新课标人教版七年级数学下册《9.4 利用不等关系分析比赛》教案
- 格式:doc
- 大小:2.09 KB
- 文档页数:1
9.4利用不等关系剖析竞赛学习目标1、认识部分体育竞赛项目判断输赢的规则,复习并稳固不等式的有关知识;2、以体育竞赛问题为载体,研究实质问题中的不等关系,进一步领会利用不等式解决问题的基本过程;3、在利用不等关系剖析竞赛结果的过程中,提升剖析问题、解决问题的能力,发展逻辑思想能力和有条理表达思想过程的能力;4、感觉数学的应用价值,培育用数学目光看世界的意识,指引学生关注生活、关注社会.学习要点与难点要点:利用不等关系剖析展望竞赛结果难点:在开放的问题情境中促进学生的思想从无序走向有序;在剖析、解决问题的过程中发展学生用数学目光看世界的主动性学习过程一、课前预习部分多媒体展现有关雅典奥运会射击竞赛的场景,从而引出问题1:某射击运动员在一次竞赛中前 6 次射击共中 52 环,假如他要打破89 环( 10 次射击)的纪录,第 7 次射击不可以少于多少环?引出话题后,因为问题自己其实不复杂,在同学解决此问题后,教师适合予以夸奖后应实时将问题变维发散,在研究中将思想引向深人.(1)假如第 7 次射击成绩为 8 环,最后三次射击中要有几次命中10 环才能破纪录?(2)假如第 7 次射击成绩为 10 坏,最后三次射击中能否一定起码有一次命中 10 环才能破纪录?二、讲堂研究部分(先独立达成,再小组议论完美答案)媒体展现多种场景,除了射击竞赛,在竞技场上还有许很多多动人心魄、出色纷呈的竞赛,同学们有兴趣对他们也进行一些剖析吗?问题 2:有 A , B,C,D,E 五个队分同一小组进行单循环赛足球竞赛,争夺出线权.竞赛规则规定:胜一场得 3 分,平一场得 1 分,负一场得 0 分,小组中名次在前的两个队出线,小组赛结束后, A 队的积分为 9 分.你以为 A 队能出线吗?请说明原因.学生充足发布建议,在争辩中发现此问题不可以混为一谈,需要考虑其余队的状况,于是形成问题假定:(1)假如小组中有一个队的战绩为全胜, A 队可否出线?(2)假如小组中有一个队的积分为10 分, A 队可否出线?(3)假如小组中积分最高的队积9 分, A 队可否出线?在议论沟通中形成问题、解决问题,在解决问题中自然波及足球竞赛的有关规则.三、自我检测反应部分(独立完结婚自着手做一做)1、必做题:.必做题:(1)足球竞赛的计分规则为:胜一场得 3 分,平一场得 1 分,负一场得 0 分一个队打 14 场竞赛负 5 场共得 19 分.那么这个队胜了几场?(2)甲、乙、丙三位同学进行立定跳远竞赛,每人跳一次称为一轮,每轮按名次高低分别得 3,2,1 分(没有并列名次).他们进行了五轮竞赛,结果甲共得14分;乙第一轮得 3 分,第二轮得 1 分,且总分最低.那么丙获得的分数是()A.8分B.9分C.10分D.11分(3)教科书 157 页复习题 9 第 11题.四、小结与反省:本节课我学会了:;我的疑惑是:.第二课时复习引入在上节课中,我们曾利用不等关系对一些体育竞赛的结果进行剖析,初步感触了剖析解决此类问题的思想方法。
人教版七年级数学下册《9.4 利用不等关系分析竞赛》教学设计PPT课件导学案教案人教版七年级数学下册《9.4 利用不等关系分析竞赛》教学设计PPT课件导学案教案课题: 9.4 利用不等关系分析竞赛教学目标一、了解部份体育竞赛项目判定输赢的规那么,温习并巩固不等式的相关知识;二、以体育竞赛问题为载体,探讨实际问题中的不等关系,进一步体会利用不等式解决问题的大体进程;3、在利用不等关系分析竞赛结果的进程中,提高分析问题、解决问题的能力,进展逻辑思维能力和有层次表达思维进程的能力;4、感受数学的应用价值,培育用数学目光看世界的意识,引导学生关注生活、关注社会.教学难点在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的进程中进展学生用数学目光看世界的主动性知识重点利用不等关系分析预测竞赛结果。
教学进程(师生活动)设计理念创设情境引出话题多媒体展现有关雅典奥运会射击竞赛的场景,进而引出问题1:某射击运动员在一次竞赛中前6次射击共中52环,若是他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?在真实、熟悉的背景中切入话题,激发学生数学学习的爱好牛刀小试初享成功引出话题后,由于问题本身并非复杂,在同窗解决此问题后,教师适当予以夸奖后应及时将问题变维发散,在探讨中将思维引向深人.(1)若是第7次射击成绩为8环,最后三次射击中要有几回命中10环才能破纪录?(2)若是第7次射击成绩为10坏,最后三次射击中是不是必需至少有一次命中10环才能破纪录?初一学生好胜心强,课堂比较活跃,但这只是表面的繁荣.教师在初享成功后,要利用带动的课堂气氛,使学生顺利以研究者的姿态进入问题再生与问题解决中,从而有利于问题2,3的探讨.