宁夏中考数学试题及答案-中考.doc
- 格式:doc
- 大小:126.50 KB
- 文档页数:133
宁夏回族自治区2018年中考数学试卷说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-1【专题】计算题;实数.【分析】原式利用绝对值的代数意义,算术平方根定义计算即可求出值.【解答】故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a6【专题】计算题.【分析】根据单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、(-a)3=-a3,错误;B、(a2)3=a6,错误;C、a2÷a-2=a4,错误;D、(-2a3)2=4a6,正确;故选:D.【点评】本题考查了整式的除法,单项式的乘法,是基础题,熟记运算法则是解题的关键.3.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.5【专题】常规题型;统计的应用.【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【解答】解:将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,故选:C.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.【专题】方程思想.解得c=1;故选:A.【点评】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=507【专题】方程思想;一元二次方程及应用.【分析】设这两年的年利润平均增长率为x,根据2018年初及2020年初的利润,即可得出关于x的一元二次方程,此题得解.【解答】解:设这两年的年利润平均增长率为x,根据题意得:300(1+x)2=507.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π【专题】几何图形.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得解得r=10.故小圆锥的底面半径为10.故选:A.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°【专题】常规题型.【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答】解:由题意可得:∠1=∠3=∠4=40°,故选:D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是【专题】函数及其图象.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是长方体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是长方体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .【专题】常规题型;概率及其应用.【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【解答】解:∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.10.已知m+n=12,m-n=2,则m2-n2= .【专题】计算题.【分析】根据平方差公式解答即可.【解答】解:∵m+n=12,m-n=2,∴m2-n2=(m+n)(m-n)=2×12=24,故答案为:24【点评】此题考查平方差公式,关键是根据平方差公式的形式解答.11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)【专题】反比例函数及其应用.【分析】利用反比例函数图象上点的坐标特征可求出k值,再利用反比例函数的性质,即可得出:这个函数图象所在的每个象限内,y的值随x值的增大而减小.【解答】∴k=1×4=4,∴这个函数图象所在的每个象限内,y的值随x值的增大而减小.故答案为:减小.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,利用反比例函数图象上点的坐标特征求出k值是解题的关键.12.已知:,则的值是 .专题】计算题.【分析】根据等式的性质,可用a表示b,根据分式的性质,可得答案.13.关于x的方程有两个不相等的实数根,则c的取值范围是 .【专题】方程与不等式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程2x2-3x+c=0有两个不相等的实数根,∴△=(-3)2-4×2c=9-8c>0,【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数的图象经过点M,交AC于点N,则MN的长度是 .【专题】反比例函数及其应用;矩形菱形正方形.【分析】根据矩形的性质,可得M点坐标,根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得N点坐标,根据待定系数法,可得答案.【解答】解:由四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,得M(8,3),N点的纵坐标是6.将M点坐标代入函数解析式,得k=8×3=24,故答案为:5.【点评】本题考查了矩形的性质,利用矩形的性质得出M点坐标是解题关键,又利用了待定系数法求函数解析式,自变量与函数值的对应关系求出N点坐标,勾股定理求MN的长.15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.【专题】几何图形.【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B的度数,根据正弦的定义计算即可.【解答】解:作CE⊥AB于E,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,故答案为:18.【点评】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 张A8的纸.【专题】推理填空题.【分析】根据题意可以得到一张A4的纸可以裁2张A5的纸,以此类推,得到答案. 【解答】解:由题意得,一张A4的纸可以裁2张A5的纸 一张A5的纸可以裁2张A6的纸 一张A6的纸可以裁2张A7的纸 一张A7的纸可以裁2张A8的纸, ∴一张A4的纸可以裁24=16张A8的纸, 故答案为:16.【点评】本题考查的是图形的变化规律,根据题意正确找出图形变化过程中存在的规律是解题的关键.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x【专题】常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】∵解不等式①得:x≤-1,解不等式②得:x>-7,∴原不等式组的解集为-7<x≤-1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.先化简,再求值:;其中,.【专题】计算题.【分析】根据分式的运算法则即可求出答案.【解答】【点评】本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.19.已知:△ABC三个顶点的坐标分别为A(-2,-2),B(-5,-4),C(-1,-5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.【专题】作图题.【分析】(1)利用关于y轴对称点的性质得出对应点得出即可;(2)利用位似图形的性质得出对应点坐标进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求;B2(10,8)【点评】此题主要考查了位似变换与轴对称变换,得出对应点位置是解题关键.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.【专题】常规题型;统计与概率.【分析】(1)先根据A组频数及其频率求得总人数,再用总人数乘以B组的频率即可得a的值,从而补全条形图;(2)用总人数乘以A、B组频率之和可得;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵被调查的学生总人数为20÷0.05=400,∴a=400×0.3=120,补全图形如下:(2)每天户外体育活动的时间不足1小时的学生大约有8000×(0.05+0.3)=2800(名);(3)画树状图为:共有12种等可能的结果数,其中抽到1名男生和1名女生的可能性有6种.【点评】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N. (1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.【专题】几何图形.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)根据全等三角形的性质和三角函数解答即可.【解答】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3∴△ABE≌△BCN(ASA);(2)∵N为AB中点,【点评】此题考查正方形的性质,关键是根据正方形的性质和全等三角形的判定解答.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?【专题】方程思想;分式方程及应用;一元一次不等式(组)及应用.【分析】(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)【专题】图形的相似.【分析】(1)连接OC,由PC为圆的切线,利用切线的性质得到∠OCP为直角,利用等边对等角及外角性质求出所求即可;(2)连接AD,由D为弧AB的中点,利用等弧所对的圆周角相等,再由公共角相等,得到三角形ACD与三角形EAD相似,由相似得比例求出AD的长,进而求出AB的长,求出OA的长,求出面积即可.【解答】解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∴S⊙O=π•OA2=10π=31.4.【点评】此题考查了相似三角形的判定与性质,垂径定理,圆周角定理,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.【专题】二次函数图象及其性质.【分析】(1)利用待定系数法求抛物线解析式;(2)利用割补法求ABC的面积.【解答】解:设线段AB所在直线为:y=kx+b解得AB解析式为:∴CD=CE-DE=2【点评】本题为二次函数纯数学问题,考查二次函数待定系数法、用割补法求三角形面积.解答时注意数形结合.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y 轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)【专题】代数几何综合题.【分析】(1)根据有序数组(x,y,z)的定义即可判断;(2)根据有序数组(x,y,z)的定义,结合图形即可判断;(3)探究观察寻找规律,利用规律即可解决问题;(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy),欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).求出各个表面积即可判断;【解答】解:(1)这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为2×3×2=2个,故答案为(2,3,2),12;(2)正确的有①②⑤.故答案为①②⑤;(3)S(x,y,z)=2yzS1+2xzS2+2xyS3=2(yzS1+xzS2+xyS3).(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而S(1,1,12)=128,S(1,2,6)=100,S(1,3,4)=96,S(2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3),最小面积为S(2,2,3)=92.【点评】本题考查几何变换综合题、空间直角坐标系、有序数组(x,y,z)的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会从特殊到一般的探究规律的方法,属于中考创新题目.26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.【专题】综合题.【分析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.【解答】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,【点评】此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
