初一数学(上)基础题
- 格式:doc
- 大小:66.00 KB
- 文档页数:5
人教版2020-2021学年七年级数学(上)寒假作业第一章《有理数》基础综合训练一.选择题1.下列各数中,为负数的是()A.4 B.0 C.D.﹣2.5的相反数是()A.0.2 B.5 C.﹣5 D.﹣0.23.﹣2021的倒数为()A.B.C.﹣2021 D.20214.2020年国庆长假延边州累计接待游客242万人次,将数据2420000用科学记数法表示为()A.0.242×107B.2.42×106C.24.2×105D.242×1045.今年10月份某市一天的最高气温为11℃,最低气温为﹣3℃,那么这一天的最高气温比最低气温高()A.﹣14℃B.14℃C.8℃D.11℃6.(﹣)3表示的意义是()A.(﹣)×(﹣)×(﹣)B.(﹣)×3C.﹣D.﹣7.由四舍五入得到近似数6.35,下列数中可能是精确数的是()A.6.3449 B.6.3491 C.6.3051 D.6.3558.下列说法正确的是()A.﹣a不一定是负数B.符号相反的两个数,一定互为相反数C.离原点越近的点所对应的数越小D.两数相加,和一定大于任何一个加数.9.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③数a、b互为相反数,它们的积一定为负;④绝对值等于本身的数是正数.A.1个B.2个C.3个D.4个10.对于任意的两个有理数,下列结论中成立的是()A.若a+b=0,则a=﹣b B.若a+b>0,则a>0,b>0C.若a+b<0,则a<b<0 D.若a+b<0,则a<0二.填空题11.计算:(﹣1)2020=.12.﹣9的倒数是.13.比较大小:﹣﹣.14.A、B、C三点相对于海平面分别是﹣17米,+5米,﹣21米,那么最高的地方比最低的地方高米.15.数轴上点A表示的数为5,则距离A点3个单位长度的点表示的数为.16.已知x2=16,|y|=3,xy<0,那么x﹣y=.17.已知a,b互为相反数,c,d互为倒数,x是数轴上到原点的距离为1的点表示的数,则x2020﹣cd的值为.三.解答题18.计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3)(2)(+﹣)×18;(3)(﹣)÷(﹣)×(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)319.请在数轴上表示下列各数:﹣|﹣3|,4,﹣1.5,﹣5,2并将它们用“>”连接起来.20.阅读下面的解题过程并解决问题计算:53.27﹣(﹣18)+(﹣21)+46.73﹣(+15)+21解:原式=53.27+18﹣21+46.73﹣15+21(第一步)=(53.27+46.73)+(21﹣21)+(18﹣15)(第二步)=100+0+3(第二步)=103(1)计算过程中,第一步把原式化成的形式,体现了数学中的思想,为了计算简便,第二步应用了.(2)根据以上的解题技巧进行计算下列式子:.21.伽师瓜是喀什地区伽师县的特产,可称得上是新疆瓜果的珍品,享誉全国.随着微信的普及,许多人利用微信平台做“微商”.伽师县的张师傅也将自家种植的伽师瓜进行网上销售,原计划每天销售100公斤伽师瓜,由于受到实际产量的影响,每天的实际销售量与计划销售量相比略有不同.第一周的销售情况如下表所示(超额记为正,不足记为负.单位:公斤):星期一二三四五六日+4 ﹣3 ﹣5 +10 ﹣8 +23 ﹣6 与计划销售量的差值根据表格回答下列问题:(1)张师傅前三天共卖出公斤伽师瓜;(2)销售量最多的一天比销售量最少的一天多销售公斤伽师瓜;(3)若伽师瓜的网上售价为每公斤8元,运费为每公斤3元,求张师傅本周的总收入.22.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.在有理数范围内,定义三个数之间的一种新运算“⊕”,a⊕b⊕c=﹣c,如:3⊕2⊕(﹣1)=﹣(﹣1)=4.(1)计算:(﹣2)⊕3⊕(﹣5);(2)若a=(﹣1)4,b=(﹣2)×,求a⊕b⊕c的值.参考答案一.选择题1.A.4大于0,是正数,不符合题意.B.0既不是正数也不是负数,不符合题意,C.大于0,是正数,不符合题意,D.﹣小于0,是负数,符合题意.故选:D.2.解:5的相反数是:﹣5.故选:C.3.解:﹣2021的倒数为:﹣.故选:A.4.解:2420000=2.42×106,故选:B.5.解:这一天的最高气温比最低气温高11﹣(﹣3)=11+3=14(℃),故选:B.6.解:(﹣)3表示的意义是(﹣)×(﹣)×(﹣),故选:A.7.解:A、6.3449≈6.34(精确到0.01),所以A选项不符合题意;B、6.3491≈6.35(精确到0.01),所以B选项符合题意;C、6.3051≈6.31(精确到0.01),所以C选项不符合题意;D、6.355≈6.36(精确到0.01),所以D选项不符合题意.故选:B.8.解:A、a=0时,﹣a不一定是负数,符合题意;B、只有符号不同的两个数互为相反数,不符合题意;C、离原点近的点1比离原点远的点﹣2所对应的数大,不符合题意;D、0+0=0,两数相加,和不一定大于加数,不符合题意.故选:A.9.解:①同号两数相乘,符号为正号,不是符号不变,该小题说法错误;②异号两数相乘,积取负号,这符合乘法法则,该小题说法正确;③数a、b互为相反数,它们的积不一定为负,如a、b都为0,它们互为相反数,但它们的积为0,不为负,该小题说法错误;④绝对值等于本身的数是非负数,包括正数和0,不一定是正数,该小题说法错误;故选:A.10.解:A、若a+b=0,则a=﹣b,符合题意;B、若a+b>0,则a>0,b>0或a>0,b<0且|a|>|b|,不符合题意;C、若a+b<0,则a<0,b<0或a<0,b>0,且|b|>|a|,不符合题意;D、若a+b<0,则a<0,b<0或a<0,b>0,且|b|>|a|,不符合题意,故选:A.二.填空题11.解:原式=1.故答案为:1.12.解:﹣9的倒数是﹣.故答案为:﹣13.解:|﹣|=,|﹣|=,∵>,∴﹣<﹣.故答案为:<.14.解:最高的地方比最低的地方高:+5﹣(﹣21)=5+21=26(米).故答案为:26.15.解:∵数轴上点A表示的数为5,∴距离A点3个单位长度的点表示的数为:5﹣3=2或5+3=8,即2或8.故答案为:2或8.16.解:∵x2=16,|y|=3,xy<0,∴x=4,y=﹣3或x=﹣4,y=3,∴x﹣y=4+3=7或﹣4﹣3=﹣7.故答案为:7或﹣7.17.解:∵a,b互为相反数,c,d互为倒数,x是数轴上到原点的距离为1的点表示的数,∴a+b=0,cd=1,x=±1,∴x2020=1,∴x2020﹣cd=1﹣1+0=0.故答案为:0.三.解答题18.解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=×18+×18﹣×18=12+8﹣15=5;(3)原式=×(﹣)×=﹣;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=24.19.解:如图所示:故4>>﹣1.5>﹣|﹣3|>﹣5.20.解:(1)计算过程中,第一步把原式化成省略加号和括号的形式,体现了数学中的转化思想,为了计算简便,第二步应用了加法的交换律和结合律.故答案为:省略加号和括号,转化,加法的交换律和结合律;(2)=﹣21+3+﹣=(﹣21+)+(+3﹣)=﹣21+3=﹣18.21.解:(1)4﹣3﹣5+300=296(斤).答:根据记录的数据可知前三天共卖出296斤.故答案为:296;(2)23+8=31(斤).答:根据记录的数据可知销售量最多的一天比销售量最少的一天多销售31斤.故答案为:31;(3)[(+4﹣3﹣5+10﹣8+23﹣6)+100×7]×(8﹣3)=715×5=3575(元).答:张师傅本周一共收入3575元.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)(﹣2)⊕3⊕(﹣5)=﹣(﹣5)=3+5=8;(2)∵a=(﹣1)4,=1,b=(﹣2)×=﹣1,c=5÷[(﹣5)+]=﹣,∴a⊕b⊕c=﹣(﹣)=+=.。
