BE=ED ,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵ BE=ED ,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴ BO==,∴ BO2+DO2=BD2,∴ BO⊥DO,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系,则C(﹣1,0,0),D(0,0,1),B(0,,0),A(1,0,0),设E(a,b,c),,(0≤λ≤1),则(a,b,c﹣1)=λ(0,,﹣1),解得E(0,,1﹣λ),∴ =(1,),=(﹣ 1 ,),∵AE⊥EC,∴=﹣1+3λ2+ (1﹣λ)2=0,由λ∈[0 ,1],解得,∴ DE=BE,∵四面体ABCE 与四面体ACDE 的高都是点 A 到平面BCD 的高h,∵DE=BE,∴ S△DCE=S△BCE,∴四面体ABCE 与四面体ACDE 的体积比为1.AEF⊥平面EFCB,EF=2,四边形EFCB 是高为的等腰梯形,EF∥BC,O 为EF 的中点.1)求证:AO⊥CF;O 为EF 的中点,所以AO⊥ EF ⋯( 1 分)又因为平面AEF⊥平面EFCB,AO? 平面AEF,平面AEF ∩平面EFCB =EF ,所以AO ⊥平面EFCB,⋯( 4 分)又CF? 平面EFCB ,所以AO⊥ CF ⋯( 5 分)(2)解:取BC 的中点G,连接OG.由题设知,OG⊥BC ⋯( 6 分)由(1)知AO⊥平面EFCB ,又BC? 平面EFCB ,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG⋯(8 分)过O 作OH⊥AG,垂足为H,则BC⊥ OH ,因为AG∩BC=G,所以OH⊥平面ABC.⋯(10 分)因为,所以,即O 到平面ABC 的距离为.(另外用等体积法亦可)⋯(12 分)10.直三棱柱ABC﹣A1B1C1 中,若∠ BAC=90°,AB=AC=AA1,则异面直线BA1 与B1C 所成角的余弦值为(A.0 B.C.。
专题5线面平行与面面平行解答题秒杀秘籍:第一讲线面平行构造之平行四边形法要证明一直线平行于另一平面,可以构造一个平行四边形,利用另一组对边平行且相等来证明这组对边平行.这个另一组对边,往往在重垂线、水平线、侧平线中寻找,因为它们必然平行,只需要证明相等即可.构造方式:1.重垂线构造法2.水平线构造法3.侧平线构造法【例1】如下图,两个全等的正方形ABCD 和ABFE 所在平面相交于AB ,AC M ∈,EB N ∈且EN AM =,求证://MN 平面BCF .点评:重垂线构造法,因为M 、N 两点都能作重垂线的平行线.【例2】如图,在四棱锥ABCD S -中,已知底面ABCD 为直角梯形,其中BC AD //,︒=∠90BAD ,⊥SA 底面ABCD ,2===BC AB SA .32tan =∠SDA .(1)求四棱锥ABCD S -的体积;(2)在棱SD 上找一点E ,使//CE 平面SAB ,并证明.点评:水平线构造法,由于B 、C 位于水平线上,故构造一条平行于BC 的水平线.【例3】如图所示,在直四棱柱1111D C B A ABCD -中,已知AB AD DD DC 221===,AD ⊥DC ,AB ∥DC ,设E 是DC 的中点.求证:E D1∥平面BD A 1.点评:侧平线构造法,A 1、D 1位于侧平线两端.秒杀秘籍:第二讲线面平行构造之三角形中位线法证明一直线平行于另一平面,可以找到由一个公共顶点引出的两条线段,并分别找到线段中点,构造三角形中位线来证明线面平行.往往需要找出五点,即两个线段端点,一个中点,公共顶点,再找出另一个中点,最后连线即得.中位线法不需要依托重垂线、水平线、侧平线的载体,但一定要找到公共顶点.【例4】如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.求证://1C A 平面BDE .【例5】如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.问点E 在何处时,//PA EBD 平面,并加以证明.【例6】如图,在正三棱柱ABC -A 1B 1C 1中,点D 为棱AB 的中点,BC =1,AA 1=3.(1)求证:BC 1∥平面A 1CD ;(2)求三棱锥D -A 1B 1C 的体积.达标训练1.(2018•江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证://AB 平面11A B C ;2.(2018•新课标Ⅲ)如图,矩形ABCD 所在平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.3.(2018•北京)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.求证://EF 平面PCD .4.(2017•山东)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD ,证明:1//A O 平面11B CD .5.(2016•江苏)如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111A C A B ⊥.求证:直线//DE 平面11A C F .6.