高考数学各题型解题方法与技巧总结:数列问题篇
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
高三数学应试技巧合理运用数学数列方法高三数学应试技巧:合理运用数学数列方法在高三数学的学习和考试中,数列作为一个重要的知识点,不仅在教材中占据重要地位,在考试中也经常出现。
掌握合理的数列解题技巧,对于提高数学成绩、增强应试能力具有关键作用。
一、数列的基础知识首先,我们需要清晰地理解数列的基本概念。
数列是按照一定顺序排列的一组数,可以用通项公式或者递推公式来表示。
等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差。
其前\(n\)项和公式为:\(S_n=\frac{n(a_1 + a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)。
等比数列的通项公式为:\(a_n = a_1q^{n 1}\),其中\(a_1\)为首项,\(q\)为公比(\(q ≠ 0\))。
其前\(n\)项和公式为:当\(q ≠ 1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\);当\(q= 1\)时,\(S_n = na_1\)。
这些基本公式是解决数列问题的基石,必须牢记于心。
二、数列题型及解题技巧1、求数列的通项公式观察法:对于一些简单的数列,可以通过观察数列的数字规律,直接写出通项公式。
累加法:适用于形如\(a_{n + 1} a_n = f(n)\)的递推关系,通过累加可求得通项公式。
累乘法:对于形如\(\frac{a_{n + 1}}{a_n} = f(n)\)的递推关系,采用累乘的方法。
构造法:通过对递推公式进行变形,构造出一个新的等差数列或等比数列,从而求出通项公式。
例如:已知数列\(\{a_n\}\)满足\(a_{n + 1} = 2a_n +1\),\(a_1 = 1\),求\(a_n\)。
我们可以将式子变形为\(a_{n + 1} + 1 = 2(a_n + 1)\),则数列\(\{a_n + 1\}\)是以\(a_1 + 1 = 2\)为首项,\(2\)为公比的等比数列,从而可得\(a_n + 1 = 2 \times 2^{n 1} = 2^n\),所以\(a_n = 2^n 1\)。
新考纲高考系列数学数列解题方法归纳总结数列解答策略命题趋势数列是新课程的必修内容,考查难度不应太大,试题倾向考查基础问题。
从高考试题看,数列试题最多为一道选择题或填空题,一道解答题。
因此,预测2012年高考中,数列试题会以考查基础问题为主,解答题中可能会出现与不等式、函数导数的综合等,但难度会得到控制。
备考建议1.数列是特殊的函数,研究时要运用函数思想解决问题,如通项公式、前n项和公式等。
2.解等差(比)数列常见题型,需要抓住基本量a1、d (或q),掌握设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算。
3.分类讨论的思想在本章尤为突出,考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等。
4.等价转化是数学复中常用的方法,数列也不例外。
如an 与Sn的转化,将一些数列转化成等差(比)数列来解决等。
复时要及时总结归纳。
5.深刻理解等差(比)数列的定义,正确使用定义和性质是学好本章的关键。
6.解题要善于总结基本数学方法,如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的研究惯,定能事半功倍。
7.数列应用题将是命题的热点,关键在于建模及数列的相关知识的应用。
解答策略1.定义:等差数列{an}⇔an+1-an=d(d为常数),2an=an+1+an-1(n≥2,n∈N*),an=kn+b,Sn=An2+Bn;等比数列an+1=qan(q≠0)。
an=an-1⋅an+1(n≥2,n∈N),an=cqn(c、q均为不为0的常数),Sn=k-kqn(q≠0,q≠1,k≠0)。
2.等差、等比数列性质:等差数列特有性质:①项数为2n时:S2n=n(an+an+1)=n(a1+a2n),S奇-S偶=nd,S奇+S偶=2an;②项数为2n-1时:S2n-1=(2n-1)an中,S奇-S偶=an中,S奇+S偶=n(an+an+1);③若an=m,am=n(m≠n),则am+n=;若Sn=m,Sm=an。
高中数学数列试题的解题方法与技巧分析
高中数学数列试题是高中数学中的一个重要知识点,对于学生来说,掌握数列的解题方法和技巧是提高数学素养的关键之一。
下面我们将介绍一些常见的数列试题解题方法和技巧。