七年级上册数学试题及答案一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.1/2【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣1/7和0.7B.1/3和﹣0.333C.﹣(﹣6)和6D.﹣1/4和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A符号不同,数也不同,故A不是相反数;B数的绝对值不同,故B不是相反数;C符号相同,故C不是相反数;D只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2某(﹣1/2)的结果是()A.﹣1B.1C.﹣2D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣1/2的绝对值互为倒数得出.【解答】解:2某(﹣1/2)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣1/2|等于()A.2B.﹣2C.1/2D.﹣1/2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣1/2|=1/2,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数。
6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)某(﹣3)=6B.(-1/2)某(-6)=-3C.(﹣5)某(﹣2)某(﹣4)=﹣40D.(﹣3)某(﹣2)某(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣1/2)某(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是某,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为某.列方程为:某﹣2+5=1,某=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|某|=|y|,则某=﹣yB.若某=﹣y,则|某|=|y|C.若|a|<|b|,则a<bD.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|某|=|y|,则某=﹣y或某=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.11/4的倒数是4/5 .【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:11/4的倒数是4/5,故答案为:4/5.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|某+2|+|y﹣3|=0,则某y= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出某、y的值,代入代数式求值即可.【解答】解|某+2|+|y﹣3|=0,∴某+2=0,解得某=﹣2;y﹣3=0,解得y=3.∴某y=﹣2某3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2某1=2,3!=3某2某1=6,4!=4某3某2某1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100某99某98某97某…某1,98!=98某97某…某1.【解答】解:∵100!=100某99某98某97某…某1,98!=98某97某 (1)∴=100某99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110。
2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
2.3整式的加减基础50题一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a bB .−−a bC .32+−a b cD .2−−a b c6.(2012秋•洪湖市期中)三个连续偶数中间的一个是2n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是210.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( ) A .2B .4C .2−D .4−11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( ) A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( ) A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( ) A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( ) A .1−B .5−C .5D .115.若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( ) A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 .17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 .18.(2008•台州)化简:1(24)22−+=x y y .19.(2002•江西)化简:2(21)−−=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .21.(2019秋•娄底期中)化简 (1)225(3)(96)−++−−+x x x(2)(73)2−−y z (85)−y z22.(2018秋•开福区校级期中)已知:220−−=x y . (1)2−=x y .(2)求:(546)2(1)++−+−+x y y x 的值.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.24.(2019秋•开福区校级期中)化简下列各式: (1)2223144−−+a b ab a b ab(2)2(23)3(23)−−−a b b a25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x . (1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y .28.先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y .30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ;(2)2223(23)(5)+−−−x x x x x ,其中2=−x .31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y .33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b .34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值.35.先化简,再求值:222(3)(2)+−−a b ab ab a b ,其中2=−a ,1=b .36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b .37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.38.(2019秋•岳麓区)先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .41.