(2016•四川)如图,在四棱锥P ABCD -中,PA CD ⊥,//AD BC ,90ADC PAB ∠=∠=︒,12BC CD AD ==.在平面PAD 内找一点M ,使得直线//CM 平面PAB ,并说明理由.7.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,127BB =,点E 和F 分别为BC 和1A C 的中点.求证://EF 平面11A B BA .8.(2015•山东)如图,三棱台DEF ABC -中,2AB DE =,G ,H 分别为AC ,BC 的中点.求证://BD 平面FGH .9.(2014•江苏)如图,在三棱锥P ABC -中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA AC ⊥,6PA =,8BC =,5DF =.求证:直线//PA 平面DEF .10.(2014•山东)如图,四棱锥P ABCD -中,AP ⊥平面PCD ,//AD BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.求证://AP 平面BEF .11.(2014•安徽)如图,四棱锥P ABCD -的底面是边长为8的正方形,四条侧棱长均为217,点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,//BC 平面GEFH .(1)证明://GH EF ;(2)若2EB =,求四边形GEFH 的面积.12.(2015•江苏)如图,在直三棱柱111ABC A B C -中,已知AC BC ⊥,1BC CC =,设1AB 的中点为D ,11B C BC E ⋂=.求证://DE 平面11AA C C .13.(2013•新课标Ⅱ)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面1A CD ;(2)12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.。
微专题3 立体几何中的平行与垂直问题(解析版)题型一、线面平行与垂直证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线。
例1、如图,在四棱锥P ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面P AB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.又MD⊂侧面P AD,所以AB⊥MD.因为DA=DP,又M为AP的中点,从而MD⊥P A.又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB【类比训练】如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例2、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)【类比训练】三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。
求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。
解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。
变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。
求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。
变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。
线面平行典型例题1.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
需要证明:(1) C1O∥面AB1D1.证明:连接C1O,AB1,D1O,由于O是底面ABCD的对角线交点,所以AO=BO=CO=DO,又因为O是C1D1的中点,所以C1O=1/2D1O。
因此,三角形AB1D1和三角形C1O1D1中,∠AB1D1=∠C1O1D1,∠B1D1O1=∠D1C1O1,且AO=CO,所以根据AA准则,可以得出C1O∥面AB1D1.2.已知三棱柱ABC-D1A1D,其中D为线段A1C1中点。
需要证明:BC1∥平面AB1D。
证明:连接AC1,BD,因为D为线段A1C1中点,所以BD∥A1C1,又因为ABCD为平行六面体,所以AC1=BD,所以AC1∥BD。
又因为D1为平面ABC和平面A1B1C1的交点,所以D1在这两个平面的公共垂线上,所以D1在直线AC1和BD的公共垂线上,所以D1在平面AB1D的公共垂线上,所以BC1∥平面AB1D。
3.如图所示,正三棱柱ABC-AB1C1中,D是BC的中点,需要判断A1B与平面ADC1的位置关系,并证明结论。
解答:连接A1D,B1D,因为D是BC的中点,所以AD=B1D,又因为AB1C1为平行四边形,所以B1C1∥AB,所以∠A1B1C1=∠ABC=90°,所以A1B1垂直于平面ABC,所以A1B1与平面ADC1平行。