扩大视野乘胜追击媒体展现多种场景,除射击竞赛,在竞技场上还有许许多多扣人心弦、出色纷呈的竞赛,同窗们有爱好对他们也进行一些分析吗?问题2:有A,B,C,D,E五个队分同一小组进行单循环赛足球竞赛,争夺出线权.竞赛规那么规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛终止后,A队的积分为9分.你以为A 队能出线吗?请说明理由.学生充分发表意见,在辩论中发觉此问题不能一概而论,需要考虑其他队的情形,于是形成问题假设:(1)若是小组中有一个队的战绩为全胜,A队可否出线?(2)若是小组中有一个队的积分为10分,A队可否出线?(3)若是小组中积分最高的队积9分,A队可否出线?在讨论交流中形成问题、解决问题,在解决问题中自然涉及足球竞赛的相关规那么.教材中的问题已经给出了探讨的要紧步骤,对试探进程做了一些提示,同时这些提示也限制了学生的思维.如此的探讨仍是属于较低层次的,而假设在背景中直接提出问题,那么问题就有了必然的开放性,给学生以创新的空间,使学生更能体会课题的味道,有利于课后自己从其他背景中提出问题并尝试解决.总结与作业问题反思归纳总结一、在上述利用不等关系分析竞赛的问题解决中,咱们是如何进行试探的?二、通过本节课的学习,你有哪些感受或体会。
人教版数学七年级下册第58课时《9.4利用不等关系分析比赛(一)》教学设计一. 教材分析《9.4利用不等关系分析比赛(一)》是人教版数学七年级下册第五章第九节的内容。
本节课主要让学生学会利用不等关系分析比赛中的各种问题,培养学生运用不等式解决实际问题的能力。
教材通过具体的比赛场景,引导学生理解不等式的含义,掌握不等式的解法,并能够运用不等式解决实际问题。
二. 学情分析学生在七年级上学期已经学习了不等式的基本概念和性质,对于不等式的解法有一定的了解。
但是,对于如何将实际问题转化为不等式,以及如何运用不等式分析比赛中的问题,学生可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体例子,引导学生将实际问题转化为不等式,并运用不等式进行分析。
三. 教学目标1.理解不等式在比赛中的应用,能够将实际问题转化为不等式。
2.掌握不等式的解法,能够运用不等式分析比赛中的各种问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.教学重点:引导学生理解不等式在比赛中的应用,掌握不等式的解法。
2.教学难点:如何将实际问题转化为不等式,以及如何运用不等式分析比赛中的问题。
五. 教学方法1.情境教学法:通过具体的比赛场景,引导学生理解不等式在比赛中的应用。
2.案例教学法:通过分析具体的比赛案例,让学生掌握不等式的解法。
3.小组合作学习:让学生在小组内讨论如何将实际问题转化为不等式,并运用不等式进行分析。
六. 教学准备1.准备相关的比赛案例,用于引导学生分析和讨论。
2.准备多媒体教学设备,用于展示比赛场景和案例。
七. 教学过程1.导入(5分钟)教师通过展示一些比赛场景,如篮球比赛、跑步比赛等,引导学生思考比赛中的不等关系。
让学生举例说明比赛中的不等关系,并尝试将其转化为不等式。
2.呈现(10分钟)教师呈现一些具体的比赛案例,如篮球比赛中的得分、篮板、助攻等数据,让学生尝试分析这些数据中的不等关系,并将其转化为不等式。
导学案格式科目/教材数学年级:七课题:利用不等关系分析比赛学习目标:1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会。
学习重点:利用不等关系分析预测比赛结果学习难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性教学内容提要(描述主要教学环节与教学要点)时间教学操作流程所需资源设计意图听课记录评价学生学习事项——学生用什么教学组织形式(个人、双人或小组、全班)和方法去完成学习事项(问题、任务、活动、作业),用什么方式表达呈现。
教师导控事项——需要教师做什么以支持学生学习(讲授、提问、举例、演示、布置、板书……);——怎样检测学生学习效果并反馈。
环节(任务)一自主学习环节(任务)二知识点探究环节(任务)三环节(任务)一自主学习1 、叙述一元一次不等式(组)2、叙述解一元一次不等式(组)?列一元一次不等式(组)解应用题的步骤是什么?环节(任务)二、合作探究:1、师友完成学习案中的问题2、尝试列式3、展示环节(任务)三巩固运用1、师友完成学习案单循环环节(任务)一要求学生完成学习案环节(自主学习材料)1、什么叫一元一次不等式(组)?2、怎样求解一元一次不等式(组)?列一元一次不等式(组)解应用题的步骤是什么?环节(任务)二二、合作探究:1.学习案中的射击运动员射击问题上,引导学生分析题中的不等关系,列不等式解答2.个别指导3.展示成果环节(任务)三1、学习案中单循环赛足球比赛(师个别辅导)巩固运用环节(四、反思总结:环节五:作业赛足球比赛问题2、展示学习成果环节(四、反思总结:1、叙述本节课知识点(多人复述)2、多人复述不等式的解集如何在数轴上表示?3、完成学习案达标检测环节五:作业2、检查学习成果环节四、反思总结:1、提问2、不等式的解集如何在数轴上表示?3、个别辅导环节五:作业预设板书:利用不等关系分析比赛第六课时利用不等关系分析比赛学习案课型:新授课时:1课时主备人:初一数学组学习目标:1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会。