先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b .43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .44.(2018秋•芙蓉区校级期中)化简求值 (1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y(4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中2=a ,1=−b .48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y .50题参考答案与试题解析一.整式的加减(共25小题)1.(2019秋•襄州区期末)下列运算正确的是( ) A .532−=a aB .235+=a b abC .()−−=+a b b aD .2−=ab ba ab【解答】解:A 、原式2=a ,错误;B 、原式不能合并,错误;C 、原式=−+a b ,错误;D 、原式=ab ,正确, 故选:D .2.(2019秋•自贡期中)一个多项式加上2233−x y xy 得323−x x y ,则这个多项式是( ) A .323+x xyB .323−x xyC .32263−+x x y xyD .32263−−x x y x y【解答】解:3222(3)(33)−−−x x y x y xy 3222333=−−+x x y x y xy 32263=−+x x y xy , 故选:C .3.(2018秋•东城区期末)计算2653−+a a 与2521+−a a 的差,结果正确的是( ) A .234−+a aB .232−+a aC .272−+a aD .274−+a a【解答】解:2(653−+a a 2)(521)−+−a a 22653521=−+−−+a a a a 274=−+a a . 故选:D .4.下面计算正确的是( )A .2233−=x xB .235325+=a a aC .33+=x xD .10.2504−+=ab ba【解答】解:A 、222323−=≠x x x ,故A 错误;B 、23a 与32a 不可相加,故B 错误;C 、3与x 不可相加,故C 错误;D 、10.2504−+=ab ba ,故D 正确.故选:D .5.(2016秋•海原县期中)有理数a ,b ,c 表示的点在数轴上的位置如图所示,则||||2||(+−−−+=a c c b b a ) A .3−a b B .−−a bC .32+−a b cD .2−−a b c【解答】解:0<<a b ,0>c ,||||||>>a b c ,0∴+<a c ,0−>c b ,0+<a b ,∴原式()()2()=−+−−++a c c b b a 22=−−−+++a c c b b a 32=+−a b c . 故选:C .6.(2012秋•洪湖市期中)三个连续偶数中间的一个是n ,则三个连续偶数的和是( ) A .62+nB .62−nC .6nD .3(21)−n【分析】根据连续偶数间相差为2,表示出前一个与后一个偶数,相加列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:三个连续偶数分别为:22−n ,2n ,22+n , 则三个连续偶数之和为222226−+++=n n n n . 故选:C .7.(2011秋•虎林市校级期中)加上21−x 等于233−−x x 的多项式是( ) A .234+−x xB .2334−−x xC .2332−−x xD .232++x x【分析】本题考查整式的加法运算,要先去括号,然后合并同类项.【解答】解:根据题意得2(33)(21)−−−−x x x 23321=−−−−x x x 2332=−−x x . 故选:C .8.(2009•江西)化简:2(21)−+−a a 的结果是( ) A .41−−aB .41−aC .1D .1−【分析】本题考查了整式的加减.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:2(21)2211−+−=−+−=−a a a a .故选D . 9.(2019秋•开福区校级月考)下列说法正确的是( ) A .单项式22π−xy 的系数是2π−,次数是3B .单项式432x 的次数是7C .多项式223+a b 与227−+−ab a b 的和为22102−−a ab bD .多项式222−+x xy y 的二次项的系数和是2 【解答】解:A 、单项式22π−xy 的系数是2π−,次数是3,故原题说法正确;B 、单项式432x 的次数是3,故原题说法错误;C 、多项式223+a b 与227−+−ab a b 的和为210−a ab ,故原题说法错误;D 、多项式222−+x xy y 的二次项的系数和是1120+−=,故原题说法错误;故选:A .10.(2018秋•雨花区校级期末)多项式2835−+x x 与323457−−+x mx x 多项式相加后,不含二次项,则m 的值是( )A .2B .4C .2−D .4−【解答】解:原式2328353457=−++−−+x x x mx x 323(84)813=+−−+x m x x令840−=m ,2∴=m ,故选:A .11.(2018秋•天心区校级期末)已知多项式322231=−+−A x mx x ,3226=−+++B x x nx ,若−A B 的结果中不含2x 和x 项,则m ,n 的值为( )A .1=−m ,3=nB .1=−m ,3=−nC .1=m ,3=nD .1=m ,3=−n【解答】解:原式3232223126=−+−+−−−x mx x x x nx 323(22)(3)7=−++−−x m x n x , 令220+=m ,30−=n ,1∴=−m ,3=n ,故选:A .12.(2018秋•沙洋县期中)一个多项式与234−m 的和是25−+m m ,则这个多项式为( )A .229−+m mB .221−−+m mC .229−−+m mD .229−++m m【解答】解:这个多项式为22222(5)(34)53429−+−−=−+−+=−−+m m m m m m m m , 故选:C .13.(2017秋•岳麓区校级期中)减去6−a 等于2425−+a a 的代数式是( )A .2485−+a aB .2445−+a aC .2445++a aD .2485−−+a a【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:减去6−a 等于2425−+a a 的代数式是:22425(6)485−++−=−+a a a a a . 故选:A .14.(2019秋•开福区校级期中)已知3−=−a b ,2+=c d ,则()()+−−a c b d 的值是( )A .1−B .5−C .5D .1【分析】直接去括号进而结合已知条件代入求出答案.【解答】解:3−=−a b ,2+=c d ,()()∴+−−a c b d =+−+a c b d ()=−++a b c d 32=−+1=−.故选:A .15.(2019秋•天心区校级期中)若A 与B 都是二次多项式,则关于−A B 的结论,下列选项中正确的有( )A .一定是二次式B .可能是四次式C .可能是一次式D .不可能是零 【解答】解:多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,故只有选项C 符合题意.故选:C .16.(2016秋•永城市期中)计算2(45)(32)−−−a b a b 的结果为 58−a b .【分析】原式去括号合并即可得到结果.【解答】解:原式8103258=−−+=−a b a b a b ,故答案为:58−a b17.(2015秋•大同期末)一个多项式加上2543−−x x 得23−−x x ,则这个多项式为 263−++x x .【解答】解:设这个多项式是A ,则225433+−−=−−A x x x x ,222223(543)354363∴=−−−−−=−−−++=−++A x x x x x x x x x x ,故答案是263−++x x .18.(2008•台州)化简:1(24)22−+=x y y x . 