2017 年宁夏中考数学试卷一、选择题:本大题共 8 个小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,只有一项是符合题目要求的 .1.(3 分)下列各式计算正确的是( )6÷ a 2 3.(﹣ 3)2 6.326 A .4a ﹣a=3 B .a =a Ca =a D a ?a =a2.(3 分)在平面直角坐标系中,点( 3,﹣ 2)关于原点对称的点是( )A .(﹣ 3,2)B .(﹣ 3,﹣ 2)C .( 3,﹣ 2)D .(3,2)3.(3 分)学校国旗护卫队成员的身高分布如下表:身高 /cm 159 160 161 162 人数7109 9则学校国旗护卫队成员的身高的众数和中位数分别是()A .160 和 160B .160 和 160.5C . 160 和 161D .161 和 1614.(3 分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( )A .第一天B .第二天C .第三天D .第四天5.(3 分)关于 x 的一元二次方程( a ﹣ 1)x 2 +3x ﹣2=0 有实数根,则 a 的取值范围是() A .B .C .且 a ≠1 D .且 a ≠16.(3 分)已知点 A (﹣ 1,1),B (1,1),C (2,4)在同一个函数图象上,这 个函数图象可能是()A.B.C.D.7.(3 分)如图,从边长为 a 的大正方形中剪掉一个边长为 b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)8.(3 分)圆锥的底面半径r=3,高 h=4,则圆锥的侧面积是()A.12πB.15πC.24πD.30π二、填空题(每题 3 分,满分 24 分,将答案填在答题纸上)9.(3 分)分解因式: 2a2﹣8=.10.( 3 分)实数 a 在数轴上的位置如图,则 | a﹣| =.11.( 3 分)如图所示的圆形纸板被等分成10 个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.12.(3 分)某种商品每件的进价为80 元,标价为 120 元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.13.(3 分)如图,将平行四边形 ABCD沿对角线 BD 折叠,使点 A 落在点 A'处.若∠ 1=∠2=50°,则∠ A'为.14.( 3 分)在△ ABC中, AB=6,点 D 是 AB 的中点,过点 D 作 DE∥ BC,交 AC 于点 E,点 M 在 DE上,且 ME= DM.当 AM⊥BM 时,则 BC的长为.15.( 3 分)如图,点 A,B,C 均在 6×6 的正方形网格格点上,过A,B,C 三点的外接圆除经过A,B,C 三点外还能经过的格点数为.16.( 3 分)如图是由若干个棱长为 1 的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是.三、解答题(本大题共 6 小题,共 36 分.解答应写出文字说明、证明过程或演算步骤 .)17.( 6 分)解不等式组:.18.( 6 分)解方程:﹣=1.19.( 6 分)校园广播主持人培训班开展比赛活动,分为A、 B、 C、 D 四个等级,对应的成绩分别是 9 分、 8 分、 7 分、 6 分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级 A 的 4 人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?20.( 6 分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A(2,3),B (1,1),C(5,1).(1)把△ ABC平移后,其中点 A 移到点 A1( 4,5),画出平移后得到的△ A1B1C1;(2)把△ A1B1C1绕点 A1按逆时针方向旋转 90°,画出旋转后的△ A2 B2C2.21.( 6 分)在△ ABC中, M 是 AC 边上的一点,连接BM.将△ ABC沿 AC翻折,使点 B 落在点 D 处,当 DM∥AB 时,求证:四边形ABMD 是菱形.22.( 6 分)某商店分两次购进A、 B 两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求 A、B 两种商品每件的进价分别是多少元?(2)商场决定A 种商品以每件 30 元出售,B 种商品以每件 100 元出售.为满足市场需求,需购进 A、B 两种商品共 1000 件,且 A 种商品的数量不少于 B 种商品数量的 4 倍,请你求出获利最大的进货方案,并确定最大利润.四、解答题(本大题共 4 小题,共 36 分.解答应写出文字说明、证明过程或演算步骤 .)23.( 8 分)将一副三角板 Rt△ABD 与 Rt△ACB(其中∠ ABD=90°,∠ D=60°,∠ACB=90°,∠ABC=45°)如图摆放, Rt△ABD 中∠ D 所对直角边与 Rt△ACB斜边恰好重合.以 AB 为直径的圆经过点 C,且与 AD 交于点 E,分别连接 EB,EC.(1)求证: EC平分∠ AEB;(2)求的值.24.(8 分)直线 y=kx+b 与反比例函数 y= ( x>0)的图象分别交于点 A(m,3)和点 B(6,n),与坐标轴分别交于点 C 和点 D.(1)求直线 AB 的解析式;(2)若点 P 是 x 轴上一动点,当△ COD与△ ADP相似时,求点 P 的坐标.25.( 10 分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查 2000 户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每32 33 34 35 36 37 38 39 40 41 42 43月用水及及量( m3)其其以以下上户数200 16 180 220 240 210 190 100 170 120 100 110 (户)0(1)为确保 70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?( 2)若将( 1)中确定的基本用水量及其以内的部分按每立方米 1.8 元交费,超过基本用水量的部分按每立方米 2.5 元交费.设 x 表示每户每月用水量(单位:m3), y 表示每户每月应交水费(单位:元),求 y 与 x 的函数关系式;(3)某户家庭每月交水费是 80.9 元,请按以上收费方式计算该家庭当月用水量是多少立方米?26.( 10 分)在边长为 2 的等边三角形 ABC中, P 是 BC边上任意一点,过点P分别作PM⊥A B,PN⊥AC, M 、N 分别为垂足.(1)求证:不论点 P 在 BC边的何处时都有 PM+PN 的长恰好等于三角形 ABC一边上的高;(2)当 BP 的长为何值时,四边形 AMPN 的面积最大,并求出最大值.2017 年宁夏中考数学试卷参考答案与试题解析一、选择题:本大题共 8 个小题,每小题 3 分,共 24 分.在每小题给出的四个选 项中,只有一项是符合题目要求的 . 1.(3 分)下列各式计算正确的是()6÷ a 23.(﹣ 3) 26.326A .4a ﹣a=3B .a =a Ca =a D a ?a =a【解答】 解: A 、系数相加字母及指数不变,故 A 不符合题意; B 、同底数幂的除法底数不变指数相减,故B 不符合题意;C 、积的乘方等于乘方的积,故 C 符合题意;D 、同底数幂的乘法底数不变指数相加,故D 不符合题意;故选: C .2.(3 分)在平面直角坐标系中,点( 3,﹣ 2)关于原点对称的点是()A .(﹣ 3,2)B .(﹣ 3,﹣ 2)C .( 3,﹣ 2)D .(3,2)【解答】 解:点( 3,﹣ 2)关于原点对称的点的坐标是(﹣ 3,2),故选: A .3.(3 分)学校国旗护卫队成员的身高分布如下表:身高 /cm 159 160 161 162 人数7109 9则学校国旗护卫队成员的身高的众数和中位数分别是()A .160 和 160B .160 和 160.5C . 160 和 161D .161 和 161 【解答】 解:数据 160 出现了 10 次,次数最多,众数是: 160cm ; 排序后位于中间位置的是 161cm ,中位数是: 161cm . 故选: C .4.(3 分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天【解答】解:由图象中的信息可知,利润 =售价﹣进价,利润最大的天数是第二天,故选: B.5.(3 分)关于 x 的一元二次方程( a﹣ 1)x2 +3x﹣2=0 有实数根,则 a 的取值范围是()A.B.C.且a≠1D.且a≠1【解答】解:根据题意得 a≠1 且△ =32﹣ 4( a﹣ 1) ?(﹣ 2)≥0,解得 a≥﹣且 a≠1.故选: D.6.(3 分)已知点A(﹣ 1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【解答】解:∵ A(﹣ 1,1),B(1,1),∴ A 与 B 关于 y 轴对称,故 C,D 错误;∵ B( 1, 1),C(2,4),当 x>0 时, y 随 x 的增大而增大,而 B(1,1)在直线 y=x 上, C(2,4)不在直线 y=x 上,所以图象不会是直线,故 A 错误;故 B 正确.故选: B.7.(3 分)如图,从边长为 a 的大正方形中剪掉一个边长为 b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是( a+b)(a﹣b).则 a2﹣b2=(a+b)(a﹣b).故选: D.8.(3 分)圆锥的底面半径r=3,高 h=4,则圆锥的侧面积是()A.12πB.15πC.24πD.30π【解答】解:由勾股定理得:母线l===5,∴S侧= ?2πr?l=πrl=×π3×5=15π.故选: B.二、填空题(每题 3 分,满分 24 分,将答案填在答题纸上)9.(3 分)分解因式: 2a2﹣8= 2(a+2)( a﹣ 2).【解答】解: 2a2﹣ 8=2(a2﹣4),=2(a+2)(a﹣ 2).故答案为: 2(a+2)( a﹣ 2).10.( 3 分)实数 a 在数轴上的位置如图,则 | a﹣| =﹣a.【解答】解:∵ a<0,∴a﹣< 0,则原式 = ﹣a,故答案为:﹣ a11.( 3 分)如图所示的圆形纸板被等分成10 个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【解答】解:由题意可得:阴影部分有 4 个小扇形,总的有10 个小扇形,故飞镖落在阴影区域的概率是:=.故答案为:.12.(3 分)某种商品每件的进价为80 元,标价为 120 元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为4元.【解答】解:设该商品每件销售利润为x 元,根据题意,得80+x=120× 0.7,解得 x=4.答:该商品每件销售利润为 4 元.故答案为 4.13.(3 分)如图,将平行四边形 ABCD沿对角线 BD 折叠,使点 A 落在点 A'处.若∠ 1=∠2=50°,则∠ A'为 105° .【解答】解:∵ AD∥BC,∴∠ ADB=∠DBG,由折叠可得∠ ADB=∠BDG,∴∠ DBG=∠BDG,又∵∠ 1=∠BDG+∠DBG=50°,∴∠ ADB=∠BDG=25°,又∵∠ 2=50°,∴△ ABD中,∠ A=105°,∴∠ A'=∠A=105°,故答案为: 105°.14.( 3 分)在△ ABC中, AB=6,点 D 是 AB 的中点,过点 D 作 DE∥ BC,交AC 于点 E,点 M 在 DE上,且 ME= DM.当 AM⊥BM 时,则 BC的长为 8 .【解答】解:∵ AM⊥ BM,点 D 是 AB 的中点,∴ DM=AB=3,∵ME= DM,∴ME=1,∴DE=DM+ME=4,∵D 是 AB 的中点,DE∥BC,∴ BC=2DE=8,故答案为: 8.15.( 3 分)如图,点 A,B,C 均在 6×6 的正方形网格格点上,过 A,B,C 三点的外接圆除经过 A,B,C 三点外还能经过的格点数为 5 .【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以 O 为圆心、 OA 为半径作圆,则⊙ O 即为过 A,B,C 三点的外接圆,由图可知,⊙ O 还经过点 D、E、F、G、H 这 5 个格点,故答案为: 5.16.( 3 分)如图是由若干个棱长为 1 的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是22.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4 个小正方体,第二层有 1 个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5 个.∴这个几何体的表面积是5×6﹣8=22,故答案为 22.三、解答题(本大题共 6 小题,共 36 分.解答应写出文字说明、证明过程或演算步骤 .)17.( 6 分)解不等式组:.【解答】解:,由①得: x≤8,由②得: x>﹣ 3,则不等式组的解集为﹣ 3<x≤8.18.( 6 分)解方程:﹣=1.【解答】解:(x+3)2﹣ 4( x﹣ 3) =( x﹣3)(x+3)x2+6x+9﹣ 4x+12=x2﹣9,x=﹣ 15,检验: x=﹣ 15 代入( x﹣3)(x+3)≠ 0,∴原分式方程的解为: x=﹣15,19.( 6 分)校园广播主持人培训班开展比赛活动,分为A、 B、 C、 D 四个等级,对应的成绩分别是9 分、 8 分、 7 分、 6 分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级 A 的 4 人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?【解答】解:(1)4÷ 10%=40(人),C 等级的人数 40﹣4﹣16﹣8=12(人),C 等级的人数所占的百分比12÷ 40=30%.两个统计图补充如下:(2) 9× 10%+8×40%+7×30%+6×20%=7.4(分);(3)列表为:男 1 男 2 女 1 女 2男 1 ﹣﹣男2男1 女1男1 女2男1男 2 男1男2 ﹣﹣女1男2 女2男2女 1 男1女1 男2女1 ﹣﹣女2女1女 2 男1女2 男2女2 女1女2 ﹣﹣由上表可知,从 4 名学生中任意选取 2 名学生共有 12 种等可能结果,其中恰好选到 1 名男生和 1 名女生的结果有 8 种,所以恰好选到 1 名男生和 1 名女生的概率 P= =.20.( 6 分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A(2,3),B (1,1),C(5,1).(1)把△ ABC平移后,其中点 A 移到点 A1( 4,5),画出平移后得到的△ A1B1C1;(2)把△ A1B1C1绕点 A1按逆时针方向旋转 90°,画出旋转后的△ A2 B2C2.【解答】解:(1)如图,△ A1B1C1即为所求;( 2)如图,△ A2 B2C2即为所求.21.( 6 分)在△ ABC中, M 是 AC 边上的一点,连接 BM.将△ ABC沿 AC翻折,使点 B 落在点 D 处,当 DM∥AB 时,求证:四边形 ABMD 是菱形.【解答】证明:∵ AB∥ DM,∴∠ BAM=∠AMD,∵△ ADC是由△ ABC翻折得到,∴∠ CAB=∠CAD, AB=AD, BM=DM,∴∠ DAM=∠ AMD,∴DA=DM=AB=BM,∴四边形 ABMD 是菱形.22.( 6 分)某商店分两次购进A、 B 两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求 A、B 两种商品每件的进价分别是多少元?(2)商场决定A 种商品以每件 30 元出售,B 种商品以每件 100 元出售.为满足市场需求,需购进 A、B 两种商品共 1000 件,且 A 种商品的数量不少于 B 种商品数量的 4 倍,请你求出获利最大的进货方案,并确定最大利润.【解答】解:(1)设 A 种商品每件的进价为 x 元, B 种商品每件的进价为 y 元,根据题意得:,解得:.答: A 种商品每件的进价为20 元, B 种商品每件的进价为80 元.