材料1--初等数学二2012(个人带答案)大号字
- 格式:pdf
- 大小:1.54 MB
- 文档页数:38
2012考研数学二真题在2012年的考研数学二真题中,涵盖了多个知识点和难度级别的数学问题。
本文将对这些问题进行逐一分析和解答,以帮助考生更好地理解和掌握这些内容。
一、选择题解析1. 题目:若函数f(x)=x^3-3x^2+2x+a在区间[0,1]上的最大值为3,则a的取值范围是?解析:题目中给出了函数f(x)在区间[0,1]上的最大值为3。
我们可以通过求导和寻找极值的方法来求解。
首先,求导得到f'(x)=3x^2-6x+2。
然后,令f'(x)=0,求解得到x=1/3或x=2。
再通过求二阶导数f''(x)=6x-6判断这两个点是否为极值点。
发现f''(1/3)>0,f''(2)<0,所以x=1/3为极小值,x=2为极大值。
由于题目要求的最大值为3,因此只有极大值为3的解才符合题意,即a=f(2)=2^3-3*2^2+2*2-3=3。
综上所述,a的取值范围是3。
2. 题目:已知平面上一段圆弧是以直角坐标方程x^2+y^2=1表示的单位圆,长度为l,则l的取值范围是?解析:题目中给出了圆弧的方程为x^2+y^2=1。
由于这是一个单位圆,所以圆弧的长度等于圆周的长度。
我们可以使用弧长公式来计算圆周长。
设圆周长为l,则有l=2πr=2π(1)=2π。
综上所述,l的取值范围是2π。
3. 题目:设集合A={x|lgx<0},则A的取值范围是?解析:题目中给出了集合A的定义为{ x | lgx<0 }。
我们知道,对数函数在定义域内是递增的。
而lgx<0表示x在(0,1)之间,所以集合A表示的是区间(0,1)。
综上所述,A的取值范围是(0,1)。
二、解答题解析1. 题目:求函数f(x,y)=2x^2+y^2的最大值,其中x与y满足条件x-2y+1=0。
解析:题目中给出了函数f(x,y)=2x^2+y^2以及约束条件x-2y+1=0。
2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。
正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。
故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是 故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★ 【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰( )(A )π (B )2 (C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 故选B. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:C【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+--- 所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3.【答案】:(D) 【解析】::2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是 (A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1. (C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。
2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C ) 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直渐近线22l i m 11x x x x →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。
(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nx f x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。
(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。
反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。
2012考研数二真题2012年考研数学二真题中涵盖了多个具体的问题和考点,主要包括数列的性质、极限、微分和积分等内容。
下面将按照2012考研数二真题的顺序,逐个进行讨论和解答,以帮助考生更好地理解题目及解题思路。
1. 设数列 {an} 满足a1 = 2, an+1 = √(2 + an), (n≥1).题目要求证明数列 {an} 单调递增有上界,且求出其极限值。
解:首先,证明数列 {an} 单调递增。
根据递推式可得:an+1 - an = √(2 + an) - an等式两边同时乘以√(2 + an) + an,得到:(an+1 - an)(√(2 + an) + an) = 2 + an - an^2化简得:an+1^2 - an^2 = 2移项整理得到:an+1^2 = an^2 + 2可见,数列 {an} 的相邻两项之间满足差分公式,且差分有正号,因此数列是单调递增的。
再证明数列 {an} 有上界。
假设存在数L,使得对于任意 n 有an ≤ L。
那么当n → ∞ 时,an 的极限也是 L。
考虑到an+1 = √(2 + an),若an ≤L,则an+1 ≤ √(2 + L)。
由此可知,在an ≤ L 的条件下,an 的上界不超过√(2 + L)。
所以,若存在上界,则上界不会超过√(2 + L)。
因此,若L > 0,则√(2 + L) > L。
这与假设 L 为上界矛盾。
所以,数列 {an} 有上界。
进一步求解数列 {an} 的极限值。
将数列极限记为 A,则根据递推式可得:A = √(2 + A)解方程√(2 + A) = A,得到 A = 2。
2. 设函数 f(x) 在区间 [a, b] 上连续,(a < b),且在 (a, b) 内可导,满足 f(a) = f(b) = 0,且存在 c∈(a,b),使得 f'(c) = 0。
题目要求证明存在ξ∈(a,b),使得f(ξ) = f''(ξ).解:根据题干条件可知,在区间 [a, b] 上,f(x) 在两个端点 a 和 b 处的函数值都为 0,且在区间 (a, b) 内可导且至少有一个驻点。