【解答】解:原式22=−+=x y y x .19.(2002•江西)化简:2(21)−−=a a 1 .【解答】解:原式2211=−+=a a .20.(2019秋•雨花区校级月考)设有理数a ,b 在数轴上的对应点如图所示,化简|||||1|||+−−−+−a b a b b .【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:101<−<<<a b ,0∴+<a b ,0<a ,10−>b ,0−<b ,则原式11=−−+−++=−a b a b b b .21.(2019秋•娄底期中)化简(1)225(3)(96)−++−−+x x x ;(2)(73)2−−y z (85)−y z【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式2225396534=−+++−=−++x x x x x ;(2)原式73161097=−−+=−+y z y z y z .22.(2018秋•开福区校级期中)已知:220−−=x y .(1)2−=x y 2 .(2)求:(546)2(1)++−+−+x y y x 的值.【分析】(1)由220−−=x y ,移项即可得出22−=x y ;(2)原式去括号合并得到最简结果,把22−=x y 整体代入计算即可求出值.【解答】解:(1)220−−=x y ,22∴−=x y . 故答案为2;(2)22−=x y ,∴原式546222=+−+−+x y y x 724=+−x y 72(2)=+−x y 722=+⨯11=.23.(2017秋•岳麓区校级期中)已知a ,b 为常数,且多项式2+−+x ax y b 与多项式 2363−+−bx x y 的差与x 的值无关,求代数式22017a b 的值.【分析】根据题意列出关系式,由结果与x 值无关,求出a 与b 的值,原式去括号合并后代入计算即可求出值.【解答】解:222363(1)(3)73+−+−+−+=−++−++x ax y b bx x y b x a x y b ,结果与字母x 的值无关, 10∴−=b ,30+=a ,解得:3=−a ,1=b ,则原式22017(3)1919=−⨯=⨯=.24.(2019秋•开福区校级期中)化简下列各式:(1)2223144−−+a b ab a b ab ;(2)2(23)3(23)−−−a b b a【分析】(1)根据合并同类项的方法可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【解答】解:(1)2223144−−+a b ab a b ab 212=−+a b ab(2)2(23)3(23)−−−a b b a 4669=−−+a b b a 1312=−a b .25.(2019秋•天心区校级期中)某同学做一道数学题:两个多项式A 、B ,其中2234=−−B x x ,试求2−A B 的值.这位同学把“2−A B ”看成“2+A B ”,结果求出的答2582−−x x .(1)2−A B 的正确答案是多少?(2)若2=−x 时,2−A B 的值是多少?【解答】解:(1)根据题意得:22222225822(234)58246826=−+=−−−−−=−−−++=−+A A B B x x x x x x x x x x , 则222222262(234)264683414−=−+−−−=−+−++=−++A B x x x x x x x x x x ;(2)当2=−x 时,223(2)4(2)146−=−⨯−+⨯−+=−A B .二.整式的加减—化简求值(共25小题)26.(2018秋•开福区校级期中)先化简,再求值:2332(21)(122)−+−−−+x x x x ,其中2=x .【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式23322211222=−+++−=−+x x x x x ,当2=x 时,原式422=−+=−.27.先化简,再求值:22226[32(13)6]−+−+x xy xy x ,其中4=x ,12=−y . 【分析】原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.【解答】解:22226[32(13)6]−+−+x xy xy x 222263266=−−+−x xy xy x 232=−xy ,把4=x ,12=−y 代入2213234()212−=⨯⨯−−=xy . 28.(2019秋•金牛区期末)先化简,再求值:223(2)2(3)−−−−x xy y x y ,其中1=−x ,2=y .【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2233626=−−−+x xy y x y 23=−x xy ,把1=−x ,2=y 代入223(1)3(1)27−=−−⨯−⨯=x xy .29.先化简,再求值:2212(35)2(32)+−−+xy x xy xy x ,其中2=x ,12=y . 【分析】根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式22123564=+−−−xy x xy xy x 22(1256)(34)=−−+−xy xy xy x x 2=−xy x , 当2=x ,12=y 时,原式21221432=⨯−=−=−.30.(2018秋•商南县期末)先化简,再求值(1)2222222(2)(2)−+−−+a b b a a b ,其中13=a ,3=−b ; (2)2223(23)(5)+−−−x x x x x ,其中2=−x .【解答】解:(1)原式222222222=−+−−−a b b a a b 2=−b ,把3=−b 代入29−=−b(2)原式2223235=+−−+x x x x x 2=−x ,把2=−x 代入24−=x31.(2019秋•增城区期中)先化简下式,再求值:22(234)2(54)−++−−−x x x x ,其中2=−x .【解答】解:原式222341082=−++−++x x x x 611=−+x当2=−x 时,原式121123=+=.32.(2019秋•沙雅县期中)先化简再求值(1)2225435256+−−−−+x x x x x ,其中3=−x .(2)2211312()()2323−−+−+x x y x y ,其中2=−x ,23=y . 【解答】解:(1)原式2225325645=−−−++−x x x x x 1=−x当3=−x 时,原式314=−−=−.(2)原式22123122323=−+−+x x y x y 22132122233=−−++x x x y y 23=−+x y 当2=−x ,23=y 时,原式223(2)()3=−⨯−+469=+589=. 33.(2018秋•云梦县期末)先化简,再求值.22223(23)2(5)−−+a b ab ab a b ,其中12=a ,2=−b . 【解答】解: 原式222269210=−−−a b ab ab a b 2222(610)(92)=−+−−a b a b ab ab 22411=−−a b ab当12=a ,2=−b 时,原式22114()(2)11(2)22=−⨯⨯−−⨯⨯−114211442=⨯⨯−⨯⨯222=−20=− 34.(2020春•开福区校级期末)化简求值:已知2222=−++A a ab b ,2222=−−B a ab b ,当12=−a ,1=b 时,求2+A B 的值. 【解答】解:2+A B 22222(22)(22)=−+++−−a ab b a ab b 222224422=−+++−−a ab b a ab b 223=+ab b ,当12=−a ,1=b 时,原式13=−+2=.35.先化简,再求值:2=−,1=b .【解答】解:222(3)(2)+−−a b ab ab a b 22262=+−+a b ab ab a b 2(21)(62)=++−a b ab 234=+a b ab , 当2=−a ,1=b 时,原式23(2)14(2)11284=⨯−⨯+⨯−⨯=−=.36.