(2)设购进 B 种商品 m 件,获得的利润为 w 元,则购进 A 种商品( 1000﹣ m)件,根据题意得: w=(30﹣ 20)(1000﹣m)+(100﹣ 80)m=10m+10000.∵ A 种商品的数量不少于 B 种商品数量的 4 倍,∴ 1000﹣ m≥4m,解得: m≤ 200.∵在 w=10m+10000 中, k=10>0,∴ w 的值随 m 的增大而增大,∴当 m=200 时, w 取最大值,最大值为 10×200+10000=12000,∴当购进 A 种商品 800 件、B 种商品 200 件时,销售利润最大,最大利润为 12000 元.四、解答题(本大题共 4 小题,共 36 分.解答应写出文字说明、证明过程或演算步骤 .)23.( 8 分)将一副三角板 Rt△ABD 与 Rt△ACB(其中∠ ABD=90°,∠D=60°,∠ ACB=90°,∠ABC=45°)如图摆放, Rt△ABD 中∠ D 所对直角边与 Rt△ACB斜边恰好重合.以 AB 为直径的圆经过点 C,且与 AD 交于点 E,分别连接 EB,EC.( 1)求证: EC平分∠ AEB;( 2)求的值.【解答】(1)证明:∵ Rt△ACB中,∠ ACB=90°,∠ ABC=45°,∴∠ BAC=∠ABC=45°,∵∠ AEC=∠ABC,∠ BEC=∠ BAC,∴∠ AEC=∠BEC,即 EC平分∠ AEB;(2)解:如图,设 AB 与 CE交于点M.∵ EC平分∠ AEB,∴ = .在 Rt△ABD 中,∠ ABD=90°,∠D=60°,∴∠ BAD=30°,∵以 AB 为直径的圆经过点 E,∴∠ AEB=90°,∴ tan∠ BAE= = ,∴AE= BE,∴= = .作 AF⊥ CE于 F, BG⊥ CE于 G.在△ AFM 与△ BGM 中,∵∠ AFM=∠BGM=90°,∠ AMF=∠BMG,∴△ AFM∽△ BGM,∴==,∴== =.方法 2、如图 1,在 Rt△ABD 中,∠ ABD=90°,∠D=60°,∴∠ BAD=30°,∵以 AB 为直径的圆经过点 E,∴∠ AEB=90°,∴tan∠ BAE= = ,∴AE= BE,过点 C 作 CP⊥ AE于 P,过点 C 作 CQ⊥EB交延长线于Q,由( 1)知, EC是∠ AEB的角平分线,∴CP=CQ,∴===.24.(8 分)直线 y=kx+b 与反比例函数 y= ( x>0)的图象分别交于点A(m,3)和点 B(6,n),与坐标轴分别交于点 C 和点 D.(1)求直线 AB 的解析式;(2)若点 P 是 x 轴上一动点,当△ COD与△ ADP相似时,求点 P 的坐标.【解答】解:(1)∵ y=kx+b 与反比例函数 y= (x>0)的图象分别交于点A(m,3)和点 B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线 AB 的解析式为 y=﹣x+4(2)如图①当 PA⊥OD 时,∵ PA∥OC,∴△ ADP∽△ CDO,此时 p(2,0).②当 AP′⊥CD时,易知△ P′DA∽△ CDO,∵直线 AB 的解析式为 y=﹣x+4,∴直线 P′A的解析式为 y=2x﹣1,令 y=0,解得 x= ,∴P′(,0),综上所述,满足条件的点 P 坐标为( 2,0)或(,0).25.( 10 分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000 户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每32 33 34 35 36 37 38 39 40 41 42 43第21页(共 24页)月用水及及量( m3)其其以以下上户数200 160 180 220 240 210 190 100 170 120 100 110 (户)(1)为确保 70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?( 2)若将( 1)中确定的基本用水量及其以内的部分按每立方米 1.8 元交费,超过基本用水量的部分按每立方米 2.5 元交费.设 x 表示每户每月用水量(单位:m3), y 表示每户每月应交水费(单位:元),求 y 与 x 的函数关系式;(3)某户家庭每月交水费是 80.9 元,请按以上收费方式计算该家庭当月用水量是多少立方米?【解答】解:(1)200+160+180+220+240+210+190=1400(户),2000×70%=1400(户),∴基本用水量最低应确定为多38m3.答:为确保 70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为 38 立方米.(2)设 x 表示每户每月用水量(单位: m3), y 表示每户每月应交水费(单位:元),当 0≤x≤ 38 时, y=1.8x;当 x>38 时, y=1.8×38+2.5(x﹣38) =2.5x﹣26.6.综上所述: y 与 x 的函数关系式为y=.(3)∵ 1.8×38=68.4(元), 68.4<80.9,∴该家庭当月用水量超出 38 立方米.当 y=2.5x﹣ 26.6=80.9时,x=43.答:该家庭当月用水量是 43 立方米.26.( 10 分)在边长为 2 的等边三角形 ABC中, P 是 BC边上任意一点,过点P第22页(共 24页)分别作 PM ⊥A B ,PN ⊥AC , M 、N 分别为垂足.( 1)求证:不论点 P 在 BC 边的何处时都有 PM+PN 的长恰好等于三角形 ABC 一边上的高;( 2)当 BP 的长为何值时,四边形 AMPN 的面积最大,并求出最大值.【解答】 解:(1)连接 AP ,过 C 作 CD ⊥ AB 于 D ,∵△ ABC 是等边三角形,∴ AB=AC ,∵ S △ ABC =S △ABP +S △ ACP ,∴ AB?CD= AB?PM+ AC?PN ,∴ PM+PN=CD ,即不论点 P 在 BC 边的何处时都有 PM+PN 的长恰好等于三角形ABC 一边上的高;( 2)设 BP=x ,则 CP=2﹣ x ,∵△ ABC 是等边三角形, ∴∠ B=∠ C=60°,∵ PM ⊥ AB , PN ⊥AC ,∴ BM= x ,PM= x ,CN= ( 2﹣ x ),PN= ( 2﹣ x ),∴四边形 AMPN 的面积 = ×( 2﹣ x ) ? x+[ 2﹣ (2﹣x )] ?(2﹣x )﹣ x 2+ x+ =﹣ (x ﹣1)2+,=∴当 BP=1时,四边形 AMPN 的面积最大,最大值是 .第23页(共 24页)第24页(共 24页)。
宁夏回族自治区2020年初中毕业暨高中阶段招生考试数学试题(全卷总分120分,考试时间120分钟)一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1 C.=2a+1 D.a(a﹣3)=a2﹣3a2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.53.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.56.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>18.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.18.(6分)解不等式组:.19.(6分)先化简,再求值:(+)÷,其中a=.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.24.(8分)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.25.(10分)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:鞋号(正整数)22 23 24 25 26 27 …脚长(毫米)160±2 165±2 170±2 175±2 180±2 185±2 …为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据b n定义为[b n]如表2:序号n 1 2 3 4 5 6 …鞋号a n22 23 24 25 26 27 …脚长b n160±2 165±2 170±2 175±2 180±2 185±2 …脚长[b n] 160 165 170 175 180 185 …定义:对于任意正整数m、n,其中m>2.若[b n]=m,则m﹣2≤b n≤m+2.如:[b4]=175表示175﹣2≤b4≤175+2,即173≤b4≤177.(1)通过观察表2,猜想出a n与序号n之间的关系式,[b n]与序号n之间的关系式;(2)用含a n的代数式表示[b n];计算鞋号为42的鞋适合的脚长范围;(3)若脚长为271毫米,那么应购鞋的鞋号为多大?26.(10分)如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC 与DE交于点Q,其中AC=DF=,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?答案与解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1C.=2a+1 D.a(a﹣3)=a2﹣3a【知识考点】合并同类项;同底数幂的乘法;单项式乘多项式.【思路分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答过程】解:A、a3•a2=a5,所以A错误;B、3ab﹣2ab=ab,所以B错误;C、,所以C错误;D、a(a﹣3)=a2﹣3a,所以D正确;故选:D.【总结归纳】本题考查整式乘除法的简单计算,注意区分同底数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.5【知识考点】折线统计图;加权平均数;中位数;众数.【思路分析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.【解答过程】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,处在中间位置的一个数为2,因此中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.【总结归纳】此题考查了平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.3.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】画出树状图,找出所有的可能情况数以及能构成三角形的情况数,即可求出所求的概率.【解答过程】解:画树状图如图:共有24个等可能的结果,能组成三角形的结果有12个,∴能构成三角形的概率为=,故选:B.【总结归纳】本题考查了列表法与树状图法以及三角形的三边关系;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【知识考点】平行线的性质.【思路分析】过点G作HG∥BC∥EF,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC 都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答过程】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【总结归纳】本题主要考查了平行线的性质和三角形内角和定理,其中平行线的性质为:两直线平行,内错角相等;三角形内角和定理为:三角形的内角和为180°;其中正确作出辅助线是解本题的关键.5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF 并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.5【知识考点】三角形中位线定理;菱形的性质.【思路分析】连接对角线BD,交AC于点O,证四边形BDEG是平行四边形,得EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【解答过程】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13,EF∥BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴OB=OD==5,∴BD=2OD=10,∴EG=BD=10;故选:B.【总结归纳】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.6.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+【知识考点】等腰直角三角形;切线的性质;扇形面积的计算.【思路分析】连接CD,利用切线的性质和等腰直角三角形的性质求出CD的值,再分别计算出扇形ECF的面积和等腰三角形ACB的面积,用三角形的面积减去扇形的面积即可得到阴影部分的面积.【解答过程】解:连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形的面积和等腰直角三角形的性质.7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x 的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>1【知识考点】反比例函数与一次函数的交点问题.【思路分析】观察函数y1=x+1与函数的图象,即可得出当y1>y2时,相应的自变量x的取值范围.【解答过程】解:由一次函数和反比例函数的图象可知,当一次函数图象在反比例函数图象之上时,所对应的x的取值范围为﹣2<x<0或x>1,故答案为:﹣2<x<0或x>1.故选:D.【总结归纳】本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.8.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a【知识考点】几何体的表面积;由三视图判断几何体.【思路分析】由主视图和左视图的宽为a,结合两者的面积得出俯视图的长和宽,即可得出结论.【解答过程】解:∵,∴俯视图的长为a+1,宽为a,∴,故选:A.【总结归纳】本题考查了几何体的三视图,熟练掌握三视图与几何体的长、宽、高的关系,进而求得俯视图的长和宽是解答的关键.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答过程】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.【知识考点】抛物线与x轴的交点.