《9.4课题学习利用不等关系分析比赛》教学设计设计思想新课标改革要求密切课程内容与生活和时代的联系,改善学生的学习方式。
本课题的学习从学生感兴趣的篮球比赛入手,创设生活环境,充分调动学生学习数学的兴趣,运用列表分析、引导启发、小组学习、合作探究等多种教学方法和手段,让学生将实际问题抽象成数学模型,并进行解释与应用,注意在活动中培养能力。
“数学建模思想”是本课始终渗透的数学思想,根据教材和学生的思维特点,我对教材内容重新进行了整合,整堂课前后连贯,悬念迭出,衔接自然,首尾圆合,这便是本节课的一个亮点。
教学内容本节内容选自义务教育课程标准实验教科书数学七年级下册(人教版)第九章第四节(第2课时)教学目标(一)知识与技能学会运用不等式对一些体育比赛的胜负进行分析,了解部分体育比赛项目判定胜负的规则;探究实际问题中不等关系,能综合利用不等关系及所学知识解决实际问题。
让学生感知生活离不开数学,学数学知识是更好地为解决实际问题服务。
(二)过程与方法1、正确地进行分析,建立相应的数学模型,从而培养推理能力,激发学生对体育事业的关心和爱戴,对体育成绩的优劣与国民素质关系的理解,激发学生的爱国精神和主人翁意识。
2、通过师生、生生互动,培养自主合作探究能力。
(三)情感态度与价值观1、在利用不等关系分析比赛结果的过程中,提高分析问题,解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;2、体验数学的应用价值,培养用数学眼光看世界的意识,引导学生关心生活,关注社会;3、培养探索精神以及互相协作的态度。
教学重点利用不等关系分析预测比赛结果。
教学难点对实际问题背景的理解,如何将实际问题数学化。
教具准备多媒体课件、实物展台学前准备学生查阅了解篮球比赛规则教学过程一、创设情境、引入新课欣赏一场精彩的篮球比赛片段(学生喜欢的火箭队的主力中锋姚明),对出现的画面边看边问:这是谁?(齐答:姚明);是哪两个队在比?(火箭队与马刺队)过渡语:前两课,我们已探讨了问题1、问题2,我们可以用数学的眼光观察它、解决它,今天我们继续研究体育比赛(出示课题)课题学习利用不等关系分析比赛设计意图:兴趣是最好的老师。
感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。
本资源为成套文件,包含本年级本课的相关资源。
有教案、教学设计、学案、录音、微课等教师最需要的资源。
我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。
本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。
如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)利用不等关系分析比赛教学目标1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会.教学重点:利用不等关系分析预测比赛结果。
教学难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性教学过程(师生活动)创设情境:引出话题多媒体展示有关雅典奥运会射击比赛的场景,进而引出问题1:某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?牛刀小试初享成功引出话题后,由于问题本身并不复杂,在同学解决此问题后,教师适当予以表扬后应及时将问题变维发散,在探究中将思维引向深人.(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?扩大视野乘胜追击媒体展示多种场景,除了射击比赛,在竞技场上还有许许多多扣人心弦、精彩纷呈的比赛,同学们有兴趣对他们也进行一些分析吗?问题2:有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由.学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:(1)如果小组中有一个队的战绩为全胜,A队能否出线?(2)如果小组中有一个队的积分为10分,A队能否出线?(3)如果小组中积分最高的队积9分,A队能否出线?在讨论交流中形成问题、解决问题,在解决问题中自然涉及足球比赛的相关规则.总结:1.归纳总结在上述利用不等关系分析比赛的问题解决中,我们是怎样进行思考的?2.通过本节课的学习,你有哪些感受或体会。