先化简,再求值:2222(21)3()23+−−+−−a a a a b b ,其中1=−a ,1=b . 【解答】解:2222(21)3()23+−−+−−a a a a b b 224223232=+−−−+−a a a a b b 22=+−a b 当1=−a ,1=b 时,原式2(1)120=−+−=.37.(2019秋•双清区期末)先化简再求值:已知1=−a ,2=b ,求代数式222[82(4)]−+−+a ab ab a ab 的值.【解答】解:原式2222828109=−−++=−a ab ab a ab a ab ,当1=−a ,2=b 时,原式210(1)9(1)228=⨯−−⨯−⨯=.38.先化简,再求值:22(37)(426)−+−−+−a ab a ab ,其中1=−a ,2=b .【解答】解:(1)原式2237426=−++−+a ab a ab 27313=−+a ab ,当1=−a ,2=b 时,原式7613=++26=;39.先化简,再求值:222252(2)(31)−−+++−a b ab ab a b ,其中2=a ,1=−b .【解答】解:原式2222522431=−+−++−a b ab ab a b 225=−+a b ab将2=a ,1=−b 代入上式,原式410=+14=;40.(2019春•遵义期末)先化简222(32)4(2)−−−−−x xy y x xy y ,再求值其中3=−x ,1=y .【解答】解:原式22642844=−−−++x xy y x xy y 222=−+x y当3=−x ,1=y 时,原式2921=−⨯+⨯16=−41.(2019秋•天心区校级期中)先化简再求值:22222(1)(333)−−−−−x y xy x y xy ,其中1=x ,2=−y【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式2222222223331=−−−++=−++x y xy x y xy x y xy ,当1=x ,2=−y 时,原式2417=++=.42.先化简,再求值:2222(42)3()−+−−+a ab b a ab b ,其中1=−a ,12=−b . 【解答】解:原式222242333=−+−+−a ab b a ab b 222=+−a ab b ,当1=−a ,12=−b 时,原式11122=+−1=. 43.(2018秋•芙蓉区校级期末)先化简,再求值:22(1)2(1)−+−−x x ,其中1=−x .【解答】解:原式222221=−+−+=−x x x x ,当1=−x 时,原式110=−=.44.(2018秋•芙蓉区校级期中)化简求值(1)224()3−−+x x x x ,其中1=−x .(2)22(34)[2(22)]−−+−+a ab a a ab ,其中2=−a ,2004=b .【解答】解:(1)原式22443=−++x x x x 25=−x x当1=−x 时,原式511=⨯+6=;(2)原式2234(44)=−++−−a ab a a ab 223444=−++−−a ab a a ab 224=−−a a , 当2=−a ,2004=b 时,原式244(2)=−⨯−⨯−88=−+0=.45.(2017秋•雨花区校级期中)计算:(1)235()(36)3412−+⨯−;(2)22323||[3()(2)]32−⨯−÷+−;(3)222()3()4+−−−x y xy x y xy x y (4)已知:22253=−+A a ab b ,2232=+−B a ab b ,求(2)(32)+−−A B A B 的值【解答】解:(1)235()(36)2123953242715123412−+⨯−=−⨯+⨯−⨯=−+−=−; (2)22323242||[3()(2)](98)12832393−⨯−÷+−=⨯−⨯−=−⨯=−; (3)2222222()3()433464+−−−=+−+−=−+x y xy x y xy x y x y xy x y xy x y x y xy ;(4)22253=−+A a ab b ,2232=+−B a ab b ,2222(2)(32)2323(253)3(32)∴+−−=+−+=−+=−−+++−A B A B A B A B A B a ab b a ab b 222222253936779=−+−++−=−+−a ab b a ab b a ab b46.(2017秋•岳麓区校级期中) (1)2332(21)(122)−+−−++x x x x ,其中2=x(2)222221112()5()4(3)32−+−−+a b ab ab a b a b ,其中15=a ,5=−b 【解答】解:(1)当2=x 时,原式233221122=−++−−x x x x 3242=−−+x x 34=−(2)当15=a ,5=−b 时, 原式2222212455212=−+−−−a b ab ab a b a b 22512=+−a b ab115(5)2512255=⨯⨯−+⨯−1512=−+−8=− 47.先化简,再求值:222226(3)5(3)−++−ab ab a b a b ab ,其中12=a ,1=−b . 【解答】解:原式2222263155=−−+−ab ab a b a b ab 212=a b ,当12=a ,1=−b 时,原式112(1)4=⨯⨯−3=−. 48.先化简,再求值:22222(3)2(2)−+−−−a b ab a b ab a b ,其中1=a ,2=−b .【解答】解:原式22222222342(112)(34)=−+−−+=−−++−=−a b ab a b ab a b a b ab ab , 当1=a ,2=−b 时,原式21(2)4=−⨯−=−.49.(2019秋•雨花区期末)化简求值:22(31)3(253)−−−+a a a ,其中13=−a 【解答】解:原式226261592198=−−+−=−−a a a a a ,把13=−a 代入,原式21121()9()87181633=⨯−−⨯−−=−−−=−. 50.先化简,再求值:22223(2)(52)−−+x y xy x y xy ,其中1=x ,12=y . 【分析】直接去括号进而合并同类项,再把已知数据代入求出答案.【解答】解:原式22226352=−−−x y xy x y xy 225=−x y xy ,当1=x ,12=y 时,原式22113151()224=⨯−⨯⨯=−.。
1.下列结论中,正确的是( D ).A.若一个数是整数,则这个数一定是有理数B.若一个数是有理数,则这个数一定是整数C.若一个数是有理数,则这个数一定是负数D.若一个数是有理数,则这个数一定是正数2.若一个数的相反数的倒数是自然数,则这个数是( ).A.15B.-13C.3 D.-53.若a·b<|a·b|,则下列正确结论是( ).A.a<0,b<0 B.a>0,b<0C.a<0,b>0 D.a·b<04.a为任意有理数,则下列四组数中的数字都不可能是a2的末位数字的应是( ).A.3 4 9 0 B.2 3 7 8C.4 5 6 7 D.1 5 6 95.若(a+3)2与|b-1|互为相反数,则( ).A.a= -3,b= -1 B.a= -3,b=lC.a=3,b=1 D.a=3.b= -16.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调到甲队的人数是( ).A.8 B.9 C.10 D.117.洗衣机每台原价为a元,在第一次降价20%的基础上,再降价15%,则洗衣机现价为( ).A.65%a元B.(8%a+75%a)元C.77%a元D.68%a8.一列长200 m的火车以20 m/s的速度通过1 000 m的隧道,这列火车完全通过隧道需要( ).A.70 s B.60 s C.50 s D.30 s9.图中经过折叠后围成一个立方体的是( ).10.如图M-1所示,直线l上有四点A、B、C、D,则射线共有( ).A.2条B.4条C.6条D.8条11.∠α的补角是142°,∠β的余角是52°,则∠α和∠β的大小关系是( ).A.∠α>∠βB.∠α<∠βC.∠α=∠βD.不能确定12.