【思路分析】根据二次函数y=﹣x2+2x+k的图象与x轴有两个交点,可知判别式△>0,列出不等式并解之即可求出k的取值范围.【解答过程】解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.【总结归纳】本题考查二次函数的判别式、解一元一次不等式,熟记二次函数的图象与判别式的三种对应关系并熟练运用是解答的关键.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.【知识考点】列表法与树状图法.【思路分析】列表得出所有情况,看取出的两张卡片上的数字之和为奇数的情况数占所有情况数的多少即可.【解答过程】解:列表得:4 5 64 9 105 9 116 10 11共有6种情况,取出的两张卡片上的数字之和为奇数的情况数为4种,∴两次抽出数字之和为奇数的概率为.故答案为:.【总结归纳】本题考查了列表法与列树状图法以及概率公式;得到取出的两张卡片上的数字之和为奇数的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.【知识考点】数学常识;垂径定理的应用.【思路分析】根据题意可得OE⊥AB,由垂径定理可得尺=5寸,设半径OA=OE=r,则OD=r﹣1,在Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解方程可得出木材半径,即可得出木材直径.【解答过程】解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.【总结归纳】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.【知识考点】一次函数的性质;一次函数图象上点的坐标特征;坐标与图形变化﹣旋转.【思路分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB﹣OA,即可得出答案.【解答过程】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB﹣OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【总结归纳】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.【知识考点】线段垂直平分线的性质;作图—复杂作图.【思路分析】由作图可得MN是线段AB的垂直平分线,BD是∠ABC的平分线,根据它们的性质可得∠A=∠ABD=∠CBD,再根据三角形内角和定理即可得解.【解答过程】解:由作图可得,MN是线段AB的垂直平分线,BD是∠ABC的平分线,∴AD=BD,,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∵∠A+∠ABC+∠C=180°,且∠C=84°,∴∠A+2∠ABD=180°﹣∠C,即3∠A=180°﹣84°,∴∠A=32°.故答案为:32.【总结归纳】本题考查了作图﹣复杂作图,解决本题的关键是掌握线段垂直平分线的作法和角平分线的作法.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.【知识考点】一元一次不等式组的应用.【思路分析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b 的取值范围,再取其中最大的整数值即可得出结论.【解答过程】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.【总结归纳】本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.【知识考点】数学常识;全等图形;勾股定理的证明.【思路分析】根据题意得出a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【解答过程】解:由题意可得在图1中:a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,∵(b﹣a)2=3a2﹣2ab+b2=3,∴15﹣2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【总结归纳】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.【知识考点】作图﹣轴对称变换;作图﹣位似变换.【思路分析】(1)将△ABC的各个点关于x轴的对称点描出,连接即可.(2)在△ABC同侧和对侧分别找到2OA=OA2,2OB=OB2,2OC=OC2所对应的A2,B2,C2的坐标,连接即可.【解答过程】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.综上所述:如图所示△A2B2C2为所求;【总结归纳】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.18.(6分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【解答过程】解:由①得:x≤2,由②得:x>﹣1,所以,不等式组的解集是﹣1<x≤2.【总结归纳】本题考查了不等式组的解法,关键是求出两个不等式的解,然后根据口诀求出不等式组的解集.19.(6分)先化简,再求值:(+)÷,其中a=.【知识考点】分式的化简求值.【思路分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,代入计算即可求出值.【解答过程】解:原式===当时,原式=.【总结归纳】本题考查了分式的化简求值,解题的关键是选择正确的计算方法,对通分、分解因式、约分等知识点熟练掌握.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设A种防疫物品每件x元,B种防疫物品每件y元,根据“如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,根据总价=单价×购买数量结合总费用不超过7000元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【解答过程】解:(1)设A种防疫物品每件x元,B种防疫物品每件y元,依题意,得:,解得:.答:A种防疫物品每件16元,B种防疫物品每件4元.(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,依题意,得:16m+4(600﹣m)≤7000,解得:m≤383,又∵m为正整数,∴m的最大值为383.答:A种防疫物品最多购买383件.【总结归纳】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.【知识考点】全等三角形的判定与性质;平行四边形的性质.【思路分析】在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明△AFE≌△DCE,根据全等的性质再证明AF=DC,从而证明AF=AB.【解答过程】证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.∴∠FEA=∠DEC,∠F=∠ECD.又∵EA=ED,∴△AFE≌△DCE.∴AF=DC.∴AF=AB.【总结归纳】本题考查平行四边形的性质及全等三角形等知识,是比较基础的证明题.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)【知识考点】用样本估计总体;频数(率)分布表;加权平均数.【思路分析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.【解答过程】解:(1)未使用节水龙头20天的日平均用水量为:×(0×0.05+4×0.15+2×0.25+4×0.35+10×0.45)=0.35(m3),使用了节水龙头20天的日平均用水量为:×(2×0.05+6×0.15+8×0.25+4×0.35)=0.22(m3);(2)365×(0.35﹣0.22)=365×0.13=47.45(m3),答:估计该家庭使用节水龙头后,一年能节省47.45m3水.【总结归纳】此题主要考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.【知识考点】圆周角定理;切线的判定与性质.【思路分析】(1)连接OE,证明OE∥BC,得∠AEO=∠B=90°,即可得出结论;(2)连接DE,先证明△DCE∽△ECB,得出=,易证∠ACB=60°,由角平分线定义得∠DCE=∠ACB=×60°=30°,由此可得的值,即可得出结果.【解答过程】(1)证明:连接OE,如图1所示:∵CE平分∠ACB,∴∠ACE=∠BCE,又∵OE=OC,∴∠ACE=∠OEC,∴∠BCE=∠OEC,∴OE∥BC,∴∠AEO=∠B,又∵∠B=90°,∴∠AEO=90°,即OE⊥AE,∵OE为⊙O的半径,∴AE是⊙O的切线;(2)解:连接DE,如图2所示:∵CD是⊙O的直径,∴∠DEC=90°,∴∠DEC=∠B,。
宁夏银川中考数学试卷及答案一、选择题1. 计算a 2+3a 2的结果是( )A .3a 2B .4a 2C .3a 4D .4a 42. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60,AD =2,则AB 的长是( )A .2B .4C .2 3D .4 33. 等腰梯形的上底是2cm,腰长是4cm,一个底角是60,则等腰梯形的下底是( )A .5cmB .6cmC .7cmD .8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A .⎩⎨⎧=+=+yx xy y x 188B .⎩⎨⎧+=++=+yx y x y x 1018108C .⎩⎨⎧=++=+yxy x y x 18108D .⎩⎨⎧=+=+yxy x y x )(1085. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的 平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A .文B .明C .城D .市6. 已知⊙O 1、⊙O 2的半径分别是r 1=3、r 2=5.若两圆相切,则圆心距O 1O 2的值是( )A .2或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:设两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则正确的选项是( )A .A x =B x ,2A S >2B S B .A x <B x ,2A S <2B SC .A x >B x ,2A S >2B SD .A x =B x ,2A S <2B S8. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90,得到△A BO ,176 175 174 171 174 170 173 171 174 182B 队 A 队 1号 2号 3号 4号 5号 O 第2题图ABCD 第5题图创 建 文 明 城市第8题图O ABxy那么点A 、B 的对应点的坐标是( ) A .A (-4,2)、B (-1,1)B .A (-4,1)、B (-1,2) C .A (-4,1)、B (-1,1)D .A (-4,2)、B (-1,2)二、填空题9. 分解因式:a 3-a =__________.10. 数轴上A 、B 两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C .则点C 所对应的实数为__________.11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是__________.12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为__________. 13. 某商场在促销活动中,将原价36元的商品,连续两次降价m %后售价为25元.根据题意可列方程为__________.14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D =35,则∠OAB 的度数是__________.15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为__________. 16. 如图是一个几何体的三视图,这个几何体的全面积为__________.(取3.14) 三、解答题17. 计算:23)31(30tan 320112---+︒--18. 解方程:2311+=--x x x19. 解不等式组⎩⎨⎧7-x3-x ≤1,8-x +22>3.第16题图2 2 22222左视图 俯视图主视图第15题图AE BCD第14题图O ABD20. 有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片.将其混合后,正面朝下放置在桌面上.从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况;(2)求出当S <2时的概率.21. 我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数 40 6048 36 16 频率0.2m0.240.180.08(1)本次问卷调查抽取的样本容量为__________,表中m 的值为__________;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.22. 已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,BE =DF ,BE ∥DF .求证:四边形ABCD 是平行四边形.23. 在△ABC 中,AB =AC .以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120,AB =2,求BC 的值.第22题图BCDAE F第21题图 非常了解 从未听说 不太了解 基本了解比较了解24. 在Rt △ABC 中,∠C =90,∠A =30,BC =2.若将此直角三角形的一条直角边BC 或AC与x 轴重合,使点A 或点B 刚好在反比例函数xy 6(x >0)的图象上时,设△ABC 在第一象限部分的面积分别记做S 1、S 2(如图1,图2所示),D 是斜边与y 轴的交点,通过计算比较S 1、S 2的大小.25. 甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1112千米/分钟,甲到达B 地立即返回,乙所乘冲锋舟在静水中的速度为712千米/分钟.