一、等差数列解题方法和技巧:
等差数列是指一个数列中,从第二项起,每一项与它前面的一项之间的差等于同一个常数d(称为公差)。
解等差数列试题时需要注意以下几点:
1. 求等差数列的通项公式,通常用a_n表示第n项,a_1表示第一项,d表示公差。
如果已知首项a_1和公差d,则通项公式为:a_n = a_1 + (n-1)d。
2. 判断一个数列是否是等差数列,可以计算相邻两项的差,如果差值相等,则说明数列是等差数列。
3. 在求和问题中,可以利用等差数列的性质:n个等差数列的和等于首项和末项的和乘以项数的一半。
总结:解高中数学数列试题的方法和技巧需要掌握数列的基本概念和性质,熟练掌握通项公式、公式的应用以及特殊数列的特点。
在解题过程中,要注意分析题目的要求,灵活运用已掌握的知识和技巧,多加练习和思考,在积累经验的基础上提高解题的效率和准确性。
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
2022⾼考数学数列题解题⽅法数列题有什么答题套路数列题证明⼀个数列是等差(等⽐)数列时,最后下结论时要写上以谁为⾸项,谁为公差(公⽐)的等差(等⽐)数列;证明不等式时,有时构造函数,利⽤函数单调性很简单(所以要有构造函数的意识)。
数列题解题⽅法注意等差、等⽐数列通项公式、前n项和公式;证明数列是等差或等⽐直接⽤定义法(后项减前项为常数/后项⽐前项为常数),求数列通项公式,如为等差或等⽐直接代公式即可。
其它的⼀般注意类型采⽤不同的⽅法(已知sn求an、已知sn与an关系求an(前两种都是利⽤an=sn-sn-1,注意讨论n=1、n>;1),累加法、累乘法、构造法(所求数列本⾝不是等差或等⽐,需要将所求数列适当变形构造成新数列lamt,通过构造⼀个新数列使其为等差或等⽐,便可求其通项,再间接求出所求数列通项)。
数列的求和第⼀步要注意通项公式的形式,然后选择合适的⽅法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进⾏求解。
第⼆题是⽴体⼏何题,证明题注意各种证明类型的⽅法(判定定理、性质定理),注意引辅助线,⼀般都是对⾓线、中点、成⽐例的点、等腰等边三⾓形中点等等,理科其实证明不出来直接⽤向量法也是可以的。
计算题主要是体积,注意将字母换位(等体积法);线⾯距离⽤等体积法。
理科还有求⼆⾯⾓、线⾯⾓等,⽤建⽴空间坐标系的⽅法(向量法)⽐较简单,注意各个点的坐标的计算,不要算错。
⾼考数学答题窍门1、审题要慢,答题要快有些考⽣只知道⼀味求快,往往题意未清,便匆忙动笔,结果误⼊歧途,即所谓欲速则不达,看错⼀个字可能会遗憾终⽣,所以审题⼀定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆⼦要⼤⾼考没有⾜够的时间让你反复验算,更不容你⼀再地变换解题⽅法,往往是拿到⼀个题⽬,凭感觉选定⼀种⽅法就动⼿做,这时除了你的每⼀步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的⽅法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻⽜⾓尖,⼀旦发现⾃⼰⾛进死胡同,还是要⽴刻迷途知返。
高考数列题型及解题方法总结高考数列是一种考查学生数学能力的重要方式,它不但考查学生掌握的数学知识,还考查学生在解决实际问题时的综合能力。
本文主要就高考数列题型及相应解题方法总结如下,以期为学生带来帮助。
一、高考数列题型总结1.数列的通项公式:本题主要考查学生掌握数列的规律,理解其发展规律,分析出等比数列或等差数列的通项公式。
2.数列的前n项和:本题主要考查学生掌握等比数列和等差数列的前n项和公式,熟练的后推法。
3.等比数列的首项和公比:本题主要考查学生掌握等比数列的定义,理解概念,根据题目提供的已知条件写出等比数列的三角形公式,解出其首项和公比。
4.别数列:本题主要考查学生掌握分别数列的定义,理解概念,根据题目提供的已知条件能分析出其结构,逐个解出分别数列的项数和某一项的值。
二、解题方法总结1.系题意:本步骤的作用是理解题目的文字,把握题意,明确题目要求的是什么,本题要求什么,分析题干中给出的条件是什么,根据要求,确定所求数列是等比数列还是等差数列。
2.规律:本步骤的作用是把握数列的规律,在把握等比数列或等差数列的规律时,要求学生理解数列的发展规律,如果把等比数列视为关于期数的函数,或者把等差数列视为关于期数的线性函数,则可以迅速获得等比数列或等差数列的三角形公式,从而得出通项公式。
3.积法:本步骤的作用是求数列的前n项和,常用的方法就是累积法,学生需要掌握等差数列前n项和公式和等比数列前n项和公式,根据已知条件计算出数列的前n项和,从而得出结论。