如图M-2所示,OB、OC是∠AOD内的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD为( ).A.2α-βB.α-βC .α+βD .以上都不正确13.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70% 售,那么每台实际售价为( ). A .(1+25%)(1+70%)a 元 B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元14.一艘潜水艇正在水下-50 m 处执行任务,距它正上方30 m 处有一条鲨鱼正好游过,这条鲨鱼的高度为 m .15.地球的表面积是514 000 000 km 2,用科学记数法表示是 km 2. 16. 展开后侧面是扇形, 展开后侧面是长方形. 17.时钟1点50分时,时针和分针夹角是 .18.如果2x =43与3(x +a )=a -5x 是同解方程,那么a -1= .19.长方形一边长为2a +b ,周长是6a +5b ,当a =3,b =2时,这个长方形的面积为 .(1)22831210.52;552142⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪⎝⎭⎝⎭ (2)-43×0.01+(-3)3×0.01-23×0.01-0.01;(3)4211311.73146⎛⎫⎛⎫⎛⎫-÷-÷-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 21. 解下列方程:(1)112(1)(1);223x x x ⎡⎤--=-⎢⎥⎣⎦ (2) 1111164 1.2345x ⎧⎫⎡⎤⎪⎛⎫--+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎪⎭⎩22.已知y =1是方程2-13(m -y )=2y 的解,那么求关于x 的方程m (x -3)-2=m (2x -5)的解. 23.关于x 的方程kx =4的解为自然数,求k 所能取的整数值.24.如图M-3所示,O 是直线AB 上的一点,OE 平分∠BOC ,若∠BOC =40°43′,求∠AOE的度数.25.某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且比原计划多生产了 60件,问原计划生产了多少个零件?26.一个三角形3条边长的比是2∶4∶5,最长的一条边比最短的一条边长6 cm ,求这个三角形的周长.27.某学校计划向山区同学捐增3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生原计划分别捐赠了多少册?28.某种商品的出厂价是每件a 元,商店按出厂价进货后,另加10%的利润销售. (1)写出销售x (件)商品的收款金额y (元)的售价公式; (2)计算当x =12,a =250时,求y 的值.一、1.A 分析:根据有理数的意义,整数、分数统称为有理数,故B 、C 、D 三个选项都不完全,应选择A .2.B 分析:因为这个数的相反数的倒数是自然数,所以这个数一定是负数且是分数,应选择B.3.D 分析:因为a·b<|a·b|,所以a、b中任一个都不为零,所以a、b同正或同负,或一正一负,而同正时或同负时,a·b=|a·b|,所以只有一正一负,即a·b<0,应选择D.4.B 分析:因a是整数,所以a2也是整数,而a2代表两个相同整数相乘,所以a2的末位数字是0~9这十个数字中相同两个数字乘积的末位数,而这十个数字中任一个数的平方,末位数字只能是O、1、4、5、6、9中的一个,所以A、C、D三个选项都可能出现。
1、某商品原价为a 元,以( 710a −5 )元出售,则下列说法中,能正确表达该商品出售价格 的是 ( ) A.先打3折,再降5元 B.先打7折,再降5元 C.先降5元,再打3折 D.先降5元,再打7折2设n 为整数,用含字母n 的式子表示偶数下列式子中正确的是 ( ) A. 2n B. 2n+1 C. 2n-1 D. n+23.某教室内有m 排座位,其中每排有n 个座位,则这个教室内座位共有 ( )A. mn 个B.(m+n)个C.(m −n)个D.(2m+2n)个 4.一个长方形的周长为am,长为bm,则这个过 长方形的宽为 ( )A. (a −2b)m B.( a 2−2b)m.C.a−b 2m D.a−2b 2m5.(2021温州)某地居民生活用水收费标准:每2月用水量不超过17m 3,每立方米a 元;超过部分每立方米(a+1.2)元.该地区用户上月用水量为20m 3,则应缴水费为( )A. 20a 元B. ( 17a+3.6 )元C. ( 20a+24 )元D. ( 20a+3.6 )元 6.某商品降价20%后价格为a 元,则原价为( ) A. (1−20%)a 元 B.a 1−20%元C. 20%a 元D.(1+20%)a 元 7若2022x14=m,则下列代数式表示2022x 15的是 ( ) A. m+1 B.2 022m+2 022 C. m+15 D.m+2 0228、下列代数式的意义表示错误的是 ( ) A.2+3y 表示2x 与3y 的和 B.5x 2y表示5x 除以2y 所得的商C.9−13y 表示9减去y 的13所得的差 D.a 2+b 2表示a 与b 和的平方9、一个组中有15名学生,其中10名学生的平均成绩是x 分,如果另外5名学生每人得84分,那么整个组的平均成绩是 ( ) A. x+842分 B.10x+42015分C.10x+8415分 D .10+42015分10、一列火车长am,以每秒nm 的速度通过一个长为pm 的桥洞,用代数式表示火车通过桥洞所需的时间为11、某工程队要修路20km,原计划平均每天修xkm,实际平均每天多修了0.1km,则完成 任务提前了 天。
冀教版七年级上册数学第五章一元一次方程含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD是一个边长为30米的花坛,甲从A出发以65米/分的速度沿A→B→C→D→A→…方向行走,乙从B出发以75米/分的速度沿B→C→D→A→B→…方向行走,若甲乙同时出发,那么乙第一次追上甲时,他们位于正方形花坛的().A.AB边上B.DA边上C.BC边上D.CD边上2、下列各式运用等式的性质变形,错误的是()A.若﹣a=﹣b,则a=bB.若=,则a=bC.若ac=bc,则a =bD.若(m 2+1)a=(m 2+1)b,则a=b3、某品牌服装,每件的标价是220元,按标价的七折销售时,仍可获利10%,则该品牌服装每件的进价为()A.200元B.160元C.140元D.180元4、一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道5、班主任老师在七年级(1)班新生分组时发现,若每组7人则多2人,若每组8人则少4人,那么这个班的学生人数是( )人.A.56B.51C.44D.406、学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对的题数为()A.14B.15C.16D.177、有一种足球,由32块黑、白相间的牛皮缝制而成,黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32-x)块,列出方程正确的是A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=5(32-x)8、关于的方程与的解相同,则()A.-2B.2C.D.9、七年级学生人数为x,其中男生占52%,女生有150人,下列正确的是()A. B. C. D.10、儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍. ( )A.5年后B.9年后C.12年后D.15年后11、在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)12、某商场销售甲、乙两种服装,已知乙服装每件的成本比甲服装贵50元,甲、乙服装均按成本价提高40%为标价出售.一段时间后,甲服装卖出了350件,乙服装卖出了200件,销售金额为129500元.