已知A 、B 两地的距离为20千米,水流速度为112千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式; (2)甲、乙两人同时出发后,经过多少分钟相遇?26. 在等腰△ABC 中,AB =AC =5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N不与A 、C 重合),且MN ∥BC .将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P .O20y (千米) OCD AB xyS 1OAD BC xyS 2第23题图DA BC PO(1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y ,试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?参照答案一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. )1)(1(+-a a a ; 10. 4-2; 11. (0,1); 12. 40; 13. 36(1-2%)m =25; 14.35°; 15. 10; 16. 9.42. 三.解答题(共24分) 17.解: 原式=1-3×33+9-(2-3) ---------------------------4分 =1-3+9-2+3=8 ------------------------------------------ 6分18. 解:两边同乘)2)(1(+-x x ,得 )1(3)2)(1()2(-=+--+x x x x x ---2分 整理得:52=xABCMNP第26题图解得,25=x -----------------------------------------5分 经检验25=x 是原方程的根 -----------------------------------------6分19. 解:解①得 x ≥1 --------------------------------------2分 解②得 x <8 ---------------------------------------4分 ∴不等式组的解集为 1≤x <8 --------------------------------6分20.(1) 用列表法:x s y123456-2 -1 0 1 2 3 4 -1 0 1 2 3 4 5 1 234567或画树状图:--------------4分(2)由列表或画树状图知s 的所有可能情况有18种,其中S <2的有5种 ∴P(S <2)=185--------------------------------6分 四、解答题(共48分)21. 解:(1)抽取的样本容量为200,表中m 的值为0.3. ------ 2分(2)“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数为3600.272⨯= --------------------------4分(3)结合表中统计的数据,利用统计的语言叙述合理 ---------6分 22. (方法一)∵DF ∥BE ∴∠DFA =∠BEC∴∠DFC =∠BEA ……………………………………………………… 2分 在△ABE 和△CDF 中∵DF =BE ∠DFC =∠BEA AE=CF△ABE ≌△CDF (SAS ) ………………………………………………3分F ED CBA∴∠EAB =∠FCD; AB=CD ∴AB ∥CD∴四边形ABCD 是平行四边形 …………………………………………6分 (方法二)∵DF ∥BE∴∠DFA =∠BEC ……………………………………………………2分 ∵AE=CF∴AE+EF=CF+EF 即AF=CE 在△AFD 和△CEB 中∵DF =BE ∠DFA =∠BEC AF =CE∴△AFD ≌△CEB (SAS ) …………………………………………3分 ∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形………………………… 6分 23. (1)证明:连结OP ,则OP =OB . ∴∠OBP =∠OPB AB AC =,∴∠OBP =∠C .∴∠OPB =∠C∴OP ∥AC ……………………………… 3分∵PD ⊥AC , ∴∠DP ⊥OP . ∴PD 是⊙O 的切线. ……………………………… 5分 (2)连接AP ,则AP ⊥BC在Rt △APB 中 ∠ABP =30°∴BP =AB ×COS30°=3 ………………………………7分 ∴BC =2BP =23 …………………………………………8分24. 解:在Rt △ABC 中, ∵∠C=90°, ∠A =30°,BC =2 ∴AC=oBC30tan =23…1分 在图1中, ∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴OC=3, BO =2-3 ………………………………2分在Rt △BOD 中,∠DBO =60° DO=BO ×tan60°=332-…………………3分1s =21)(21=⋅+OC AC OD [32)332(+-]×3=3236- ………4分在图2中, ∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC=3, AO =23-3 ……………………… 5分 在Rt △AOD 中 ∠DAO =30° DO =AO×tan30°=(23-3)×33=2-3 ……………6分 2s =OC BC OD ⋅+)(21=21[2)32(+-]×33236-= ………………7分∴ 21s s = ………………………………………………………………8分 的另法:在图1中,过A 作AE ⊥y 轴于点E ,则矩形AEOC 面积为6∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴AE = OC =3在图2中,过B 作BE ⊥y 轴于点E ,则矩形BEOC 的面积为6∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC =3, AO =23-3 在Rt △AOD 中 ∠DAO =30° DO =AO ×tan30°=(23-3)×33=2-3 ∴DE =OE -OD =3 ∴△AED ≌△BED ∴S AED ∆= S BED ∆ ∵S 1=6- S AED ∆ 2S =6- S BED ∆ ∴S 1=2S 25. 解:(1)甲从A 地到B 地:x y =1211211-O DA BC MNP D O FEABCM N P即x y 65=……………………………… 2分 甲从A 地到达B 地所用时间: 20÷65=24(分钟)∴0≤x <24时,x y 65= …………………3分甲从B 地回到A 地所用时间:20÷(1211211+)=20(分钟)设甲从B 地回到A 地的函数关系式为k b kx y (+=≠0),将(24,20)、 (44,0)中的坐标分别代入k b kx y (+=≠0)得 k =-1,b =44∴24≤x ≤44时,44+-=x y …………… 6分(2)解法一:设甲、乙两人出发x 分钟后相遇,根据题意,得(x )121127-+()1211211+×(x -24)=20……………………………8分 解得 388=x ∴甲、乙两人出发388分钟后相遇 ……………10分解法二:乙从A 地到B 的的函数关系式为 x y 21=解方程组…………………………………………8分解得388=x ∴甲、乙两人出发388分钟后相遇 ……………10分26. 解:(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线 ∴ 当MN =21BC =3时, 点P 在BC 上 …………………………………2分 (2)由已知得△ABC 底边上的高h=2235-=4①当0<x ≤3时,如图,连接AP 并延长交BC 于点D ,AD 与MN 交于点O 由△AMN ∽△ABC ,得 AO =x 32 y = S PMN ∆= S AMN ∆=2313221x x x =⋅⋅ 即231x y =当x =3时,y 的值最大,最大值是3 ……………… 5分②当3<x <6时,设△PMN 与BC 相交于交于点E 、F ,AP 与BC 相交于D由①中知,AO =x 32 ∴AP =x 34 x y 21= 44+-=x yPD =AP -AD =434-x ∵△PEF ∽△ABC∴22)4434()(-==∆∆x AD PD S S ABCPEF 即9)3(2-=∆∆x S S ABC PEF ∵S ABC ∆=12 ∴S PEF ∆=2)3(34-x y = S PMN ∆- S PEF ∆=22)3(3431--x x =1282-+-x x ……………… 8分当4=x 时,y 的值最大,最大值是4……………………………………10分。
宁夏中考数学试卷一、选择题(每小题3分,共24分)1.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1062.下列各式中正确的是()A.=±2 B.=﹣3 C.=2 D.﹣=3.由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是()A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A 的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°6.如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=AD C.AC=BD D.∠ABD=∠CBD 7.函数y=和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.8.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π二、填空题(每小题3分,共24分)9.分解因式:2a3﹣8a=.10.计算:(﹣)﹣1+|2﹣|=.11.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为.12.已知一元二次方程3x2+4x﹣k=0有两个不相等的实数根,则k的取值范围.13.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为小时.14.如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.15.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.16.你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程x2+5x﹣14=0即x(x+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(x+x+5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得x=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程x2﹣4x﹣12=0的正确构图是.(只填序号)三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.18.(6分)解方程: +1=.19.(6分)解不等式组:.20.(6分)学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.21.(6分)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=AD,求tan∠AFE.22.(6分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.四、解答题(本共4道题,其中23、24题每题8分,25、28题每题10分,共38分)23.(8分)如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.(1)求证:OD∥BC;(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.24.(8分)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.25.(10分)在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?26.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.参考答案一、选择题(每小题3分,共24分)二、填空题(本题共8小题,每小题3分,共24分)9. 2a (a +2)(a ﹣2) 10.﹣;11. 4. 12. k >﹣. 13. 1.15. 14. 3. 15..16.②.三、解答题(本题共有6个小题,每小题6分,共36分)17.解:(1)如图所示,△A 1B 1C 1即为所求,其中点C 1的坐标为(﹣2,﹣1).(2)如图所示,△A 2B 2C 1即为所求. 18.解:+1=,方程两边同时乘以(x +2)(x ﹣1),得 2(x ﹣1)+(x +2)(x ﹣1)=x (x +2),∴x=4,将检验x=4是方程的解;∴方程的解为x=4;19.解:解不等式﹣≥1,得:x≥4,解不等式<x+2,得:x>﹣7,则不等式组的解集为﹣7<x≤4.20.解:(1)设每位男生的化妆费是x元,每位女生的化妆费是y元,依题意得:.解得:.答:每位男生的化妆费是20元,每位女生的化妆费是30元;(2)设男生有a人化妆,依题意得:≥42.解得a≤37.即a的最大值是37.答:男生最多有37人化妆.21.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∵EF⊥CE,∴∠FEC=90°,∴∠AFE+∠AEF=∠AEF+∠DEC=90°,∴∠AFE=∠DEC,在△AEF与△DCE中,,∴△AEF≌△DCE(AAS),∴AF=DE;(2)解:∵DE=AD,∴AE=DE,∵AF=DE,∴tan∠AFE==.22解:(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表如下:C A四、解答题(本共4道题,其中23、24题每题8分,25、28题每题10分,共38分)23.解:(1)证明∵AB=BC∴∠A=∠C∵OD=OA∴∠A=∠ADO∴∠C=∠ADO∴OD∥BC(2)如图,连接BD,∵∠A=30°,∠A=∠C∴∠C=30°∵DE为⊙O的切线,∴DE⊥OD∵OD∥BC∴DE⊥BC∴∠BED=90°∵AB为⊙O的直径∴∠BDA=90°,∠CBD=60°∴=tan∠C=tan30°=∴BD=CD∴=cos∠CBD=cos60°=∴BE=BD=CD∴=24.解:(1)∵与m轴相交于点P(,0),∴OB=,∵∠ABC=30°,∴OA=1,∴S==;(2)∵B(0,),A(1,0),设AB的解析式y=kx+b,∴,∴,∴y=﹣x+;(3)在移动过程中OB=﹣m,则OA=tan30°×OB=(﹣m)=1﹣m,∴s=×(﹣m)×(1﹣m)=﹣m+,(0≤m≤)当m=0时,s=,∴Q(0,).25.解:(1)400米跑道中一段直道的长度=(400﹣2×36×3.14)÷2=86.96 m(2)表格如下:y=2πx+400=6.28x+400;(3)当y=446时,即6.28x+400=446,解得:x≈7.32 m7.32÷1.2≈6 条∴最多能铺设道宽为1.2米的跑道6条.26.解:(1)∵MQ⊥BC,∴∠MQB=90°,∴∠MQB=∠CAB,又∠QBM=∠ABC,∴△QBM∽△ABC;(2)当BQ=MN时,四边形BMNQ为平行四边形,∵MN∥BQ,BQ=MN,∴四边形BMNQ为平行四边形;(3)∵∠A=90°,AB=3,AC=4,∴BC==5,∵△QBM∽△ABC,∴==,即==,解得,QM=x,BM=x,∵MN∥BC,∴=,即=,解得,MN=5﹣x,则四边形BMNQ的面积=×(5﹣x+x)×x=﹣(x﹣)2+,∴当x=时,四边形BMNQ的面积最大,最大值为.。