4.在正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,需要证明:PQ∥平面DCC1D1.证明:连接PQ,因为AP=BQ,所以APBQ是平行四边形,所以PQ∥AB,又因为AB∥平面DCC1D1,所以PQ∥平面DCC1D1.5.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,需要证明:PQ∥平面BCE。
证明:连接PQ,因为AP=DQ,所以APDQ是平行四边形,所以PQ∥AD,又因为AD∥平面BCE,所以PQ∥平面BCE。
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。
名师辅导 立体几何 第3课 线面平行(含答案解析)●考试目标 主词填空1.直线和平面平行如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行. 2.平行关系的判定定理和性质定理(1)直线和平面平行的判定定理和性质定理判定定理:平面外一条直线,如果和平面内的一条直线平行,那么这条直线和这个平面平行. 判定定理:两平面平行,其中一个平面内的直线必平行于另一个平面.性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.●题型示例 点津归纳【例1】 设直线a 在平面M 内,则平面M 平行于平面N 是直线a 平行于面N 的 ( ) A.充分条件但非必要条件 B. 必要条件但非充分条件 C.充分必要条件D.非充分条件,也非必要条件.【解前点津】 因为当平面M ∥平面N 时,a 平面M ,则有a ∥平面N ,反之,当直线a ∥平面N 时,直线a ⊂M ,则平面M 与平面N 有可能平行也可能相交,因此,当a ⊂M 时,平面M 平行于平面N 是直线a 平行于平面N 的充分非必要条件.【规范解答】 A.【解后归纳】 要注意对基本概念的理解和灵活运用.【例2】 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上, 点M 在B 1C ,且CM =DN ,求证:MN ∥平面AA 1B 1B .【解前点津】 若能证明MN 平行于平面AA 1B 1B 中的一条直线, 则依线面平行判定定理,MN ∥平面AA 1B 1B .于是有以下添辅助线的方法.【规范解答】 如图,作ME ∥BC , 交BB 1于E ;作NF ∥AD , 交 AB 于F ,连结EF ,则EF 平面AA 1B 1B .∵BD =B 1C ,DN =CM ,∴B 1M =BN .∵,,11BD BN AD NF C B M B BC ME ==∴,AD NFBD BN BC ME == ∴ME =NF .又ME ∥BC ∥AD ∥NF ,∴MEFN 为平行四边形. ∴MN ∥EF .∴MN ∥平面AA 1B 1B .【解后归纳】 证明直线l 与平面α平行,通常有以下两个途径:(1)通过线线平行来证明,即证明该直线l 平行于平面α内的一条直线; (2)通过面面平行来证明,即证明过该直线l 的一个平面平行于平面α.【例3】 如图所示,在空间四边形ABCD 中,AC 、BD 为其对角线,E 、F 、G 、H 分别为AC 、BC 、BD 、AD 上各一点,若四边形EFGH 为平行四边形,求证:AB ∥平面EFGH 且CD ∥平面EFGH .例2题图例2题图解【解前点津】 判定线面平行,根据线面平行的判定定理,只要在面内找到一条直线和面外的该直线平行就可以解决问题.根据题意易知GH ∥EF,这样可以推证GH ∥平面ABC ,进一步推证GH ∥AB ,利用线面平行的判定定理解决问题.【规范解答】 ∵EFGH 是平行四边形,∴EF ∥GH ,⎪⎭⎪⎬⎫=⋂⊂⇒⎪⎭⎪⎬⎫⊄⊂BA ABD ABC ABC GH ABCGH ABC GH ABC EF GHEF 平面平面平面平面平面平面////E F G H AB EFGH AB EFGH GH BAGH 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊂【解后归纳】 请同学们完成CD ∥平面EFGH 的证明.【例4】 如图,在三棱锥S —ABC 中,已知∠ABC =90°,SA ⊥平面ABC ,AN ⊥SB ,AM ⊥SC ,试证明:SC ⊥平面AMN .【规范解答】 SA ⊥平面ABC 而AB 为SB 在平面ABC 中 的射影,又由∠ABC =90°知BC ⊥AB ,由三垂线定理,BC ⊥SB , ∴BC ⊥平面SAB∵AN 平面SAB ,∴BC ⊥AN , ∵AN ⊥SB ,∴AN ⊥平面SBC ,∴AN ⊥SC ,∵AM ⊥SC ,∴SC ⊥平面AMN .【解后归纳】 本题在运用判定定理证明线面垂直(SC ⊥平面AMN )时,将问题化为证明线线垂直(SC ⊥AN );而证明此线线垂直时,又转化为证明线面垂直(AN ⊥平面SBC )这种相互转化的方法,是本课的重要而又基本的证明方法.●对应训练 分阶提升 一、基础夯实1.“直线与平面α内无数条直线垂直”是“直线与平面α垂直”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知直线m ,n 和平面α,那么m ∥n 的一个必要而不充分的条件是 ( ) A.m ∥α,n ∥α B.m ⊥α,n ⊥α C.n α且m ∥α D.m ,n 与α成等角3.