若用方程表示其中的数量关系,则式子中所表示的量是( )A.甲服装的标价B.乙服装的标价C.甲服装的成本价D.乙服装的成本价13、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为()A.75×1+(120﹣75)x=270B.75×1+(120+75)x=270C.120(x﹣1)+75x=270D.120×1+(120+75)x=27014、若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤215、已知关于的方程的解与方程的解互为相反数,则的值为()A. B. C.4 D.2二、填空题(共10题,共计30分)16、已知方程是关于的一元一次方程,则的值是________.17、一包洽洽瓜子售价8元,商家为了促销,顾客每买一包洽洽瓜子获一张奖券,每4张奖券可兑换一包洽洽瓜子,则每张奖券相当于________元.18、初一某班以6个同学为一组,一共分了n组.在捐书活动中,各组捐书的本数按一定规律增加,第1组捐了10本,第2组捐了13本,第3组捐了16本,…,第n组捐的本数比第1组的3倍还多1本,由此可知该班一共有学生________人.19、将方程变形成用含的代数式表示,则y=________.20、关于的一元一次方程的解是,则的值是________.21、若3a-2=13,则3a+2=________.22、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程________.23、小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A和已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过30件,现商店将A的单价提高,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少7元,已知调整前后的价格和数量均为整数,求小明原计划购买费用为________元24、已知是方程的解,则的值是________.25、已知方程2x﹣3=+x的解满足|x|﹣1=0,则m= ________三、解答题(共5题,共计25分)26、解方程:27、如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B 点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?28、延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?29、某商场从厂家购进100个整理箱,按进价的1.5倍进行标价.当按标价卖出80个整理箱后,恰逢元旦,剩余的部分以标价的九折出售完毕,所得利润共1880元,求每个整理箱的进价.30、(数字问题)一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、C5、C6、C7、B8、B9、D10、D11、B12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
一、填空题1.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.2.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.4.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”5.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.6.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.7.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.8.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.9.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+ (99)100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.10.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.11.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.12.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.13.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减.14.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.15.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.16.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.17.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.19.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.20.已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.21.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12) =1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 22.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.23.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.24.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.25.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.26.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.27.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.28.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.29.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.30.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.。
第一章:有理数十道题(基础)一、正负数概念1.图纸上一个零件的直径是+0.03-0.0230φ(单位:mm ),这样标注表示零件的标准尺寸是 ,实际产品的直径最大可以是 ,最小可以是 。
2.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第1层作为基准,记为0,规定向上为正,那么习惯上将第3层记为 .(越秀19)二、有理数概念3.若a 与b 互为相反数,x 与y 互为倒数,则()x a b xy y+⋅-=__________.(二中应元) 4.比较大小: -3.14○-π. -212○-313 . 54-43-○ 5. 已知:点A 在数轴上的位置如图所示,点B 也在数轴上,且A 、B 两点之间的距离是2,则点B 表示的数是__________.三、科学计数法与近似值6.用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数6100.3⨯精确到 位。