数学初一下人教新资料9.4利用不等关系分析比赛教案教学目标1.综合利用不等关系及所学知识解决实际问题;2.能正确地进行分析,会建立相应的数学模型,从而培养学生的推理能力,并能有条理地阐述自己的观点;3.通过小组活动,让学生学会与他人合作,并能结合具体的体育比赛提出问题、解决问题;4.树立数学的意识,培养探究精神以及互相协作的态度。
教学重点利用不等式刻画事物间的相互关系。
教学难点对实际问题背景的理解,如何将实际问题数学化。
教学过程【一】复习与回顾1.不等式组在实际问题中应用,解题时应注意哪些问题?2.如何解关于不等式组的应用题?【二】看一看阅读课本P149第一段,结合学生课前收集的资料,提出问题:1.两队比赛,一队胜另一队就会有什么结果?这说明了什么?2.对比赛结果的分析,经常要考虑哪些关系?〔学生针对问题进行小组学习、交流探索、回答以下问题〕【三】问题探究问题1.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环〔10次射击〕的记录,第7次射击不能少于多少?讨论:〔1〕如果第7次射击成绩为8环,最后三次射击要有几次命中10环方能破记录?〔2〕如果第7次射击成绩为10环,最后三次射击是否必须至少有一次命中10环才有可能破记录?问题2.有A、B、C、D、E五个队分在同一小组进行单循环足球比赛,争夺出线权,比赛规那么:胜一场得3分,平一场得1分,负一场的0分,小组中名次在前的两个队出线。
小组赛结束后,A队的积分为9分。
讨论:〔1〕A队的战绩是几胜几平几负?〔2〕如果小组中有一队的战绩为全胜,A队能否出线?如果小组中有一队的积分为10分,A队能否出线?9分呢?〔3〕如果A队的积分为10分,它能出线吗?〔教师出示问题,学生以组为单位,阅读分析,并在小组讨论的基础上,选定一个问题进行探究。
教师参与各组的讨论,适时给予指导。
学生小组讨论,积极探究解决问题的方法。
〕教学时教师重点关注:〔1〕学生能否理解题意,并准确挖掘出问题中的隐含条件,从而运用不等式描述问题中的不等关系,得出正确结论。
创设情境引出话题
多媒体展示有关雅典奥运会射击比赛的场景,进而引出问题1:某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?在真实、熟悉的背景中切入话题,激发学生数学学习的兴趣
牛刀小试
初享成功引出话题后,由于问题本身并不复杂,在同学解决此问题后,教师适当予以表扬后应及时将问题变维发散,在探究中将思维引向深人.
(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?
(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?初一学生好胜心强,课堂比较活跃,但这只是表面的繁荣.教师在初享成功后,要利用带动的课堂气氛,使学生顺利以研究者的姿态进入问题再生与问题解决中,从而有利于问题2,3的探究.
扩大视野
乘胜追击媒体展示多种场景,除了射击比赛,在竞技场上还有许许多多扣人心弦、精彩纷呈的比赛,同学们有兴趣对他们也进行一些分析吗?
问题2:有a,b,c,d,e五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,a队的积分为9分.你认为a队能出线吗?请说明理由.
学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:
(1)如果小组中有一个队的战绩为全胜,a队能否出线?
(2)如果小组中有一个队的积分为10分,a队能否出线?
(3)如果小组中积分最高的队积9分,a队能否出线?
在讨论交流中形成问题、解决问题,在解决问题中自然涉及足球比赛的相关规则.教材中的问题已经给出了探究的主要步骤,对思考过程做了一些提示,同时这些提示也限制了学生的思维.这样的探究还是属于较低层次的,而若在背景中直接提出问题,则问题就有了一定的开放性,给学生以创新的空间,使学生更能体会课题的味道,有利于课后自己从其他背景中提出问题并尝试解决.
总结与作业
问题反思
归纳总结1、在上述利用不等关系分析比赛的问题解决中,我们是怎样进行思考的?
2、通过本节课的学习,你有哪些感受或体会。
布置作业1、必做题:.必做题:
(1)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分一个队打14场比赛负5场共得19分.那么这个队胜了几场?
(2)甲、乙、丙三位同学进行立定跳远比赛,每人跳一次称为一轮,每轮按名次高低分别得3,2,1分(没有并列名次).他们进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是。