过直线l 外的两点作与l 平行的平面,则这样的平面 ( )A.不可能作出B.只能作一个C.能作出无数个D.以上情况都有可能 4.a 、b 是异面直线,P 为a 、b 外的任一点,下列结论正确的是 ( )A.过P 可作一平面与a 、b 都平行B.过P 可作一平面与a 、b 都垂直相交C.过P 可作一直线与a 、b 都平行D.过P 可作一直线与a 、b 成等角 5.α、β表示平面,a 、b 表示直线,则a ∥α的一个充分条件是 ( )A.a ⊥β且α⊥βB.α∩β=b 且a ∥bC.a ∥b 且b ∥αD.α∥β且a β 6.已知直线a 、b ,以及平面α、β,下列命题正确的是 ( )A.若b α,a ∥b ,则a ∥αB.若a ⊥α,b ⊥α,则a ∥bC.若a ∥b ,α∩β=b ,则a ∥αD.若a α,b α,l ⊥a ,l ⊥b ,则l ⊥α例3题图例4题图7.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段的位置关系是 ( )A.平行B.相交C.异面D.平行、相交或异面 8.已知直线m 、n 、l ,平面α、β. ①m ∥α,n ∥α,则m ∥n ;②若二面角α—l —β是直二面角,m ⊥l ,则m ⊥β; ③设m 、n 是异面直线,若m ∥α,则n 与α相交; ④若m ⊥n ,m ⊥α,n α,则n ∥α. 以上正确命题的个数是 ( ) A.0 B.1 C.2 D.39.等边△ABC 的边长为a ,过△ABC 的中心O 作OP ⊥平面ABC 且OP =a 36,则点P 到△ABC 的边BC 的距离为 ( )A.aB.a 23 C.a 33 D.a 36 10.已知直线a 、b 和平面α、β,下列命题中,真命题是 ( )A.若a α,b β,a ⊥b ,则α⊥βB.若a α,b β,a ∥b ,则α∥βC.若a ∥α,a ⊥b ,则b ⊥αD.若a ∥α,a ⊥β,则α⊥β 二、思维激活11.如图所示,直角三角形ABC 的直角顶点C 在平面α内,斜边AB ∥α,并且AB 与α间的距离为6,A 与B 在α内的射影分别为A 1,B 1,且A 1C =3,B 1C =4,则AB= ,∠A 1CB 1= .12.如图所示,在四棱锥P —ABCD 中,O 为CD 上的动点,四边形ABCD 满足条件 时V P-AOB 恒为定值(写出你认为正确的一个条件即可).13.已知长方体ABCD -A 1B 1C 1D 1中,棱A 1A =5,AB =12,那么直线B 1C 1与平面A 1BCD 1的距离 是 .14.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 中点.点M 在四 边形EFGH 及其内部运动,则M 只须满足条件 时,就有MN ∥平面B 1BDD 1(请填上你认为正确的一个条件即可,不必考虑全部可能情况).三、能力提高15.已知正四棱锥P —ABCD 的各条棱长均为13.M 、N 分别是PA 、BD 上的点,且PM ∶MA =BN ∶ND =5∶8.(1)求证:MN ∥平面PBC . (2)求线段MN 长.第11题图 第12题图 第14题图16.如图所示,a 、b 是异面直线,AB 是a 、b 的公垂线,垂足分别是A 、B ,平面α过AB 的中点P 且与a 、b 都平行,M 、N 分别是a 、b 上的点,MN 交平面α于Q .(1)求证:MQ =QN .(2)若a ⊥b ,AM =6,问BN 等于何值时,PQ 的长为5.17.如图所示,正方体ABCD —A 1B 1C 1D 1的棱长为1,M 、N 分别为面对角线AD 1、BD 上的点,且AM =BN =x .(1)求证:MN ∥平面CDD 1C 1. (2)求证:MN ⊥AD .(3)当x 为何值时,MN 的长取得最小值,并求出这个最小值.18.如图所示,已知二面角P —AC —B 为60°,BC ⊥AC ,PA ⊥AC ,AC =a ,BC =PA =2a ,点P 在平面ABC 内的射影为D .(1)求证:AD ∥平面PBC . (2)求点A 到平面PBC 的距离.19.如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问:截面在什么位置时,其截面积最大?第16题图第17题图第18题图第3课 线面平行习题解答1.B 平面内可以有无数条直线与平面的斜线在平面内的射影垂直,由三垂线定理知它们都与斜线垂直,但斜线不垂直于平面.2.D 要m ∥n 能推出四个选择中的某个结论,而此结论为条件又不能推出m ∥n .因m ∥n ,则m ,n 与α成等角,而m ,n 与α成等角,可以不同方向上成等角,不能推出m ∥n .3.D 当两点所确定的直线与l 平行时作无数个;与l 异面时作一个;与l 相交时不能作.4.D 过点P 作平面α,若b ∥α且a α,则A 不正确.5.D 由面面平行的性质定理知D 正确.6.B 垂直于同一平面的两直线平行.7.D 画图可知两线段可平行、相交或异面. 8.B 只有④正确.9.B 如图所示,连结AO 并延长交BC 于Q 点,由于PO ⊥平面 ABC ,所以AO 是PQ 在平面ABC 上的射影.点O 是正三角形的 中心,所以AO ⊥BC ,由三垂线定理知,BC ⊥PQ .因此PQ 的长是点P 到△ABC 的边BC 的距离,计算得PQ =a 23. 