(西关外国语17)四、有理数计算7.计算(1)⎪⎭⎫⎝⎛+75.0-31161×(-24); (2)-22+3×(-2)-(-4)2÷│-8│-(-1)100.五、非负性求值8.已知|x+1|=4,(y+2)2=4,且x >y, 求x+y 的值。
六、绝对值与数轴9.有理数a,b在数轴上的位置如图所示,先填上适当的符号再化简.(华附新世界16)①将a、-a、b、-b、1、-1用“<”号连接起来。
②ab 0;a-b 0;b-1 0;③化简:∣a-b∣-∣b-1∣+∣ab∣+ab七、有理数应用10.为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(千米)为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2 (1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?(花都19)(2)已知每千米耗油0.25升,如果警务处命令其巡逻车马上返回出发点,这次巡逻共耗油多少升?。
1.1正数和负数
1. 下面各数为正数的是()
A.5 B.-3 C.-0.0001 D.0
2.某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是()
A.1℃ B.0℃ C.-1℃ D.-2
增长率最低的国家是()
A.美国 B.德国 C.中国 D.日本
1.2有理数
1. 下面各数中绝对值最大的是()
A.-125 B.23 C.0 D.-0.05
2.检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是()
A.+5 B.+0.7 C.-2.5 D.-0.6
3.-1与0之间的数是()
A.-2 B.-0.5 C.0 D.0.5
1.3有理数的加减法
1. 下列计算正确的是()
A.(-8)-8=0 B.(-8)-(-8)=0 C.8-(-8)=0 D.8+8=0
2.世界最高峰是珠穆朗玛峰,高度为海平面以上8844m,陆上最低处为亚洲西部名为死海的湖,高度为海平面以下392m.两处高度相差()
A.8452m B.-8452m C.9236m D.-9236m
3.红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负.红星队在4场比赛中总的净胜球数是()
A.2 B.1 C.-1 D.-2
1.4有理数的乘除法
1. -0.25的倒数是()
A.-1/4 B.-4 C.1/4 D.4
2.小商店一周共亏损840元,平均每天的利润是()元
A.20 B.120 C.-20 D.-120
3.如果a<0,b<0,那么a·b()0
A.> B.< C.= D.≤
1.5有理数的乘方
1. (-2)²×(-3)²是()
A.-36 B.-13 C.13 D.36
2.2.004×10^5原来是()
B.20040 C.200400 D.200400000
3.一个长方体的长、宽都是2,高是5,它的体积是()
A.5 B.10 C.20 D.40
2.1整式
1. x的2倍与10的和是()
A.2x B.2x+10 C.x+10 D.2(x+10)
2.某种苹果的售价是每千克x元,用面值是50元的人民币购买6千克,应找回()元A.50-x B.50-6x C.44 D.44x
3.设n表示任意一个整数,那么任意一个偶数可以表示为()
A.n B.n+1 C.2n D.2n+1
2.2整式的加减
1. –x+(2x-2)-(3x+5)=()
A.-2x-7 B.-6x+3 C.2x+3 D.-2x-3
TheAnswerIs A
2.一个两位数的个位数字是a,十位数字是b,这个两位数可表示为()
A.a+b B.ba C.a+10b D.10a+b
TheAnswerIs C
3.某村小麦种植面积是a公顷,水稻种植面积是小麦的3倍,玉米种植面积比小麦少5公顷,则水稻的种植面积比玉米大()公顷
A.3a-5 B.2a+5 C.2a-5 D.3a+5
TheAnswerIs B
3.1从算式到方程
1. (a+b)+c=a+(b+c)表示()
A.加法交换律 B.乘法交换律 C.分配律 D.加法结合律TheAnswerIs D
2.把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元.获得一等奖的学生有()人
A.1 B.2 C.3 D.4
TheAnswerIs B
3.一辆汽车已行驶了12000km,计划每月再行驶800km,则()个月后这辆车将行驶20800km
A.9 B.10 C.11 D.12
TheAnswerIs C
3.2解一元一次方程(一)---合并同类项与移项
1. 方程3x+5=4x+1的解为()
A.x=4 B.x=3 C.x=2 D.x=1
TheAnswerIs A
2.用一根长60m的绳子围成一个矩形,使它的长是宽的1.5倍,则它的长是()A.18m B.24m C.30m D.36m
TheAnswerIs D
3.把一根100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则较短的一段为()cm
A.20 B.35 C.50 D.65
TheAnswerIs B
3.3解一元一次方程(二)---去括号与去分母
1. 方程2(x+8)=3(x-1)的解为()
A.x=17 B.x=18 C.x=19 D.x=20
TheAnswerIs C
2.方程(3x+5)/2=(2x-1)/3的解为()
A.x=17/5 B.x=-17/5 C.x=17 D.x=-17
TheAnswerIs B
3.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”乙牧童有()只羊A.4 B.5 C.6 D.7
TheAnswerIs B
3.4实际问题与一元一次方程
1. 下表记录了一次试验中时间和温度的数据()
如果温度的变化是均匀的,()分的温度是34℃
A.9 B.8 C.7 D.6
TheAnswerIs B
2.某种商品的进价是250元,按标价的九折销售时,利润率为15.2%,这种商品每件标价是()元
A.300 B.310 C.320 D.330
TheAnswerIs C
3.希腊数学家丢潘图的墓碑上记载着:
“他生命的六分之一是幸福的童年;
再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过了五年,他有了儿子,感到很幸福;
可是儿子只活了他父亲全部年龄的一半;
儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”丢潘图活了()岁
A.54 B.64 C.74 D.84 TheAnswerIs D
4.1多姿多彩的图形
1. 以下图形中,()不是正方体的展开图
A.
C.
TheAnswerIs C
2.下面图形是()
A.圆锥 B.圆柱 C.棱柱 D.棱锥TheAnswerIs A
3.下面图形能折叠成()
A.圆锥 B.圆柱 C.棱柱 D.棱锥TheAnswerIs B
4.2直线、射线、线段
1. 两点之间()的长度,叫做这两点的距离
A.曲线 B.直线 C.弧 D.线段
TheAnswerIs D
2.光线是()
A.直线 B.射线 C.曲线 D.线段
TheAnswerIs B
3.画一个正方形,使它的面积是原正方形的4倍,则()
A.它的边长是原正方形的0.5倍 B.它的边长是原正方形的1倍C.它的边长是原正方形的2倍 D.它的边长是原正方形的4倍TheAnswerIs C
4.3角
1. 48°39′+67°31′=()
A.115°70′ B.115°80′ C.116°10′ D.116°20′TheAnswerIs C
2.如图:
D
C
O
B
A
∠AOD-()=∠AOB
A.∠AOC B.∠BOC C.∠COD D.∠BOD
TheAnswerIs D
3.一个齿轮有15个齿,每相邻两齿中心线间的夹角都相等,这个夹角是()A.12° B.24° C.36° D.48°
TheAnswerIs B。