一、选择题<下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1、<2018•宁夏)计算a2+3a2的结果是< )A、3a2B、4a2C、3a4D、4a4考点:合并同类项。
分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、<2018•宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是< )b5E2RGbCAPA、2B、4C、2D、4考点:矩形的性质;等边三角形的判定与性质。
分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=AC,DO=BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴=tan30°,即=,∴AB=2.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、<2018•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是< )p1EanqFDPwA、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.DXDiTa9E3d解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.RTCrpUDGiT 4、<2018•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是< )5PCzVD7HxAA、B、C、D、考点:由实际问题抽象出二元一次方程组。
宁夏中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个选项是不等式2x-3>0的解集?A. x<1.5B. x>1.5C. x<-1.5D. x>-1.5答案:B2. 已知函数y=2x+1,当x=2时,y的值为:A. 5B. 4C. 3D. 2答案:A3. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm答案:A4. 计算下列哪个表达式的结果为0?A. 3×0C. 3+0D. 3-3答案:A5. 一个数的平方是16,那么这个数是:A. 4B. 8C. -4D. 4或-4答案:D6. 已知一个等腰三角形的两个底角相等,且每个底角的度数为45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A7. 计算下列哪个表达式的结果为-1?A. 1-2B. 2-3C. 3-4D. 4-5答案:A8. 一个长方形的长是10cm,宽是5cm,那么它的周长是:A. 30cmB. 20cmC. 15cm答案:A9. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 7cmC. 6cmD. 8cm答案:A10. 计算下列哪个表达式的结果为1?A. 1+0B. 0+1C. 1-0D. 0-1答案:A二、填空题(本题共5小题,每小题4分,共20分。
请将答案直接写在题后的横线上。
)1. 一个数的绝对值是5,那么这个数可能是________。
答案:±52. 圆的周长公式是________。
答案:2πr3. 一个直角三角形的两条直角边长分别为a和b,斜边长为c,根据勾股定理,c²=________。
答案:a²+b²4. 已知一个数的平方根是2,那么这个数是________。
2022宁夏回族自治区中考数学试题含答案解析WORD格式整理宁夏回族自治区2022年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。
总分值120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题〔此题共8小题,每题3分,共24分.在每题给出的四个选项中只有一个是符合题目要求的〕1.计算:的结果是A. 1B.C.0D.-12.以下运算正确的选项是 A.B. (a2)3=a5÷a-2=1D.〔-2a3〕2=4a6B. 30和25D. 30和17.5是方程x2-4x+c=0的一个根,那么c的值是B.C.D.A.15.某企业2022年初获利润300万元,到2022年初方案利润到达507万元.设这两年的年利润平均增长率为x.应列方程是 A.300〔1+x〕=5072B.300〔1+x〕=507D.300+300〔1+x〕+300〔1+x〕=50722C.300〔1+x〕+300〔1+x〕=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,那么这个圆锥的底面半径是 A.10B.20ππ7.将一个矩形纸片按如下图折叠,假设∠1=40°,那么∠°°°°专业技术参考资料WORD格式整理8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h〔cm〕与注水时间t〔s〕之间的函数关系图象大致是二、填空题〔此题共8小题,每题3分,共24分〕9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 . 10.m+n=12,m-n=2,那么m-n= .2211.反比例函数〔k是常数,k≠0〕的图象经过点〔1,4〕,那么这个函数图象所在的每个象限内,y的值随x值的增大而 .〔填“增大〞或“减小〞〕12.:,那么的值是 .有两个不相等的实数根,那么c的取值范围13.关于x的方程是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为〔8,6〕,M为BC中点,反比例函数是 .15.一艘货轮以的图象经过点M,交AC于点N,那么MN的长度㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的专业技术参考资料WORD格式整理东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,那么此时货轮与灯塔B的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪比照图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁张A8的纸.三、解答题〔此题共有6个小题,每题6分,共36分〕?x?3(x?1)?5?17.解不等式组:?x?3x?1?1??2 ?518.先化简,再求值:;其中,.19.:△ABC三个顶点的坐标分别为A〔-2,-2〕,B〔-5,-4〕,C〔-1,-5〕. 〔1〕画出△ABC关于x轴对称的△A1B1C1;〔2〕以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.专业技术参考资料WORD格式整理定学生每天户外动时间不少于1小时.为了解学生参加户外体育活动的情况,对局部学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表〔不完整〕. 请根据图表中的信息,解答以下问题:〔1〕表中的a=,将频数分布直方图补全;〔2〕该区8000名学生中,每天户外体育活动的时间缺乏1小时的学生大约有多少名?〔3〕假设从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率. 21.点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N. 〔1〕求证:△ABE≌△BCN;专业技术参考资料WORD格式整理〔2〕假设N为AB的中点,求tan∠ABE.22.某工厂方案生产一种创新产品,假设生产一件这种产品需A种原料1.2千克、B种原料1千克.A种原料每千克的价格比B种原料每千克的价格多10元. 〔1〕为使每件产品的本钱价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?〔2〕将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购置该产品的件数与用16000元通过零售价购置该产品的件数相同,那么这种产品的批发价是多少元?四、解答题〔此题共4道题,其中23、24题每题8分,25、26题每题10分,共36分〕 23.:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP. 〔1〕求∠P的度数;〔2〕假设点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.〔π取3.14〕24.抛物线线l,顶点为C.〔1〕求抛物线的解析式;经过点A 和点B〔0,3〕,且这个抛物线的对称轴为直〔2〕连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox〔水平向前〕、oy〔水平向右〕、oz〔竖直向上〕方向,这样的坐标系称为空间直角坐标系.专业技术参考资料。
宁夏中考数学试题解析版Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】2011年宁夏中考数学试卷一、选择题(每小题3分,共24分)1、(2011?宁夏)计算a2+3a2的结果是()A、3a2B、4a2C、3a4D、4a4考点:合并同类项。
分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、(2011?宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是()A、2B、4C、2√3D、4√3考点:矩形的性质;等边三角形的判定与性质。
分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=12AC,DO=12BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴ADAB=tan30°,即2AB=√33,∴AB=2√3.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、(2011?宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是()A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.4、(2011?宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、{x +y =8xy +18=yxB 、{x +y =8x +10y +18=10x +yC 、{x +y =810x +y +18=yxD 、{x +y =810(x +y )=yx考点:由实际问题抽象出二元一次方程组。
2021年宁夏中考数学试卷一、选择题〔以下每题所给的四个答案中只有一个是正确的,每题3分,共24分〕1.〔3分〕〔2021•宁夏〕以下计算正确的选项是〔〕A.B.=2 C.〔〕﹣1=D.〔﹣1〕2=22.〔3分〕〔2021•宁夏〕生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为〔〕A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣73.〔3分〕〔2021•宁夏〕如图,放置的一个机器零件〔图1〕,假设其主视图如〔图2〕所示,那么其俯视图为〔〕A.B.C.D.4.〔3分〕〔2021•宁夏〕某校10名学生参加“心理健康〞知识测试,他们得分情况如下表:人数 2 3 4 1分数80 85 90 95那么这10名学生所得分数的众数和中位数分别是〔〕A.95和85 B.90和85 C.90和87.5 D.85和87.55.〔3分〕〔2021•宁夏〕关于x的一元二次方程x2+x+m=0有实数根,那么m的取值范围是〔〕A.m≥B.m≤C.m≥D.m≤6.〔3分〕〔2021•宁夏〕如图,四边形ABCD是⊙O的内接四边形,假设∠BOD=88°,那么∠BCD的度数是〔〕A.88°B.92°C.106°D.136°7.〔3分〕〔2021•宁夏〕如图,某小区有一块长为18米,宽为6米的矩形空地,方案在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.假设设人行道的宽度为x米,那么可以列出关于x的方程是〔〕A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=08.〔3分〕〔2021•宁夏〕函数y=与y=﹣kx2+k〔k≠0〕在同一直角坐标系中的图象可能是〔〕A.B.C.D.二、填空题〔每题3分,共24分〕9.〔3分〕〔2021•宁夏〕因式分解:x3﹣xy2=.10.〔3分〕〔2021•宁夏〕从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,那么这个两位数能被3整除的概率是.11.〔3分〕〔2021•宁夏〕如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,假设A 点的坐标为〔﹣1,0〕,那么点C的坐标为.12.