10.D 在α内作直线a ′∥a 故a ′⊥β,∴α⊥β.11.AB =37,∠A 1CB 1=120°AC =632+=15,BC=22642=+. ∴AB =3722=+BC AC . cos ∠A 1CB 1=2134237916-=⨯⨯-+.∴∠A 1CB 1=120°.12.AB ∥CD 只须△AOB 的面积为定值即可. 13.1360作B 1M ⊥A 1B 于M , ∵A 1D 1⊥平面A 1B 1BA ,∴A 1D 1⊥B 1M ,∵B 1C 1∥平面A 1BCD 1,于是B 1M 长是B 1C 1与平面A 1BCD 1的距离. ∵A 1A =5,AB =12,∴A 1B=13.第9题图解于是所求的距离为1360. 14.M 在FH 上 平面FHN ∥平面BDD 1B 1.15.第(1)小题有多种证法,不管用哪种证法,证明的关键 都是证MN 与面PBC 中的一条线平行. (1)证明:如图,连AN 交BC 于K ,连PK . ∴△AND ∽△BNK . ∴AMPMND BN AN NK ==.∴MN ∥PK . 又PK 面PBC ,∴MN ∥面PBC . (2)解:∵△AND ∽△BNK ,∴85==ND BN AD BK ,又AD =13, ∴8513=BK ,∴BK =8135⨯, △PBK 中,PK 2=PB 2+BK 2-2PB ·BK ·cos60°,∴PK =871321813513281351322⨯=⨯⨯⨯⨯-⎪⎭⎫⎝⎛⨯+. ∵MN ∥PK ∴AP AMPK MN =,∴5888713+=⨯MN ,∴MN =7. 16.(1)证明:连AN 交α于R ,连PR 、RQ ,∵b ∥α,α∩平面ABN =RP ,b 平面ANB ,∴b ∥RP ,由AP =PB 得AR =RN ,同理QR ∥a ,由AR =RN 得QM =QN . (2)解:由(1)知∠PRQ 就是a 与b 所成角,由a ⊥b 知∠PRQ =90°,AM =6,∴RQ =3.又PQ =5, ∴PR =4,∴BN =8.17.(1)过M 作MR ⊥AD ,垂足为R ,则MR ⊥平面ABCD .连结RN ,则RN ⊥AD .过M 、N 分别作MQ ⊥DD 1,NP ⊥CD ,垂足分别为Q 、P .因为MD 1=ND ,所以MQ ∥RD ∥NP ,MQ =RD =NP ,故MNPQ 是平行四边形.所以MN ∥PQ ,从而MN ∥平面CDD 1C 1. (2)∵AD ⊥RN ,∴AD ⊥MN (三垂线定理). (3)MN 2=MR 2+RN 2=…=(x -22)2+21. 当x =22即M 、N 分别为AD 1、BD 的中点时,MN min =22.18.(1)(2)由(1)知A 到平面PBC 的距离就是点D 到平面PBC 的距离.第15题图解∵⇒⎭⎬⎫⊥⊥AC AD AC PA ∠PAD 为二面角P —AC —B 的平面角,∴∠PAD =60°.又∵PA =BC =2a ,∴在Rt △PDA 中,可求得PD =3a ,AD =a ,过D 作DE ⊥BC ,垂足为E ,连PE ,则BC ⊥平面PDE .∴面PBC ⊥面PDE ,交线为PE ,过D 作DF ⊥PE ,垂足为F , 则DF 即为D 到平面PBC 的距离.在Rt △PDE 中,PD =3a ,DE =a ,∴PE =2a .由PE ·DF =DE ·PD ,得DF =a PE DE PD 23=⋅, 即点A 到平面PBC 的距离为.23a 19.AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG ,EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证,EF ∥GH . ∴截面EFGH 是平行四边形设AB =a ,CD =b ,∠FGH =α(a ,b ,α均为定值其中α为异面直线AB 与CD 所成的角) 又设FG =x ,GH =y ,由平面几何知识,得.,BC BG b y CB CG a x == 两式相加得1=+b y a x 即)(x a aby -=.∴S EFGH =FG ·GH ·sin α=x ·ab(a -x )·sin α=)(sin x a x a b -⋅α.∵x >0,a -x >0且x +(a -x )=a 为定值. ∴当且仅当x =a -x 即x =2a时, (SEFGH )max =4sin αab , 故当截面EFGH 的顶点E ,F ,G ,H 为棱AD ,AC ,BC ,BD 的中点时,截面面积最大.。
高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(第1题图)FGGCDECDEFDE B 1A 1C 1C AB M (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。
分析:连MD交GF于H,易证EH是△AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC 的中点。