4.用公式:本步骤的作用是求等比数列的首项和公比。
学生需要掌握等比数列定义,熟悉其三角形公式,根据题目给出的条件,计算出首项和公比的值。
5.找规律:本步骤的作用是求分别数列的项数和某一项的值。
学生需要掌握分别数列的定义,根据给出的条件,先把分别数列分解成多个等差数列,逐个列出各部分的公式,再根据题目要求计算出每部分的项数或某一项的值。
以上就是关于高考数列题型及解题方法总结的文章,希望对大家有所帮助。
数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。
2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。
3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。
高中数学数列题型及解题方法一、基本概念在高中数学中,数列是一个数的有序集合,按照一定的规律排列。
数列中的每一个数称为该数列的项,通常用字母表示。
数列中的项的位置或顺序称为项数。
数列一般通过通项公式或递推式来表示。
通项公式直接给出数列中第n个项与n之间的关系,递推式则通过前一项得出后一项,常见的数列有等差数列和等比数列。
二、等差数列等差数列是指数列中相邻两项的差是一个常数的数列。
若一个等差数列的前n 项和可递推出通项公式,即第n项的表达式。
解题方法1.根据已知条件列出等差数列的性质2.利用通项公式或递推式解决问题3.注意区分公差和项数的不同,避免混淆三、等比数列等比数列是指数列中相邻两项的比是一个常数的数列。
等比数列也有通项公式和前n项和的性质。
解题方法1.确定数列是等比数列2.利用通项公式或递推式解决问题,计算项之间的比3.注意等比数列的比值,及时列出通项公式或递推式四、常见题型及解题方法1. 求等差数列第n项或前n项和•要求:已知等差数列的公差和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和2. 求等比数列第n项或前n项和•要求:已知等比数列的比和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和3. 求等差数列或等比数列的一些特殊性质•要求:已知等差数列或等比数列的相关条件,求解一些特殊的性质•解题方法:根据数列的性质列出条件,运用相关知识推导出需要的结果以上是高中数学数列题型及解题方法的简要介绍,希望能对学习数列有所帮助。
如果想深入了解更多数列知识,可以继续深入学习相关内容。
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
高中数学《数列》常见、常考题型总结题型一 数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。
2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。
3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。
2.形如)(1n f a a n n =-+型(累加法)(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法.例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.2. 已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.3.形如)(1n f a a nn =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
高考数学各题型解题方法与技巧总结:数列
问题篇
数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1. 在掌握等差数列、等比数列的定义、性质、通项公式、
前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关
问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计
算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些
事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,
一边幼儿反复倾听,在反复倾听中体验、品味。
最后,希望精品小编整理的高考数学各题型解题方法与技巧对您有
所帮助,祝同学们学习进步。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?。