〔3分〕〔2021•宁夏〕扇形的圆心角为120°,所对的弧长为,那么此扇形的面积是.13.〔3分〕〔2021•宁夏〕如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.假设AB=2,∠BCD=30°,那么⊙O的半径为.14.〔3分〕〔2021•宁夏〕如图,在平面直角坐标系中,点A的坐标为〔0,4〕,△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,那么点B与其对应点B′间的距离为.15.〔3分〕〔2021•宁夏〕如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE 沿BE折叠,使点C恰好落在AD边上的点F处,那么CE的长为.16.〔3分〕〔2021•宁夏〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为.三、解答题〔每题6分,共36分〕17.〔6分〕〔2021•宁夏〕解方程:=1.18.〔6分〕〔2021•宁夏〕解不等式组.19.〔6分〕〔2021•宁夏〕为了解中考体育科目训练情况,某地从九年级学生中随机抽取了局部学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答以下问题:〔1〕请将两幅不完整的统计图补充完整;〔2〕如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?〔3〕从被抽测的学生中任选一名学生,那么这名学生成绩是D级的概率是多少?20.〔6分〕〔2021•宁夏〕在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,﹣4〕,B〔3,﹣2〕,C〔6,﹣3〕.〔1〕画出△ABC关于x轴对称的△A1B1C1;〔2〕以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.21.〔6分〕〔2021•宁夏〕在平行四边形ABCD中,E为BC边上的一点.连结AE.〔1〕假设AB=AE,求证:∠DAE=∠D;〔2〕假设点E为BC的中点,连接BD,交AE于F,求EF:FA的值.22.〔6分〕〔2021•宁夏〕某校在开展“校园献爱心〞活动中,准备向南部山区学校捐赠男、女两种款式的书包.男款书包的单价50元/个,女款书包的单价70元/个.〔1〕原方案募捐3400元,购置两种款式的书包共60个,那么这两种款式的书包各买多少个?〔2〕在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购置两种款式的书包共80个,那么女款书包最多能买多少个?四、解答题〔23题、24题每题8分,25题、26题每题10分,共36分〕23.〔8分〕〔2021•宁夏〕如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.〔1〕求证:PB是⊙O的切线;〔2〕连接OP,假设OP∥BC,且OP=8,⊙O的半径为2,求BC的长.24.〔8分〕〔2021•宁夏〕点A〔,3〕在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.〔1〕求点B的坐标;〔2〕求∠AOB度数.25.〔10分〕〔2021•宁夏〕某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价〔元/件〕30 34 38 40 42销量〔件〕40 32 24 20 16〔1〕计算这5天销售额的平均数〔销售额=单价×销量〕;〔2〕通过对上面表格中的数据进行分析,发现销量y〔件〕与单价x〔元/件〕之间存在一次函数关系,求y关于x的函数关系式〔不需要写出函数自变量的取值范围〕;〔3〕预计在今后的销售中,销量与单价仍然存在〔2〕中的关系,且该产品的本钱是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?26.〔10分〕〔2021•宁夏〕如图,是一副学生用的三角板,在△ABC 中,∠C=90°,∠A=60°,∠B=30°;在△A1B1C1中,∠C1=90°,∠A1=45°,∠B1=45°,且A1B1=CB.假设将边A1C1与边CA重合,其中点A1与点C重合.将三角板A1B1C1绕点C〔A1〕按逆时针方向旋转,旋转过的角为α,旋转过程中边A1C1与边AB的交点为M,设AC=a.〔1〕计算A1C1的长;〔2〕当α=30°时,证明:B1C1∥AB;〔3〕假设a=,当α=45°时,计算两个三角板重叠局部图形的面积;〔4〕当α=60°时,用含a的代数式表示两个三角板重叠局部图形的面积.〔参考数据:sin15°=,cos15°=,tan15°=2﹣,sin75°=,cos75°=,tan75°=2+〕2021年宁夏中考数学试卷参考答案与试题解析一、选择题〔以下每题所给的四个答案中只有一个是正确的,每题3分,共24分〕1.〔3分〕〔2021•宁夏〕以下计算正确的选项是〔〕A.B.=2 C.〔〕﹣1=D.〔﹣1〕2=2考点:二次根式的混合运算;负整数指数幂.菁优网版权所有专题:计算题.分析:根据二次根式的加减法对A进行判断;根据二次根式的除法法那么对B进行判断;根据负整数整数幂对B进行判断;根据完全平方公式对D进行判断.解答:解:与不能合并,所以A选项错误;B、原式==2,所以B选项正确;C、原式==,所以C选项正确;D、原式=3﹣2+1=4﹣2,所以D选项正确.应选B.点评:此题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂.2.〔3分〕〔2021•宁夏〕生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为〔〕A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣7考点:科学记数法—表示较小的数.菁优网版权所有分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000432=4.32×10﹣6,应选:B.点评:此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.〔3分〕〔2021•宁夏〕如图,放置的一个机器零件〔图1〕,假设其主视图如〔图2〕所示,那么其俯视图为〔〕A.B.C.D.考点:简单组合体的三视图.菁优网版权所有分析:俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.解答:解:其俯视图为.应选:D.点评:此题主要考查了画三视图,关键是掌握俯视图所看的位置,注意要把所看到的棱都要用实线画出来.4.〔3分〕〔2021•宁夏〕某校10名学生参加“心理健康〞知识测试,他们得分情况如下表:人数 2 3 4 1分数80 85 90 95那么这10名学生所得分数的众数和中位数分别是〔〕A.95和85 B.90和85 C.90和87.5 D.85和87.5考点:众数;中位数.菁优网版权所有分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数〔或两个数的平均数〕为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中9是出现次数最多的,故众数是90;排序后处于中间位置的那个数是85,90,那么由中位数的定义可知,这组数据的中位数是=87.5;应选:C.点评:此题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔或最中间两个数的平均数〕,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.〔3分〕〔2021•宁夏〕关于x的一元二次方程x2+x+m=0有实数根,那么m的取值范围是〔〕A.m≥B.m≤C.m≥D.m≤考点:根的判别式.菁优网版权所有分析:方程有实数根,那么△≥0,建立关于m的不等式,求出m的取值范围.解答:解:由题意知,△=1﹣4m≥0,∴m≤,应选D.点评:此题考查了根的判别式,总结:1、一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.6.〔3分〕〔2021•宁夏〕如图,四边形ABCD是⊙O的内接四边形,假设∠BOD=88°,那么∠BCD的度数是〔〕A.88°B.92°C.106°D.136°考点:圆内接四边形的性质;圆周角定理.菁优网版权所有分析:首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.解答:解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.应选:D.点评:〔1〕此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角〔就是和它相邻的内角的对角〕.〔2〕此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.〔3分〕〔2021•宁夏〕如图,某小区有一块长为18米,宽为6米的矩形空地,方案在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.假设设人行道的宽度为x米,那么可以列出关于x的方程是〔〕A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=0考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设人行道的宽度为x米,根据矩形绿地的面积之和为60米2,列出一元二次方程.解答:解:设人行道的宽度为x米,根据题意得,〔18﹣3x〕〔6﹣2x〕=60,化简整理得,x2﹣9x+8=0.应选C.点评:此题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.8.〔3分〕〔2021•宁夏〕函数y=与y=﹣kx2+k〔k≠0〕在同一直角坐标系中的图象可能是〔〕A.B.C.D.考点:二次函数的图象;反比例函数的图象.菁优网版权所有专题:压轴题;数形结合.分析:此题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比拟看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,那么﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,那么﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,那么﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,那么﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.应选:B.点评:此题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:〔1〕先根据图象的特点判断k取值是否矛盾;〔2〕根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题〔每题3分,共24分〕9.〔3分〕〔2021•宁夏〕因式分解:x3﹣xy2=x〔x﹣y〕〔x+y〕.考点:提公因式法与公式法的综合运用.菁优网版权所有分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣xy2=x〔x2﹣y2〕=x〔x﹣y〕〔x+y〕.故答案为:x〔x﹣y〕〔x+y〕.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.〔3分〕〔2021•宁夏〕从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,那么这个两位数能被3整除的概率是.考点:列表法与树状图法.菁优网版权所有分析:根据所抽取的数据拼成两位数,得出总数及能被3整除的数,求概率.解答:解:如下表,任意抽取两个不同数字组成一个两位数,共6种情况,其中能被3整除的有24,42两种,∴组成两位数能被3整除的概率为==.故答案为:.点评:此题考查了求概率的方法:列表法和树状图法.关键是通过画表格〔图〕求出组成两位数的所有可能情况及符合条件的几种可能情况.11.〔3分〕〔2021•宁夏〕如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,假设A 点的坐标为〔﹣1,0〕,那么点C的坐标为〔,﹣〕.考点:正多边形和圆;坐标与图形性质.菁优网版权所有专题:计算题.分析:先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,那么GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.解答:解:连接OE,由正六边形是轴对称图形知:在Rt△OEG中,∠GOE=30°,OE=1.∴GE=,OG=.∴A〔﹣1,0〕,B〔﹣,﹣〕,C〔,﹣〕D〔1,0〕,E〔,〕,F〔﹣,〕.故答案为:〔,﹣〕点评:此题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识.12.〔3分〕〔2021•宁夏〕扇形的圆心角为120°,所对的弧长为,那么此扇形的面积是.考点:扇形面积的计算;弧长的计算.菁优网版权所有专题:计算题.分析:利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.解答:解:∵扇形的圆心角为120°,所对的弧长为,∴l==,解得:R=4,那么扇形面积为Rl=,故答案为:点评:此题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解此题的关键.13.〔3分〕〔2021•宁夏〕如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.假设AB=2,∠BCD=30°,那么⊙O的半径为.考点:垂径定理;勾股定理;圆周角定理.菁优网版权所有分析:连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.解答:解:连接OB,∵OC=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=,∠OEB=90°,∴OB==,即⊙O的半径为,故答案为:.点评:此题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.14.