求证:PA ∥平面BDE7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;分析:连B1C交BC1于点E,易证ED是ABCDEFGM△B1AC的中位线8、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,90, BAD FAB BC ∠=∠=//=12AD,BE//=12AF,,G H分别为,FA FD的中点(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ),,,C D F E四点是否共面?为什么?(.3)利用平行四边形的性质9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O//平面A1BC1;分析:连D1B1交A1C1于O1点,易证四边形OBB1O1是平行四边形实用标准文案PEDCBA 10、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E . 求证:AE ∥平面PBC ;分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(I )证法一:因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=︒, 所以90,EGF ABC ∠=︒∆∽.EFG ∆ 由于AB=2EF ,因此,BC=2FC ,连接AF ,由于FG//BC ,BC FG 21=在ABCD Y 中,M 是线段AD 的中点,则AM//BC ,且BC AM 21=因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。
又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM//平面AB 。
(4)利用对应线段成比例12、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =NDBN, 求证:MN ∥平面SDC分析:过M 作ME//AD ,过N 作NF//AD 利用相似比易证MNFE 是平行四边形13、如图正方形ABCD 与ABEF 交于AB ,M ,N 分别为AC 和BF 上的点且AM=FN 求证:MN ∥平面BEC分析:过M 作MG//AB ,过N 作NH/ABEBC DMN利用相似比易证MNHG 是平行四边形(5)利用面面平行14、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=o,PB=BC=CA ,E 为PC的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN//EFB直线、平面平行的判定及其性质 经典题(附详细解答)一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=I 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BC ≥+ B .()12MN AC BC ≤+C .()12MN AC BC =+ D .()12MN AC BC <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则DCABB 1A 1C 1四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC 的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .参考答案一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的 2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=I则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .8. ①③ 【提示】对于①,面MNP//面AB,故AB//面MNP .对于③,MP//AB,故AB//面MNP ,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP .9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE.三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,ΘD 为AC 中点,∴PD//C B 1.又ΘPD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1)Θ M 、N 分别是CD 、CB 的中点,∴MN//BD又ΘBB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点Θ四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC1⊄面EB1D1,EO⊂面EB1D1,所以AC1//面EB1D1(法2)作BB1中点为H点,连接AH、C1H,E、H点为AA1、BB1中点,所以EH//C1D1,则四边形EHC1D1是平行四边形,所以ED1//HC1又因为EA//B1H,则四边形EAHB1是平行四边形,所以EB1//AHΘAH⋂HC1=H,∴面AHC1//面EB1D1.而AC1⊂面AHC1,所以AC1//面EB1D1(3)因为EA//B1H,则四边形EAHB1是平行四边形,所以EB1//AH因为AD//HG,则四边形ADGH是平行四边形,所以DG//AH,所以EB1//DG又ΘBB1//DD1,∴四边形BB1D1D是平行四边形. 所以BD//B1D1.ΘBD⋂DG=G,∴面EB1D1//面BDG。