〔3分〕〔2021•宁夏〕如图,在平面直角坐标系中,点A的坐标为〔0,4〕,△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,那么点B与其对应点B′间的距离为5.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.菁优网版权所有分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为〔0,4〕,△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是〔5,4〕,∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.点评:此题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.15.〔3分〕〔2021•宁夏〕如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE 沿BE折叠,使点C恰好落在AD边上的点F处,那么CE的长为.考点:翻折变换〔折叠问题〕.菁优网版权所有分析:设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.解答:解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=〔3﹣x〕2+12,解得:x=,故答案为.点评:此题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.16.〔3分〕〔2021•宁夏〕如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为2km.考点:解直角三角形的应用-方向角问题.菁优网版权所有分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2km,再由△ABD是等腰直角三角形,得出BD=AD=2km,那么AB=AD=2km.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离〔即AB的长〕为2km.故答案为2km.点评:此题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.三、解答题〔每题6分,共36分〕17.〔6分〕〔2021•宁夏〕解方程:=1.考点:解分式方程.菁优网版权所有分析:因为x2﹣1=〔x+1〕〔x﹣1〕,所以可确定最简公分母〔x+1〕〔x﹣1〕,然前方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解答:解:方程两边同乘〔x+1〕〔x﹣1〕,得x〔x+1〕﹣〔2x﹣1〕=〔x+1〕〔x﹣1〕,解得x=1.经检验x=1是增根,原方程无解.点评:此题考查了解分式方程,解分式方程要注意:〔1〕解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.〔2〕解分式方程一定注意要验根.〔3〕去分母时要注意符号的变化.18.〔6分〕〔2021•宁夏〕解不等式组.考点:解一元一次不等式组.菁优网版权所有分析:先解不等式组中每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找〞即可确定结果.解答:解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.点评:此题主要考查了一元一次不等式组解集的求法,其简便方法就是利用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小解不了〔无解集〕.19.〔6分〕〔2021•宁夏〕为了解中考体育科目训练情况,某地从九年级学生中随机抽取了局部学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答以下问题:〔1〕请将两幅不完整的统计图补充完整;〔2〕如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?〔3〕从被抽测的学生中任选一名学生,那么这名学生成绩是D级的概率是多少?考点:条形统计图;用样本估计总体;扇形统计图;概率公式.菁优网版权所有分析:〔1〕首先根据题意求得总人数,继而求得A级与D级占的百分比,求得C级与D级的人数;那么可补全统计图;〔2〕根据题意可得:估计不及格的人数有:4500×20%=900〔人〕;〔3〕由概率公式的定义,即可求得这名学生成绩是D级的概率.解答:解:〔1〕总人数为:12÷30%=40〔人〕,A级占:×100%=15%,D级占:1﹣35%﹣30%﹣15%=20%;C级人数:40×35%=14〔人〕,D级人数:40×20%=8〔人〕,补全统计图得:〔2〕估计不及格的人数有:4500×20%=900〔人〕;〔3〕从被抽测的学生中任选一名学生,那么这名学生成绩是D级的概率是:20%.点评:此题考查了概率公式的应用以及扇形统计图与条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.〔6分〕〔2021•宁夏〕在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,﹣4〕,B〔3,﹣2〕,C〔6,﹣3〕.〔1〕画出△ABC关于x轴对称的△A1B1C1;〔2〕以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.考点:作图-位似变换;作图-轴对称变换.菁优网版权所有分析:〔1〕利用轴对称图形的性质进而得出对应点位置进而画出图形即可;〔2〕利用位似图形的性质得出对应点位置进而画出图形即可.解答:解:〔1〕如下图:△A1B1C1,即为所求;〔2〕如下图:△A2B2C2,即为所求.点评:此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.21.〔6分〕〔2021•宁夏〕在平行四边形ABCD中,E为BC边上的一点.连结AE.〔1〕假设AB=AE,求证:∠DAE=∠D;〔2〕假设点E为BC的中点,连接BD,交AE于F,求EF:FA的值.考点:相似三角形的判定与性质;平行四边形的性质.菁优网版权所有分析:〔1〕根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;〔2〕由四边形ABCD是平行四边形,可证得△BEF∽△AFD,即可求得EF:FA的值.解答:证明:〔1〕在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;〔2〕∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.点评:此题考查了相似三角形的判定与性质与平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.22.〔6分〕〔2021•宁夏〕某校在开展“校园献爱心〞活动中,准备向南部山区学校捐赠男、女两种款式的书包.男款书包的单价50元/个,女款书包的单价70元/个.〔1〕原方案募捐3400元,购置两种款式的书包共60个,那么这两种款式的书包各买多少个?〔2〕在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购置两种款式的书包共80个,那么女款书包最多能买多少个?考点:一元一次不等式的应用;二元一次方程组的应用.菁优网版权所有分析:〔1〕设原方案买男款书包x个,那么女款书包〔60﹣x〕个,根据题意得:50x+70〔60﹣x〕=3400,即可解答;〔2〕设女款书包最多能买y个,那么男款书包〔80﹣y〕个,根据题意得:70y+50〔80﹣y〕≤4800,即可解答.解答:解:〔1〕设原方案买男款书包x个,那么女款书包〔60﹣x〕个,根据题意得:50x+70〔60﹣x〕=3400,解得:x=40,60﹣x=60﹣40=20,答:原方案买男款书包40个,那么女款书包20个.〔2〕设女款书包最多能买y个,那么男款书包〔80﹣y〕个,根据题意得:70y+50〔80﹣y〕≤4800,解得:y≤40,∴女款书包最多能买40个.点评:此题考查了一元一次方程、一元一次不等式的应用,解决此题的关键是根据题意列出方程和不等式.四、解答题〔23题、24题每题8分,25题、26题每题10分,共36分〕23.〔8分〕〔2021•宁夏〕如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.〔1〕求证:PB是⊙O的切线;〔2〕连接OP,假设OP∥BC,且OP=8,⊙O的半径为2,求BC的长.考点:切线的判定.菁优网版权所有分析:连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;〔2〕证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.解答:〔1〕证明:连接OB,如下图:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;〔2〕解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=8.点评:此题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.24.〔8分〕〔2021•宁夏〕点A〔,3〕在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.〔1〕求点B的坐标;〔2〕求∠AOB度数.考点:二次函数图象上点的坐标特征;二次函数的性质.菁优网版权所有分析:〔1〕首先求得抛物线的对称轴,然后确定点A关于对称轴的交点坐标即可;〔2〕根据确定的两点的坐标确定∠AOC和∠BOC的度数,从而确定∠AOB的度数.解答:解:〔1〕∵y=﹣x=﹣〔x﹣2〕2+4,∴对称轴为x=2,∴点A〔,3〕关于x=2的对称点的坐标为〔3,3〕;〔2〕如图:∵A〔,3〕、〔3,3〕,∴BC=3,AC=,OC=3,∴tan∠AOC==,tan∠BOC===,∴∠AOC=30°,∠BOC=60°,∴∠AOB=30°.点评:此题考查了二次函数图象上的点的坐标及二次函数的性质,能够确定抛物线的对称轴是解答此题的关键,难度不大.25.〔10分〕〔2021•宁夏〕某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价〔元/件〕30 34 38 40 42销量〔件〕40 32 24 20 16〔1〕计算这5天销售额的平均数〔销售额=单价×销量〕;〔2〕通过对上面表格中的数据进行分析,发现销量y〔件〕与单价x〔元/件〕之间存在一次函数关系,求y关于x的函数关系式〔不需要写出函数自变量的取值范围〕;〔3〕预计在今后的销售中,销量与单价仍然存在〔2〕中的关系,且该产品的本钱是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?考点:二次函数的应用.菁优网版权所有专题:应用题.分析:〔1〕根据题中表格中的数据列出算式,计算即可得到结果;〔2〕设y=kx+b,从表格中找出两对值代入求出k与b的值,即可确定出解析式;。
2015年宁夏中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)第二讲:秦汉必考文学常识梳理第三讲:魏晋南北朝必考文学常识梳理第四讲:宋代文学常识梳理(上)第五讲:宋代文学常识梳理(下)第六讲:明清文学常识梳理课程特色:帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。
本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。
适合学员希望全面掌握文学常识的中学生赠送课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群适合人群:·初一年级同步学生·学习人教版的学生·程度较好,希望进一步提升、冲刺满分的学生·中上等水平学生,冲刺竞赛的学生课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法;·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群。
适合人群:·初一年级同步学生·学习北师版的学生·程度较好,希望进一步提升、冲刺满分的学生·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。
·提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群:·初一年级同步学生·预习过基础知识的学生·程度较好,希望进一步提升、冲刺满分的学生·适合中上等水平学生,冲刺竞赛的学生。
课程目标:·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群:·初一年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师版版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生全国各版本初一学生。
如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:学习初一的你:是不是计算经常出现问题?掉数字、掉字母、去括号不变号……是不是看到应用题就犯怵,不知未知数该设什么?如何列等式?是不是看到几何问题就犯晕?德智课程帮助你:1.计算题一步一步细致讲解,指出计算的出错点。
教你理解和熟记运算法则,不仅仅会用,还知道如何用!2.大段文字找关键词,教你如何找到题中的数量关系,用什么建立相等的条件,加强你的建模思想的认识!3.反复进行“几何模型→图形→文字→符号”的练习,让你对几何语言不在陌生!学习效果:(1)重点知识的再次学习,加深理解与记忆。
(2)对运算法则更加灵活运用,掌握计算技巧、简便解决问题。
(3)逐步形成几何语言的组织运用和理解能力,为之后的几何学习打下坚实基础。
(4)方程思想,分类讨论思想等数学重要思想的入门学习。
全国各版本初一年级学生如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:刚升入初一的你们:是不是还沉浸在小学语文学习的内容?是不是对于初中的语文学习一头雾水、茫然无措?是不是渴望找到一种方法能够打牢初中语文学习基础、实现小学到初中的课程衔接?是不是希望摆脱小学灌输式的枯燥无味的学习方式,渴望养成良好的学习习惯?我们的课程特色:初一上学期的语文课程宗旨是:立足基础,科学提升,培养能力。